首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
2.
3.
4.
The mitochondrial and chloroplast mRNAs of the majority of land plants are modified through cytidine to uridine (C‐to‐U) RNA editing. Previously, forward and reverse genetic screens demonstrated a requirement for pentatricopeptide repeat (PPR) proteins for RNA editing. Moreover, chloroplast editing factors OZ1, RIP2, RIP9 and ORRM1 were identified in co‐immunoprecipitation (co‐IP) experiments, albeit the minimal complex sufficient for editing activity was never deduced. The current study focuses on isolated, intact complexes that are capable of editing distinct sites. Peak editing activity for four sites was discovered in size‐exclusion chromatography (SEC) fractions ≥ 670 kDa, while fractions estimated to be approximately 413 kDa exhibited the greatest ability to convert a substrate containing the editing site rps14 C80. RNA content peaked in the ≥ 670 kDa fraction. Treatment of active chloroplast extracts with RNase A abolished the relationship of editing activity with high‐MW fractions, suggesting a structural RNA component in native complexes. By immunoblotting, RIP9, OTP86, OZ1 and ORRM1 were shown to be present in active gel filtration fractions, though OZ1 and ORRM1 were mainly found in low‐MW inactive fractions. Active editing factor complexes were affinity‐purified using anti‐RIP9 antibodies, and orthologs to putative Arabidopsis thaliana RNA editing factor PPR proteins, RIP2, RIP9, RIP1, OZ1, ORRM1 and ISE2 were identified via mass spectrometry. Western blots from co‐IP studies revealed the mutual association of OTP86 and OZ1 with native RIP9 complexes. Thus, RIP9 complexes were discovered to be highly associated with C‐to‐U RNA editing activity and other editing factors indicative of their critical role in vascular plant editosomes.  相似文献   

5.
6.
7.
8.
9.
A majority of the proteins of the chloroplast are encoded by the nuclear genome, and are post‐translationally targeted to the chloroplast. From databases of tagged insertion lines at international seed stock centers and our own stock, we selected 3246 Ds/Spm (dissociator/suppressor–mutator) transposon‐ or T‐DNA‐tagged Arabidopsis lines for genes encoding 1369 chloroplast proteins (about 66% of the 2090 predicted chloroplast proteins) in which insertions disrupt the protein‐coding regions. We systematically observed 3‐week‐old seedlings grown on agar plates, identified mutants with abnormal phenotypes and collected homozygous lines with wild‐type phenotypes. We also identified insertion lines for which no homozygous plants were obtained. To date, we have identified 111 lines with reproducible seedling phenotypes, 122 lines for which we could not obtain homozygotes and 1290 homozygous lines without a visible phenotype. The Chloroplast Function Database presents the molecular and phenotypic information obtained from this resource. The database provides tools for searching for mutant lines using Arabidopsis Genome Initiative (AGI) locus numbers, tagged line numbers and phenotypes, and provides rapid access to detailed information on the tagged line resources. Moreover, our collection of insertion homozygotes provides a powerful tool to accelerate the functional analysis of nuclear‐encoded chloroplast proteins in Arabidopsis. The Chloroplast Function Database is freely available at http://rarge.psc.riken.jp/chloroplast/ . The homozygous lines generated in this project are also available from the various Arabidopsis stock centers. We have donated the insertion homozygotes to their originating seed stock centers.  相似文献   

10.
11.
12.
13.
14.
Genome editing facilitated by Cas9‐based RNA‐guided nucleases (RGNs) is becoming an increasingly important and popular technique for reverse genetics in both model and non‐model species. So far, RGNs were mainly applied for the induction of point mutations, and one major challenge consists in the detection of genome‐edited individuals from a mutagenized population. Also, point mutations are not appropriate for functional dissection of non‐coding DNA. Here, the multiplexing capacity of a newly developed genome editing toolkit was exploited for the induction of inheritable chromosomal deletions at six different loci in Nicotiana benthamiana and Arabidopsis. In both species, the preferential formation of small deletions was observed, suggesting reduced efficiency with increasing deletion size. Importantly, small deletions (<100 bp) were detected at high frequencies in N. benthamiana T0 and Arabidopsis T2 populations. Thus, targeting of small deletions by paired nucleases represents a simple approach for the generation of mutant alleles segregating as size polymorphisms in subsequent generations. Phenotypically selected deletions of up to 120 kb occurred at low frequencies in Arabidopsis, suggesting larger population sizes for the discovery of valuable alleles from addressing gene clusters or non‐coding DNA for deletion by programmable nucleases.  相似文献   

