首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In plants, 3‐deoxy‐d ‐manno‐oct‐2‐ulosonic acid (Kdo) is a monosaccharide that is only found in the cell wall pectin, rhamnogalacturonan‐II (RG‐II). Incubation of 4‐day‐old light‐grown Arabidopsis seedlings or tobacco BY‐2 cells with 8‐azido 8‐deoxy Kdo (Kdo‐N3) followed by coupling to an alkyne‐containing fluorescent probe resulted in the specific in muro labelling of RG‐II through a copper‐catalysed azide–alkyne cycloaddition reaction. CMP‐Kdo synthetase inhibition and competition assays showing that Kdo and D‐Ara, a precursor of Kdo, but not L‐Ara, inhibit incorporation of Kdo‐N3 demonstrated that incorporation of Kdo‐N3 occurs in RG‐II through the endogenous biosynthetic machinery of the cell. Co‐localisation of Kdo‐N3 labelling with the cellulose‐binding dye calcofluor white demonstrated that RG‐II exists throughout the primary cell wall. Additionally, after incubating plants with Kdo‐N3 and an alkynated derivative of L‐fucose that incorporates into rhamnogalacturonan I, co‐localised fluorescence was observed in the cell wall in the elongation zone of the root. Finally, pulse labelling experiments demonstrated that metabolic click‐mediated labelling with Kdo‐N3 provides an efficient method to study the synthesis and redistribution of RG‐II during root growth.  相似文献   

2.
Rhamnogalacturonan‐II (RG‐II) is structurally the most complex glycan in higher plants, containing 13 different sugars and 21 distinct glycosidic linkages. Two monomeric RG‐II molecules can form an RG‐II‐borate diester dimer through the two apiosyl (Api) residues of side chain A to regulate cross‐linking of pectin in the cell wall. But the relationship of Api biosynthesis and RG‐II dimer is still unclear. In this study we investigated the two homologous UDP‐D‐apiose/UDP‐D‐xylose synthases (AXSs) in Arabidopsis thaliana that synthesize UDP‐D‐apiose (UDP‐Api). Both AXSs are ubiquitously expressed, while AXS2 has higher overall expression than AXS1 in the tissues analyzed. The homozygous axs double mutant is lethal, while heterozygous axs1/+ axs2 and axs1 axs2/+ mutants display intermediate phenotypes. The axs1/+ axs2 mutant plants are unable to set seed and die. By contrast, the axs1 axs2/+ mutant plants exhibit loss of shoot and root apical dominance. UDP‐Api content in axs1 axs2/+ mutants is decreased by 83%. The cell wall of axs1 axs2/+ mutant plants is thicker and contains less RG‐II‐borate complex than wild‐type Col‐0 plants. Taken together, these results provide direct evidence of the importance of AXSs for UDP‐Api and RG‐II‐borate complex formation in plant growth and development.  相似文献   

3.
In flowering plants, the growth of pollen tubes is essential for the delivery of sperm to the egg cells. Although many factors (including cell‐wall properties) are involved in this process, little is known about the underlying molecular mechanisms that regulate the growth of pollen tubes. We report here the characterization of an Arabidopsis mutant male gametophyte defective 4 (mgp4) that is severely defective in pollen tube growth. The mgp4 mutation also impairs root growth of pollen‐rescued mgp4 mutant plants generated by expressing MGP4 cDNA under the control of a pollen grain/tube‐specific promoter. The MGP4 gene encodes a putative xylosyltransferase and is expressed in many organs/tissues, including pollen tubes and roots. MGP4 protein expressed in Pichia pastoris exhibited xylosyltransferase activity and transferred d ‐xylose onto l ‐fucose. The pectic polysaccharide rhamnogalacturonan II (RG‐II), isolated from 7‐day‐old pollen‐rescued mutant seedlings, exhibited a 30% reduction in 2‐O‐methyl d ‐xylose residues. Furthermore, an exogenous supply of boric acid enhanced RG‐II dimer formation and partially restored the root growth of the pollen‐rescued mutant seedlings. Taken together, these results suggest that MGP4 plays important roles in pollen tube and root growth by acting as a xylosyltransferase involved in the biosynthesis of pectic RG‐II.  相似文献   

