首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Iron (Fe) deficiency is a common agricultural problem that affects both the productivity and nutritional quality of plants. Thus, identifying the key factors involved in the tolerance of Fe deficiency is important. In the present study, the zir1 mutant, which is glutathione deficient, was found to be more sensitive to Fe deficiency than the wild type, and grew poorly in alkaline soil. Other glutathione‐deficient mutants also showed various degrees of sensitivity to Fe‐limited conditions. Interestingly, we found that the glutathione level was increased under Fe deficiency in the wild type. By contrast, blocking glutathione biosynthesis led to increased physiological sensitivity to Fe deficiency. On the other hand, overexpressing glutathione enhanced the tolerance to Fe deficiency. Under Fe‐limited conditions, glutathione‐deficient mutants, zir1, pad2 and cad2 accumulated lower levels of Fe than the wild type. The key genes involved in Fe uptake, including IRT1, FRO2 and FIT, are expressed at low levels in zir1; however, a split‐root experiment suggested that the systemic signals that govern the expression of Fe uptake‐related genes are still active in zir1. Furthermore, we found that zir1 had a lower accumulation of nitric oxide (NO) and NO reservoir S‐nitrosoglutathione (GSNO). Although NO is a signaling molecule involved in the induction of Fe uptake‐related genes during Fe deficiency, the NO‐mediated induction of Fe‐uptake genes is dependent on glutathione supply in the zir1 mutant. These results provide direct evidence that glutathione plays an essential role in Fe‐deficiency tolerance and NO‐mediated Fe‐deficiency signaling in Arabidopsis.  相似文献   

4.
5.
Recently, emission of volatile organic compounds (VOCs) has emerged as a mode of communication between bacteria and plants. Although some bacterial VOCs that promote plant growth have been identified, their underlying mechanism of action is unknown. Here we demonstrate that indole, which was identified using a screen for Arabidopsis growth promotion by VOCs from soil‐borne bacteria, is a potent plant‐growth modulator. Its prominent role in increasing the plant secondary root network is mediated by interfering with the auxin‐signalling machinery. Using auxin reporter lines and classic auxin physiological and transport assays we show that the indole signal invades the plant body, reaches zones of auxin activity and acts in a polar auxin transport‐dependent bimodal mechanism to trigger differential cellular auxin responses. Our results suggest that indole, beyond its importance as a bacterial signal molecule, can serve as a remote messenger to manipulate plant growth and development.  相似文献   

6.
7.
8.
9.
The glucosinolate breakdown product indole‐3‐carbinol functions in cruciferous vegetables as a protective agent against foraging insects. While the toxic and deterrent effects of glucosinolate breakdown on herbivores and pathogens have been studied extensively, the secondary responses that are induced in the plant by indole‐3‐carbinol remain relatively uninvestigated. Here we examined the hypothesis that indole‐3‐carbinol plays a role in influencing plant growth and development by manipulating auxin signaling. We show that indole‐3‐carbinol rapidly and reversibly inhibits root elongation in a dose‐dependent manner, and that this inhibition is accompanied by a loss of auxin activity in the root meristem. A direct interaction between indole‐3‐carbinol and the auxin perception machinery was suggested, as application of indole‐3‐carbinol rescues auxin‐induced root phenotypes. In vitro and yeast‐based protein interaction studies showed that indole‐3‐carbinol perturbs the auxin‐dependent interaction of Transport Inhibitor Response (TIR1) with auxin/3‐indoleacetic acid (Aux/IAAs) proteins, further supporting the possibility that indole‐3‐carbinol acts as an auxin antagonist. The results indicate that chemicals whose production is induced by herbivory, such as indole‐3‐carbinol, function not only to repel herbivores, but also as signaling molecules that directly compete with auxin to fine tune plant growth and development.  相似文献   

10.
11.
The beet cyst nematode Heterodera schachtii induces syncytia in the roots of Arabidopsis thaliana, which are its only nutrient source. One gene, At1g64110, that is strongly up‐regulated in syncytia as shown by RT‐PCR, quantitative RT‐PCR, in situ RT‐PCR and promoter::GUS lines, encodes an AAA+‐type ATPase. Expression of two related genes in syncytia, At4g28000 and At5g52882, was not detected or not different from control root segments. Using amiRNA lines and T‐DNA mutants, we show that At1g64110 is important for syncytium and nematode development. At1g64110 was also inducible by wounding, jasmonic acid, salicylic acid, heat and cold, as well as drought, sodium chloride, abscisic acid and mannitol, indicating involvement of this gene in abiotic stress responses. We confirmed this using two T‐DNA mutants that were more sensitive to abscisic acid and sodium chloride during seed germination and root growth. These mutants also developed significantly smaller roots in response to abscisic acid and sodium chloride. An in silico analysis showed that ATPase At1g64110 (and also At4g28000 and At5g52882) belong to the ‘meiotic clade’ of AAA proteins that includes proteins such as Vps4, katanin, spastin and MSP1.  相似文献   

12.
Trans‐generational adaptation is important to respond rapidly to environmental challenges and increase overall plant fitness. Besides well‐known mechanisms such as epigenetic modifications, vertically transmitted endophytic bacteria might contribute to this process. The cultivable and total endophytic communities of several generations of Arabidopsis thaliana seeds harvested from plants exposed to cadmium (Cd) or not exposed were investigated. The diversity and richness of the seed endophytic community decreased with an increasing number of generations. Aeromicrobium and Pseudonocardia were identified as indicator species in seeds from Cd‐exposed plants, while Rhizobium was abundantly present in both seed types. Remarkably, Rhizobium was the only genus that was consistently detected in seeds of all generations, which suggests that the phenotypic characteristics were more important as selection criteria for which bacteria are transferred to the next plant generation than the actual genera. Production of IAA was an important trait for endophytes from both seed types, while ACC deaminase activity and Cd tolerance were mainly associated with seed endophytes from Cd‐exposed plants. Understanding how different factors influence the seed endophytic community can help us to improve seed quality and plant growth through different biotechnological applications.  相似文献   

13.
14.
15.
Iron–sulfur (Fe–S) clusters play an essential role in plants as protein cofactors mediating diverse electron transfer reactions. Because they can react with oxygen to form reactive oxygen species (ROS) and inflict cellular damage, the biogenesis of Fe–S clusters is highly regulated. A recently discovered group of 2Fe–2S proteins, termed NEET proteins, was proposed to coordinate Fe–S, Fe and ROS homeostasis in mammalian cells. Here we report that disrupting the function of AtNEET, the sole member of the NEET protein family in Arabidopsis thaliana, triggers leaf‐associated Fe–S‐ and Fe‐deficiency responses, elevated Fe content in chloroplasts (1.2–1.5‐fold), chlorosis, structural damage to chloroplasts and a high seedling mortality rate. Our findings suggest that disrupting AtNEET function disrupts the transfer of 2Fe–2S clusters from the chloroplastic 2Fe–2S biogenesis pathway to different cytosolic and chloroplastic Fe–S proteins, as well as to the cytosolic Fe–S biogenesis system, and that uncoupling this process triggers leaf‐associated Fe–S‐ and Fe‐deficiency responses that result in Fe over‐accumulation in chloroplasts and enhanced ROS accumulation. We further show that AtNEET transfers its 2Fe–2S clusters to DRE2, a key protein of the cytosolic Fe–S biogenesis system, and propose that the availability of 2Fe–2S clusters in the chloroplast and cytosol is linked to Fe homeostasis in plants.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号