15.
16.
17.
The occurrence of geranium rust (caused by Puccinia pelargonii‐zonalis) in commercial greenhouses can result in unmarketable plants and significant economic losses. Currently, detection of geranium rust relies solely on scouting for symptoms and signs of the disease. The purpose of this research was to develop a rapid detection assay for P. pelargonii‐zonalis‐infected tissues or urediniospores on greenhouse‐grown geraniums. Two oligonucleotide primers were designed based on internal transcribed spacer sequence data from three isolates of P. pelargonii‐zonalis. The primers amplified a 131‐bp product from genomic DNA from each isolate of P. pelargonii‐zonalis but did not amplify a product from genomic DNA from twelve other rust fungi or four other plant pathogenic fungi. A PCR product was amplified consistently from solutions that contained 1 ng or 100 pg/ml of purified P. pelargonii‐zonalis DNA in conventional PCR and at 1 pg/ml using real‐time PCR. The detection threshold was 102 urediniospores/ml for real‐time PCR and 104 urediniospores/ml for conventional PCR using urediniospores collected by vacuum from sporulating lesions. Puccinia pelargonii‐zonalis DNA was amplified by real‐time PCR from urediniospores washed from a single inoculated leaf, but recovered urediniospores were below detection threshold from one inoculated leaf with 5, 10, 25 and 50 non‐inoculated leaves. Conventional and real‐time PCR did not detect P. pelargonii‐zonalis in infected leaf tissues, presumably due to PCR inhibitors in the geranium leaf tissue. The inhibition of both conventional and real‐time PCR by geranium tissues suggests that a detection assay focusing on urediniospore recovery and microscopic examination with subsequent species verification by PCR may be the most efficient method for assessing the presence of geranium rust in greenhouses.  相似文献   

18.
19.
Leaf chloroplast movement is thought to optimize light capture and to minimize photodamage. To better understand the impact of chloroplast movement on photosynthesis, we developed a technique based on the imaging of reflectance from leaf surfaces that enables continuous, high‐sensitivity, non‐invasive measurements of chloroplast movement in multiple intact plants under white actinic light. We validated the method by measuring photorelocation responses in Arabidopsis chloroplast division mutants with drastically enlarged chloroplasts, and in phototropin mutants with impaired photorelocation but normal chloroplast morphology, under different light regimes. Additionally, we expanded our platform to permit simultaneous image‐based measurements of chlorophyll fluorescence and chloroplast movement. We show that chloroplast division mutants with enlarged, less‐mobile chloroplasts exhibit greater photosystem II photodamage than is observed in the wild type, particularly under fluctuating high levels of light. Comparison between division mutants and the severe photorelocation mutant phot1‐5 phot2‐1 showed that these effects are not entirely attributable to diminished photorelocation responses, as previously hypothesized, implying that altered chloroplast morphology affects other photosynthetic processes. Our dual‐imaging platform also allowed us to develop a straightforward approach to correct non‐photochemical quenching (NPQ) calculations for interference from chloroplast movement. This correction method should be generally useful when fluorescence and reflectance are measured in the same experiments. The corrected data indicate that the energy‐dependent (qE) and photoinhibitory (qI) components of NPQ contribute differentially to the NPQ phenotypes of the chloroplast division and photorelocation mutants. This imaging technology thus provides a platform for analyzing the contributions of chloroplast movement, chloroplast morphology and other phenotypic attributes to the overall photosynthetic performance of higher plants.  相似文献   

20.
In many crop species, natural variation in eIF4E proteins confers resistance to potyviruses. Gene editing offers new opportunities to transfer genetic resistance to crops that seem to lack natural eIF4E alleles. However, because eIF4E are physiologically important proteins, any introduced modification for virus resistance must not bring adverse phenotype effects. In this study, we assessed the role of amino acid substitutions encoded by a Pisum sativum eIF4E virus‐resistance allele (W69L, T80D S81D, S84A, G114R and N176K) by introducing them independently into the Arabidopsis thaliana eIF4E1 gene, a susceptibility factor to the Clover yellow vein virus (ClYVV). Results show that most mutations were sufficient to prevent ClYVV accumulation in plants without affecting plant growth. In addition, two of these engineered resistance alleles can be combined with a loss‐of‐function eIFiso4E to expand the resistance spectrum to other potyviruses. Finally, we use CRISPR‐nCas9‐cytidine deaminase technology to convert the Arabidopsis eIF4E1 susceptibility allele into a resistance allele by introducing the N176K mutation with a single‐point mutation through C‐to‐G base editing to generate resistant plants. This study shows how combining knowledge on pathogen susceptibility factors with precise genome‐editing technologies offers a feasible solution for engineering transgene‐free genetic resistance in plants, even across species barriers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号