4.
Mixed‐linkage (1,3;1,4)‐β‐glucan (MLG) is a glucose polymer with beneficial effects on human health and high potential for the agricultural industry. MLG is present predominantly in the cell wall of grasses and is synthesized by cellulose synthase‐like F or H families of proteins, with CSLF6 being the best‐characterized MLG synthase. Although the function of this enzyme in MLG production has been established, the site of MLG synthesis in the cell is debated. It has been proposed that MLG is synthesized at the plasma membrane, as occurs for cellulose and callose; in contrast, it has also been proposed that MLG is synthesized in the Golgi apparatus, as occurs for other matrix polysaccharides of the cell wall. Testing these conflicting possibilities is fundamentally important in the general understanding of the biosynthesis of the plant cell wall. Using immuno‐localization analyses with MLG‐specific antibody in Brachypodium and in barley, we found MLG present in the Golgi, in post‐Golgi structures and in the cell wall. Accordingly, analyses of a functional fluorescent protein fusion of CSLF6 stably expressed in Brachypodium demonstrated that the enzyme is localized in the Golgi. We also established that overproduction of MLG causes developmental and growth defects in Brachypodium as also occur in barley. Our results indicated that MLG production occurs in the Golgi similarly to other cell wall matrix polysaccharides, and supports the broadly applicable model in grasses that tight mechanisms control optimal MLG accumulation in the cell wall during development and growth. This work addresses the fundamental question of where mixed linkage (1,3;1,4)‐β‐glucan (MLG) is synthesized in plant cells. By analyzing the subcellular localization of MLG and MLG synthase in an endogenous system, we demonstrated that MLG synthesis occurs at the Golgi in Brachypodium and barley. A growth inhibition due to overproduced MLG in Brachypodium supports the general applicability of the model that a tight control of the cell wall polysaccharides accumulation is needed to maintain growth homeostasis during development.  相似文献   

5.
Plant cell wall modification is a critical component in stress responses. Endo‐1,4‐β‐glucanases (EGs) take part in cell wall editing processes, e.g. elongation, ripening and abscission. Here we studied the infection response of Solanum lycopersicum and Arabidopsis thaliana with impaired EGs. Transgenic TomCel1 and TomCel2 tomato antisense plants challenged with Pseudomonas syringae showed higher susceptibility, callose priming and increased jasmonic acid pathway marker gene expression. These two EGs could be resistance factors and may act as negative regulators of callose deposition, probably by interfering with the defence‐signalling network. A study of a set of Arabidopsis EG T‐DNA insertion mutants challenged with P. syringae and Botrytis cinerea revealed that the lack of other EGs interferes with infection phenotype, callose deposition, expression of signalling pathway marker genes and hormonal balance. We conclude that a lack of EGs could alter plant response to pathogens by modifying the properties of the cell wall and/or interfering with signalling pathways, contributing to generate the appropriate signalling outcomes. Analysis of microarray data demonstrates that EGs are differentially expressed upon many different plant–pathogen challenges, hormone treatments and many abiotic stresses. We found some Arabidopsis EG mutants with increased tolerance to osmotic and salt stress. Our results show that impairing EGs can alter plant–pathogen interactions and may contribute to appropriate signalling outcomes in many different biotic and abiotic plant stress responses.  相似文献   

