共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Feng Teng Lihong Zhai Ruixiang Liu Wei Bai Liqiu Wang Dongao Huo Yongsheng Tao Yonglian Zheng Zuxin Zhang 《The Plant journal : for cell and molecular biology》2013,73(3):405-416
Maize plant height is closely associated with biomass, lodging resistance and grain yield. Determining the genetic basis of plant height by characterizing and cloning plant height genes will guide the genetic improvement of crops. In this study, a quantitative trait locus (QTL) for plant height, qPH3.1, was identified on chromosome 3 using populations derived from a cross between Zong3 and its chromosome segment substitution line, SL15. The plant height of the two lines was obviously different, and application of exogenous gibberellin A3 removed this difference. QTL mapping placed qPH3.1 within a 4.0 cM interval, explaining 32.3% of the phenotypic variance. Furthermore, eight homozygous segmental isolines (SILs) developed from two larger F2 populations further narrowed down qPH3.1 to within a 12.6 kb interval. ZmGA3ox2, an ortholog of OsGA3ox2, which encodes a GA3 β‐hydroxylase, was positionally cloned. Association mapping identified two polymorphisms in ZmGA3ox2 that were significantly associated with plant height across two experiments. Quantitative RT‐PCR showed that SL15 had higher ZmGA3ox2 expression relative to Zong3. The resultant higher GA1 accumulation led to longer internodes in SL15 because of increased cell lengths. Moreover, a large deletion in the coding region of ZmGA3ox2 is responsible for the dwarf mutant d1‐6016. The successfully isolated qPH3.1 enriches our knowledge on the genetic basis of plant height in maize, and provides an opportunity for improvement of plant architecture in maize breeding. 相似文献
4.
5.
OsASR5 enhances drought tolerance through a stomatal closure pathway associated with ABA and H2O2 signalling in rice 下载免费PDF全文
Jinjie Li Yang Li Zhigang Yin Jihong Jiang Minghui Zhang Xiao Guo Zhujia Ye Yan Zhao Haiyan Xiong Zhanying Zhang Yujie Shao Conghui Jiang Hongliang Zhang Gynheung An Nam‐Chon Paek Jauhar Ali Zichao Li 《Plant biotechnology journal》2017,15(2):183-196
Drought is one of the major abiotic stresses that directly implicate plant growth and crop productivity. Although many genes in response to drought stress have been identified, genetic improvement to drought resistance especially in food crops is showing relatively slow progress worldwide. Here, we reported the isolation of abscisic acid, stress and ripening (ASR) genes from upland rice variety, IRAT109 (Oryza sativa L. ssp. japonica), and demonstrated that overexpression of OsASR5 enhanced osmotic tolerance in Escherichia coli and drought tolerance in Arabidopsis and rice by regulating leaf water status under drought stress conditions. Moreover, overexpression of OsASR5 in rice increased endogenous ABA level and showed hypersensitive to exogenous ABA treatment at both germination and postgermination stages. The production of H2O2, a second messenger for the induction of stomatal closure in response to ABA, was activated in overexpression plants under drought stress conditions, consequently, increased stomatal closure and decreased stomatal conductance. In contrast, the loss‐of‐function mutant, osasr5, showed sensitivity to drought stress with lower relative water content under drought stress conditions. Further studies demonstrated that OsASR5 functioned as chaperone‐like protein and interacted with stress‐related HSP40 and 2OG‐Fe (II) oxygenase domain containing proteins in yeast and plants. Taken together, we suggest that OsASR5 plays multiple roles in response to drought stress by regulating ABA biosynthesis, promoting stomatal closure, as well as acting as chaperone‐like protein that possibly prevents drought stress‐related proteins from inactivation. 相似文献
6.
7.
8.
Premature leaf senescence 3, encoding a methyltransferase,is required for melatonin biosynthesis in rice 下载免费PDF全文
Ning Yu Xiaodeng Zhan Xihong Shen Daibo Chen Ping Yu Weixun Wu Qunen Liu Zhaoyun Cao Chunde Zhao Shihua Cheng Liyong Cao 《The Plant journal : for cell and molecular biology》2018,95(5):877-891
Premature leaf senescence in rice is one of the most common factors affecting the plant's development and yield. Although methyltransferases are involved in diverse biological functions, their roles in rice leaf senescence have not been previously reported. In this study, we identified the premature leaf senescence 3 (pls3) mutant in rice, which led to early leaf senescence and early heading date. Further investigations revealed that premature leaf senescence was triggered by the accumulation of reactive oxygen species. Using physiological analysis, we found that chlorophyll content was reduced in the pls3 mutant leaves, while hydrogen peroxide (H2O2) and malondialdehyde levels were elevated. Consistent with these findings, the pls3 mutant exhibited hypersensitivity to exogenous hydrogen peroxide. The expression of other senescence‐associated genes such as Osh36 and RCCR1 was increased in the pls3 mutant. Positional cloning indicated the pls3 phenotype was the result of a mutation in OsMTS1, which encodes an O‐methyltransferase in the melatonin biosynthetic pathway. Functional complementation of OsMTS1 in pls3 completely restored the wild‐type phenotype. We found leaf melatonin content to be dramatically reduced in pls3, and that exogenous application of melatonin recovered the pls3 mutant's leaf senescence phenotype to levels comparable to that of wild‐type rice. Moreover, overexpression of OsMTS1 in the wild‐type plant increased the grain yield by 15.9%. Our results demonstrate that disruption of OsMTS1, which codes for a methyltransferase, can trigger leaf senescence as a result of decreased melatonin production. 相似文献
9.
