首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The intracellular trafficking and proteolytic processing of the membrane‐bound amyloid precursor protein (APP) are coordinated events leading to the generation of pathogenic amyloid‐beta (Aβ) peptides. The membrane transport of newly synthesized APP from the Golgi to the endolysosomal system is not well defined, yet it is likely to be critical for regulating its processing by β‐secretase (BACE1) and γ‐secretase. Here, we show that the majority of newly synthesized APP is transported from the trans‐Golgi network (TGN) directly to early endosomes and then subsequently to the late endosomes/lysosomes with very little transported to the cell surface. We show that Arl5b, a small G protein localized to the TGN, and AP4 are essential for the post‐Golgi transport of APP to early endosomes. Arl5b is physically associated with AP4 and is required for the recruitment of AP4, but not AP1, to the TGN. Depletion of either Arl5b or AP4 results in the accumulation of APP, but not BACE1, in the Golgi, and an increase in APP processing and Aβ secretion. These findings demonstrate that APP is diverted from BACE1 at the TGN for direct transport to early endosomes and that the TGN represents a site for APP processing with the subsequent secretion of Aβ.   相似文献   

2.
Processing of amyloid precursor protein (APP) into amyloid‐β peptide (Aβ) is crucial for the development of Alzheimer's disease (AD). Because this processing is highly dependent on its intracellular itinerary, altered subcellular targeting of APP is thought to directly affect the degree to which Aβ is generated. The sorting receptor SorCS1 has been genetically linked to AD, but the underlying molecular mechanisms are poorly understood. We analyze two SorCS1 variants; one, SorCS1c, conveys internalization of surface‐bound ligands whereas the other, SorCS1b, does not. In agreement with previous studies, we demonstrate co‐immunoprecipitation and co‐localization of both SorCS1 variants with APP. Our results suggest that SorCS1c and APP are internalized independently, although they mostly share a common post‐endocytic pathway. We introduce functional Venus‐tagged constructs to study SorCS1b and SorCS1c in living cells. Both variants are transported by fast anterograde axonal transport machinery and about 30% of anterograde APP‐positive transport vesicles contain SorCS1. Co‐expression of SorCS1b caused no change of APP transport kinetics, but SorCS1c reduced the anterograde transport rate of APP and increased the number of APP‐positive stationary vesicles. These data suggest that SorCS1 and APP share trafficking pathways and that SorCS1c can retain APP from insertion into anterograde transport vesicles.

  相似文献   


3.
β‐Secretase (BACE1) cleavage of the amyloid precursor protein (APP) represents the initial step in the formation of the Alzheimer's disease associated amyloidogenic Aβ peptide. Substantive evidence indicates that APP processing by BACE1 is dependent on intracellular sorting of this enzyme. Nonetheless, knowledge of the intracellular trafficking pathway of internalised BACE1 remains in doubt. Here we show that cell surface BACE1 is rapidly internalised by the AP2/clathrin dependent pathway in transfected cells and traffics to early endosomes and Rab11‐positive, juxtanuclear recycling endosomes, with very little transported to the TGN as has been previously suggested. Moreover, BACE1 is predominantly localised to the early and recycling endosome compartments in different cell types, including neuronal cells. In contrast, the majority of internalised wild‐type APP traffics to late endosomes/lysosomes. To explore the relevance of the itinerary of BACE1 on APP processing, we generated a BACE1 chimera containing the cytoplasmic tail of TGN38 (BACE/TGN38), which cycles between the cell surface and TGN in an AP2‐dependent manner. Wild‐type BACE1 is less efficient in Aβ production than the BACE/TGN38 chimera, highlighting the relevance of the itinerary of BACE1 on APP processing. Overall the data suggests that internalised BACE1 and APP diverge at early endosomes and that Aβ biogenesis is regulated in part by the recycling itinerary of BACE1.  相似文献   