6.
7.
The monoclonal antibody, CCRC-M1, which recognizes a fucose (Fuc)-containing epitope found principally in the cell wall polysaccharide xyloglucan, was used to determine the distribution of this epitope throughout the mur1 mutant of Arabidopsis. Immunofluorescent labeling of whole seedlings revealed that mur1 root hairs are stained heavily by CCRC-M1, whereas the body of the root remains unstained or only lightly stained. Immunogold labeling showed that CCRC-M1 labeling within the mur1 root is specific to particular cell walls and cell types. CCRC-M1 labels all cell walls at the apex of primary roots 2 d and older and the apices of mature lateral roots, but does not bind to cell walls in lateral root initials. Labeling with CCRC-M1 decreases in mur1 root cells that are undergoing rapid elongation growth such that, in the mature portions of primary and lateral roots, only the walls of pericycle cells and the outer walls of epidermal cells are labeled. Growth of the mutant on Fuc-containing media restores wild-type labeling, where all cell walls are labeled by the CCRC-M1 antibody. No labeling was observed in mur1 hypocotyls, shoots, or leaves; stipules are labeled. CCRC-M1 does label pollen grains within anthers and pollen tube walls. These results suggest the Fuc destined for incorporation into xyloglucan is synthesized using one or the other or both isoforms of GDP-D-mannose 4,6-dehydratase, depending on the cell type and/or developmental state of the cell.  相似文献   

8.
The cell‐wall pectic domain rhamnogalacturonan‐II (RG‐II) is cross‐linked via borate diester bridges, which influence the expansion, thickness and porosity of the wall. Previously, little was known about the mechanism or subcellular site of this cross‐linking. Using polyacrylamide gel electrophoresis (PAGE) to separate monomeric from dimeric (boron‐bridged) RG‐II, we confirmed that Pb2+ promotes H3BO3‐dependent dimerisation in vitro. H3BO3 concentrations as high as 50 mm did not prevent cross‐linking. For in‐vivo experiments, we successfully cultured ‘Paul's Scarlet’ rose (Rosa sp.) cells in boron‐free medium: their wall‐bound pectin contained monomeric RG‐II domains but no detectable dimers. Thus pectins containing RG‐II domains can be held in the wall other than via boron bridges. Re‐addition of H3BO3 to 3.3 μm triggered a gradual appearance of RG‐II dimer over 24 h but without detectable loss of existing monomers, suggesting that only newly synthesised RG‐II was amenable to boron bridging. In agreement with this, Rosa cultures whose polysaccharide biosynthetic machinery had been compromised (by carbon starvation, respiratory inhibitors, anaerobiosis, freezing or boiling) lost the ability to generate RG‐II dimers. We conclude that RG‐II normally becomes boron‐bridged during synthesis or secretion but not post‐secretion. Supporting this conclusion, exogenous [3H]RG‐II was neither dimerised in the medium nor cross‐linked to existing wall‐associated RG‐II domains when added to Rosa cultures. In conclusion, in cultured Rosa cells RG‐II domains have a brief window of opportunity for boron‐bridging intraprotoplasmically or during secretion, but secretion into the apoplast is a point of no return beyond which additional boron‐bridging does not readily occur.  相似文献   

9.
The toxicity of azetidine‐2‐carboxylic acid (A2C), a structural analogue of L‐proline, results from its incorporation into proteins due to misrecognition by prolyl‐tRNA synthetase (ProRS). The growth of Arabidopsis thaliana seedling roots is more sensitive to inhibition by A2C than is cotyledon growth. Arabidopsis contains two ProRS isozymes. AtProRS‐Org (At5g52520) is localized in chloroplasts/mitochondria, and AtProRS‐Cyt (At3g62120) is cytosolic. AtProRS‐Cyt mRNA is more highly expressed in roots than in cotyledons. Arabidopsis ProRS isoforms were expressed as His‐tagged recombinant proteins in Escherichia coli. Both enzymes were functionally active in ATP‐PPi exchange and aminoacylation assays, and showed similar Km for L‐proline. A major difference was observed in the substrate specificity of the two enzymes. AtProRS‐Cyt showed nearly identical substrate specificity for L‐proline and A2C, but for AtProRS‐Org the specificity constant was 77.6 times higher for L‐proline than A2C, suggesting that A2C‐sensitivity may result from lower amino acid specificity of AtProRS‐Cyt. Molecular modelling and simulation results indicate that this specificity difference between the AtProRS isoforms may result from altered modes of substrate binding. Similar kinetic results were obtained with the ProRSs from Zea mays, suggesting that the difference in substrate specificity is a conserved feature of ProRS isoforms from plants that do not accumulate A2C and are sensitive to A2C toxicity. The discovery of the mode of action of A2C toxicity could lead to development of biorational weed management strategies.  相似文献   