10.
Chuan‐Lin Shi Nai‐Qian Dong Tao Guo Wang‐Wei Ye Jun‐Xiang Shan Hong‐Xuan Lin 《The Plant journal : for cell and molecular biology》2020,103(3):1174-1188
Grain size is one of the essential components determining rice yield and is a target for both domestication and artificial breeding. Gibberellins (GAs) are diterpenoid phytohormones that influence diverse aspects of plant growth and development. Several quantitative trait loci (QTLs) have been identified that control grain size through phytohormone regulation. However, little is known about the role of GAs in the control of grain size. Here we report the cloning and characterization of a QTL, GW6 (GRAIN WIDTH 6), which encodes a GA‐regulated GAST family protein and positively regulates grain width and weight. GW6 is highly expressed in the young panicle and increases grain width by promoting cell expansion in the spikelet hull. Knockout of GW6 exhibits reduced grain size and weight, whereas overexpression of GW6 results in increased grain size and weight. GW6 is induced by GA and its knockout downregulates the expression of GA biosynthesis genes and decreases GA content in the young panicle. We found that a natural variation in the cis element CAAT‐box in the promoter of GW6 is associated with its expression level and grain width and weight. Furthermore, introduction of GW6 to Oryza indica variety HJX74 can lead to a 10.44% increase in rice grain yield, indicating that GW6 has great potential to improve grain yield in rice. 相似文献
11.
Jungil Yang Shinyong Lee Runlai Hang Sung‐Ryul Kim Yang‐Seok Lee Xiaofeng Cao Richard Amasino Gynheung An 《The Plant journal : for cell and molecular biology》2013,73(4):566-578
Flowering is exquisitely regulated by both promotive and inhibitory factors. Molecular genetic studies with Arabidopsis have verified several epigenetic repressors that regulate flowering time. However, the roles of chromatin remodeling factors in developmental processes have not been well explored in Oryza sativa (rice). We identified a chromatin remodeling factor OsVIL2 (O. sativa VIN3‐LIKE 2) that promotes flowering. OsVIL2 contains a plant homeodomain (PHD) finger, which is a conserved motif of histone binding proteins. Insertion mutations in OsVIL2 caused late flowering under both long and short days. In osvil2 mutants OsLFL1 expression was increased, but that of Ehd1, Hd3a and RFT1 was reduced. We demonstrated that OsVIL2 is bound to native histone H3 in vitro. Chromatin immunoprecipitation analyses showed that OsVIL2 was directly associated with OsLFL1 chromatin. We also observed that H3K27me3 was significantly enriched by OsLFL1 chromatin in the wild type, but that this enrichment was diminished in the osvil2 mutants. These results indicated that OsVIL2 epigenetically represses OsLFL1 expression. We showed that OsVIL2 physically interacts with OsEMF2b, a component of polycomb repression complex 2. As observed from osvil2, a null mutation of OsEMF2b caused late flowering by increasing OsLFL1 expression and decreasing Ehd1 expression. Thus, we conclude that OsVIL2 functions together with PRC2 to induce flowering by repressing OsLFL1. 相似文献
12.
13.
14.
15.
16.
Overexpression of the leucine‐rich receptor‐like kinase gene LRK2 increases drought tolerance and tiller number in rice 下载免费PDF全文
Junfang Kang Jianmin Li Shuang Gao Chao Tian Xiaojun Zha 《Plant biotechnology journal》2017,15(9):1175-1185
Drought represents a key limiting factor of global crop distribution. Receptor‐like kinases play major roles in plant development and defence responses against stresses such as drought. In this study, LRK2, which encodes a leucine‐rich receptor‐like kinase, was cloned and characterized and found to be localized on the plasma membrane in rice. Promoter–GUS analysis revealed strong expression in tiller buds, roots, nodes and anthers. Transgenic plants overexpressing LRK2 exhibited enhanced tolerance to drought stress due to an increased number of lateral roots compared with the wild type at the vegetative stage. Moreover, ectopic expression of LRK2 seedlings resulted in increased tiller development. Yeast two‐hybrid screening and bimolecular fluorescence complementation (BiFC) indicated a possible interaction between LRK2 and elongation factor 1 alpha (OsEF1A) in vitro. These results suggest that LRK2 functions as a positive regulator of the drought stress response and tiller development via increased branch development in rice. These findings will aid our understanding of branch regulation in other grasses and support improvements in rice genetics. 相似文献
17.
18.
Diterpenoid phytoalexin factor,a bHLH transcription factor,plays a central role in the biosynthesis of diterpenoid phytoalexins in rice 下载免费PDF全文
Chihiro Yamamura Emi Mizutani Kazunori Okada Hitoshi Nakagawa Setsuko Fukushima Atsunori Tanaka Satoru Maeda Takashi Kamakura Hisakazu Yamane Hiroshi Takatsuji Masaki Mori 《The Plant journal : for cell and molecular biology》2015,84(6):1100-1113
19.
20.
MtVRN2 is a Polycomb VRN2‐like gene which represses the transition to flowering in the model legume Medicago truncatula 下载免费PDF全文
Mauren Jaudal Lulu Zhang Chong Che Daniel G. Hurley Geoffrey Thomson Jiangqi Wen Kirankumar S. Mysore Joanna Putterill 《The Plant journal : for cell and molecular biology》2016,86(2):145-160