10.
Phytosterols are classified into C24‐ethylsterols and C24‐methylsterols according to the different C24‐alkylation levels conferred by two types of sterol methyltransferases (SMTs). The first type of SMT (SMT1) is widely conserved, whereas the second type (SMT2) has diverged in charophytes and land plants. The Arabidopsis smt2 smt3 mutant is defective in the SMT2 step, leading to deficiency in C24‐ethylsterols while the C24‐methylsterol pathway is unchanged. smt2 smt3 plants exhibit severe dwarfism and abnormal development throughout their life cycle, with irregular cell division followed by collapsed cell files. Preprophase bands are occasionally formed in perpendicular directions in adjacent cells, and abnormal phragmoplasts with mislocalized KNOLLE syntaxin and tubulin are observed. Defects in auxin‐dependent processes are exemplified by mislocalizations of the PIN2 auxin efflux carrier due to disrupted cell division and failure to distribute PIN2 asymmetrically after cytokinesis. Although endocytosis of PIN2–GFP from the plasma membrane (PM) is apparently unaffected in smt2 smt3, strong inhibition of the endocytic recycling is associated with a remarkable reduction in the level of PIN2–GFP on the PM. Aberrant localization of the cytoplasmic linker associated protein (CLASP) and microtubules is implicated in the disrupted endocytic recycling in smt2 smt3. Exogenous C24‐ethylsterols partially recover lateral root development and auxin distribution in smt2 smt3 roots. These results indicate that C24‐ethylsterols play a crucial role in division plane determination, directional auxin transport, and polar growth. It is proposed that the divergence of SMT2 genes together with the ability to produce C24‐ethylsterols were critical events to achieve polarized growth in the plant lineage.  相似文献   

11.
In plants, the plasticity of root architecture in response to nitrogen availability largely determines nitrogen acquisition efficiency. One poorly understood root growth response to low nitrogen availability is an observed increase in the number and length of lateral roots (LRs). Here, we show that low nitrogen‐induced Arabidopsis LR growth depends on the function of the auxin biosynthesis gene TAR2 (tryptophan aminotransferase related 2). TAR2 was expressed in the pericycle and the vasculature of the mature root zone near the root tip, and was induced under low nitrogen conditions. In wild type plants, low nitrogen stimulated auxin accumulation in the non‐emerged LR primordia with more than three cell layers and LR emergence. Conversely, these low nitrogen‐mediated auxin accumulation and root growth responses were impaired in the tar2‐c null mutant. Overexpression of TAR2 increased LR numbers under both high and low nitrogen conditions. Our results suggested that TAR2 is required for reprogramming root architecture in response to low nitrogen conditions. This finding suggests a new strategy for improving nitrogen use efficiency through the engineering of TAR2 expression in roots.  相似文献   

12.
Boron (B) is essential for plant cell‐wall structure and membrane functions. Compared with its role in cross‐linking the pectic domain rhamnogalacturonan II (RG‐II), little information is known about the biological role of B in membranes. Here, we investigated the involvement of glycosylinositol phosphorylceramides (GIPCs), major components of lipid rafts, in the membrane requirement for B. Using thin‐layer chromatography and mass spectrometry, we first characterized GIPCs from Rosa cell culture. The major GIPC has one hexose residue, one hexuronic acid residue, inositol phosphate, and a ceramide moiety with a C18 trihydroxylated mono‐unsaturated long‐chain base and a C24 monohydroxylated saturated fatty acid. Disrupting B bridging (by B starvation in vivo or by treatment with cold dilute HCl or with excess borate in vitro) enhanced the GIPCs' extractability. As RG‐II is the main B‐binding site in plants, we investigated whether it could form a B‐centred complex with GIPCs. Using high‐voltage paper electrophoresis, we showed that addition of GIPCs decreased the electrophoretic mobility of radiolabelled RG‐II, suggesting formation of a GIPC–B–RG‐II complex. Last, using polyacrylamide gel electrophoresis, we showed that added GIPCs facilitate RG‐II dimerization in vitro. We conclude that B plays a structural role in the plasma membrane. The disruption of membrane components by high borate may account for the phytotoxicity of excess B. Moreover, the in‐vitro formation of a GIPC–B–RG‐II complex gives the first molecular explanation of the wall–membrane attachment sites observed in vivo. Finally, our results suggest a role for GIPCs in the RG‐II dimerization process.  相似文献   

13.
Plant endo‐β‐1,4‐glucanases (EGases) include cell wall‐modifying enzymes that are involved in nematode‐induced growth of syncytia (feeding structures) in nematode‐infected roots. EGases in the α‐ and β‐subfamilies contain signal peptides and are secreted, whereas those in the γ‐subfamily have a membrane‐anchoring domain and are not secreted. The Arabidopsis α‐EGase At1g48930, designated as AtCel6, is known to be down‐regulated by beet cyst nematode (Heterodera schachtii) in Arabidopsis roots, whereas another α‐EGase, AtCel2, is up‐regulated. Here, we report that the ectopic expression of AtCel6 in soybean roots reduces susceptibility to both soybean cyst nematode (SCN; Heterodera glycines) and root knot nematode (Meloidogyne incognita). Suppression of GmCel7, the soybean homologue of AtCel2, in soybean roots also reduces the susceptibility to SCN. In contrast, in studies on two γ‐EGases, both ectopic expression of AtKOR2 in soybean roots and suppression of the soybean homologue of AtKOR3 had no significant effect on SCN parasitism. Our results suggest that secreted α‐EGases are likely to be more useful than membrane‐bound γ‐EGases in the development of an SCN‐resistant soybean through gene manipulation. Furthermore, this study provides evidence that Arabidopsis shares molecular events of cyst nematode parasitism with soybean, and confirms the suitability of the Arabidopsis–H. schachtii interaction as a model for the soybean–H. glycines pathosystem.  相似文献   

14.
15.
Plant cell wall remodeling plays a key role in the control of cell elongation and differentiation. In particular, fine‐tuning of the degree of methylesterification of pectins was previously reported to control developmental processes as diverse as pollen germination, pollen tube elongation, emergence of primordia or elongation of dark‐grown hypocotyls. However, how pectin degradation can modulate plant development has remained elusive. Here we report the characterization of a polygalacturonase (PG), AtPGLR, the gene for which is highly expressed at the onset of lateral root emergence in Arabidopsis. Due to gene compensation mechanisms, mutant approaches failed to determine the involvement of AtPGLR in plant growth. To overcome this issue, AtPGLR has been expressed heterologously in the yeast Pichia pastoris and biochemically characterized. We showed that AtPGLR is an endo‐PG that preferentially releases non‐methylesterified oligogalacturonides with a short degree of polymerization (< 8) at acidic pH. The application of the purified recombinant protein on Amaryllis pollen tubes, an excellent model for studying cell wall remodeling at acidic pH, induced abnormal pollen tubes or cytoplasmic leakage in the subapical dome of the pollen tube tip, where non‐methylesterified pectin epitopes are detected. Those leaks could either be repaired by new β‐glucan deposits (mostly callose) in the cell wall or promoted dramatic burst of the pollen tube. Our work presents the full biochemical characterization of an Arabidopsis PG and highlights the importance of pectin integrity in pollen tube elongation.  相似文献   

16.
Plant cell walls undergo dynamic structural and chemical changes during plant development and growth. Floral organ abscission and lateral root emergence are both accompanied by cell‐wall remodeling, which involves the INFLORESCENCE DEFICIENT IN ABSCISSION (IDA)‐derived peptide and its receptors, HAESA (HAE) and HAESA‐LIKE2 (HSL2). Plant cell walls also act as barriers against pathogenic invaders. Thus, the cell‐wall remodeling during plant development could have an influence on plant resistance to phytopathogens. Here, we identified IDA‐like 6 (IDL6), a gene that is prominently expressed in Arabidopsis leaves. IDL6 expression in Arabidopsis leaves is significantly upregulated when the plant is suffering from attacks of the bacterial Pseudomonas syringae pv. tomato (Pst) DC3000. IDL6 overexpression and knockdown lines respectively decrease and increase the Arabidopsis resistance to Pst DC3000, indicating that the gene promotes the Arabidopsis susceptibility to Pst DC3000. Moreover, IDL6 promotes the expression of a polygalacturonase (PG) gene, ADPG2, and increases PG activity in Arabidopsis leaves, which in turn reduces leaf pectin content and leaf robustness. ADPG2 overexpression restrains Arabidopsis resistance to Pst DC3000, whereas ADPG2 loss‐of‐function mutants increase the resistance to the bacterium. Pst DC3000 infection elevates the ADPG2 expression partially through HAE and HSL2. Taken together, our results suggest that IDL6‐HAE/HSL2 facilitates the ingress of Pst DC3000 by promoting pectin degradation in Arabidopsis leaves, and Pst DC3000 might enhance its infection by manipulating the IDL6‐HAE/HSL2‐ADPG2 signaling pathway.  相似文献   

17.
Rhamnose is required in Arabidopsis thaliana for synthesizing pectic polysaccharides and glycosylating flavonols. RHAMNOSE BIOSYNTHESIS1 (RHM1) encodes a UDP‐l ‐rhamnose synthase, and rhm1 mutants exhibit many developmental defects, including short root hairs, hyponastic cotyledons, and left‐handed helically twisted petals and roots. It has been proposed that the hyponastic cotyledons observed in rhm1 mutants are a consequence of abnormal flavonol glycosylation, while the root hair defect is flavonol‐independent. We have recently shown that the helical twisting of rhm1 petals results from decreased levels of rhamnose‐containing cell wall polymers. In this study, we found that flavonols indirectly modify the rhm1 helical petal phenotype by altering rhamnose flux to the cell wall. Given this finding, we further investigated the relationship between flavonols and the cell wall in rhm1 cotyledons. We show that decreased flavonol rhamnosylation is not responsible for the cotyledon phenotype of rhm1 mutants. Instead, blocking flavonol synthesis or rhamnosylation can suppress rhm1 defects by diverting UDP‐l ‐rhamnose to the synthesis of cell wall polysaccharides. Therefore, rhamnose is required in the cell wall for normal expansion of cotyledon epidermal cells. Our findings suggest a broad role for rhamnose‐containing cell wall polysaccharides in the morphogenesis of epidermal cells.  相似文献   

18.
Cryptococcus neoformans is rich in polysaccharides of the cell wall and capsule. Dectin‐2 recognizes high‐mannose polysaccharides and plays a central role in the immune response to fungal pathogens. Previously, we demonstrated Dectin‐2 was involved in the activation of dendritic cells upon stimulation with C. neoformans, suggesting the existence of a ligand recognized by Dectin‐2. In the present study, we examined the cell wall structures of C. neoformans contributing to the Dectin‐2‐mediated activation of immune cells. In a NFAT‐GFP reporter assay of the reported cells expressing Dectin‐2, the lysates, but not the whole yeast cells, of an acapsular strain of C. neoformans (Cap67) delivered Dectin‐2‐mediated signaling. This activity was detected in the supernatant of β‐glucanase‐treated Cap67 and more strongly in the semi‐purified polysaccharides of this supernatant using ConA‐affinity chromatography (ConA‐bound fraction), in which a large amount of saccharides, but not protein, were detected. Treatment of this supernatant with periodic acid and the addition of excessive mannose, but not glucose or galactose, strongly inhibited this activity. The ConA‐bound fraction of the β‐glucanase‐treated Cap67 supernatant was bound to Dectin‐2‐Fc fusion protein in a dose‐dependent manner and strongly induced the production of interleukin‐12p40 and tumour necrosis factor‐α by dendritic cells; this was abrogated under the Dectin‐2‐deficient condition. Finally, 98 kDa mannoprotein (MP98) derived from C. neoformans showed activation of the reporter cells expressing Dectin‐2. These results suggested that a ligand with mannose moieties may exist in the cell walls and play a critical role in the activation of dendritic cells during infection with C. neoformans.  相似文献   

19.
Plant cell walls are complex configurations of polysaccharides that fulfil a diversity of roles during plant growth and development. They also provide sets of biomaterials that are widely exploited in food, fibre and fuel applications. The pectic polysaccharides, which comprise approximately a third of primary cell walls, form complex supramolecular structures with distinct glycan domains. Rhamnogalacturonan I (RG–I) is a highly structurally heterogeneous branched glycan domain within the pectic supramolecule that contains rhamnogalacturonan, arabinan and galactan as structural elements. Heterogeneous RG–I polymers are implicated in generating the mechanical properties of cell walls during cell development and plant growth, but are poorly understood in architectural, biochemical and functional terms. Using specific monoclonal antibodies to the three major RG–I structural elements (arabinan, galactan and the rhamnogalacturonan backbone) for in situ analyses and chromatographic detection analyses, the relative occurrences of RG–I structures were studied within a single tissue: the tobacco seed endosperm. The analyses indicate that the features of the RG–I polymer display spatial heterogeneity at the level of the tissue and the level of single cell walls, and also heterogeneity at the biochemical level. This work has implications for understanding RG–I glycan complexity in the context of cell‐wall architectures and in relation to cell‐wall functions in cell and tissue development.  相似文献   

20.
Cell walls are metabolically active components of plant cells. They contain diverse enzymes, including transglycanases (endotransglycosylases), enzymes that ‘cut and paste’ certain structural polysaccharide molecules and thus potentially remodel the wall during growth and development. Known transglycanase activities modify several cell‐wall polysaccharides (xyloglucan, mannans, mixed‐linkage β‐glucan and xylans); however, no transglycanases were known to act on cellulose, the principal polysaccharide of biomass. We now report the discovery and characterization of hetero‐trans‐β‐glucanase (HTG), a transglycanase that targets cellulose, in horsetails (Equisetum spp., an early‐diverging genus of monilophytes). HTG is also remarkable in predominantly catalysing hetero‐transglycosylation: its preferred donor substrates (cellulose or mixed‐linkage β‐glucan) differ qualitatively from its acceptor substrate (xyloglucan). HTG thus generates stable cellulose–xyloglucan and mixed‐linkage β‐glucan–xyloglucan covalent bonds, and may therefore strengthen ageing Equisetum tissues by inter‐linking different structural polysaccharides of the cell wall. 3D modelling suggests that only three key amino acid substitutions (Trp → Pro, Gly → Ser and Arg → Leu) are responsible for the evolution of HTG's unique specificity from the better‐known xyloglucan‐acting homo‐transglycanases (xyloglucan endotransglucosylase/hydrolases; XTH). Among land plants, HTG appears to be confined to Equisetum, but its target polysaccharides are widespread, potentially offering opportunities for enhancing crop mechanical properties, such as wind resistance. In addition, by linking cellulose to xyloglucan fragments previously tagged with compounds such as dyes or indicators, HTG may be useful biotechnologically for manufacturing stably functionalized celluloses, thereby potentially offering a commercially valuable ‘green’ technology for industrially manipulating biomass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号