4.
Apicomplexans are obligate intracellular parasites that invade the host cell in an active process that relies on unique secretory organelles (micronemes, rhoptries and dense granules) localized at the apical tip of these highly polarized eukaryotes. In order for the contents of these specialized organelles to reach their final destination, these proteins are sorted post‐Golgi and it has been speculated that they pass through endosomal‐like compartments (ELCs), where they undergo maturation. Here, we characterize a Toxoplasma gondii homologue of Syntaxin 6 (TgStx6), a well‐established marker for the early endosomes and trans Golgi network (TGN) in diverse eukaryotes. Indeed, TgStx6 appears to have a role in the retrograde transport between ELCs, the TGN and the Golgi, because overexpression of TgStx6 results in the development of abnormally shaped parasites with expanded ELCs, a fragmented Golgi and a defect in inner membrane complex maturation. Interestingly, other organelles such as the micronemes, rhoptries and the apicoplast are not affected, establishing the TGN as a major sorting compartment where several transport pathways intersect. It therefore appears that Toxoplasma has retained a plant‐like secretory pathway .  相似文献   

5.
In the liver, the P‐type ATPase and membrane pump ATP7B plays a crucial role in Cu+ donation to cuproenzymes and in the elimination of excess Cu+. ATP7B is endowed with a COOH‐cytoplasmic (DE)XXXLL‐type traffic signal. We find that accessory (Lys ?3, Trp ?2, Ser ?1 and Leu +2) and canonical (D ?4, Leu 0 and Leu +1) residues confer the DKWSLLL signal with the versatility required for the Cu+‐regulated cycling of ATP7B between the trans‐Golgi network (TGN) and the plasma membrane (PM). The separate mutation of these residues caused a disruption of the signal, resulting in different ATP7B distribution phenotypes. These phenotypes indicate the key roles of specific residues at separate steps of ATP7B trafficking, including sorting at the TGN, transport from the TGN to the PM and its endocytosis, and recycling to the TGN and PM. The distinct roles of ATP7B in the TGN and PM and the variety of phenotypes caused by the mutation of the canonical and accessory residues of the DKWSLLL signal can explain the separate or joined presentation of Wilson's cuprotoxicosis and the dysfunction of the cuproenzymes that accept Cu+ at the TGN.   相似文献   

6.
Amyloid‐β (Aβ)‐peptide, the major constituent of the plaques that develop during Alzheimer's disease, is generated via the cleavage of Aβ precursor protein (APP) by β‐site APP‐cleaving enzyme (BACE). Using live‐cell imaging of APP and BACE labeled with pH‐sensitive proteins, we could detect the release events of APP and BACE and their distinct kinetics. We provide kinetic evidence for the cleavage of APP by α‐secretase on the cellular surface after exocytosis. Furthermore, simultaneous dual‐color evanescent field illumination revealed that the two proteins are trafficked to the surface in separate compartments. Perturbing the membrane lipid composition resulted in a reduced frequency of exocytosis and affected BACE more strongly than APP. We propose that surface fusion frequency is a key factor regulating the aggregation of APP and BACE in the same membrane compartment and that this process can be modulated via pharmacological intervention.   相似文献   

7.
Hepatocytes, the main epithelial cells of the liver, organize their polarized membrane domains differently from ductal epithelia. They also differ in their biosynthetic delivery of single‐membrane‐spanning and glycophosphatidylinositol‐anchored proteins to the apical domain. While ductal epithelia target apical proteins to varying degrees from the trans‐Golgi network (TGN) to the apical surface directly, hepatocytes target them first to the basolateral domain, from where they undergo basolateral‐to‐apical transcytosis. How TGN‐to‐surface transport differs in both scenarios is unknown. Here, we report that the basolateral detour of a hepatocyte apical protein is due, in part, to low RhoA activity at the TGN, which prevents its segregation from basolateral transport carriers. Activating Rho in hepatocytic cells, which switches their polarity from hepatocytic to ductal, also led to apical‐basolateral cargo segregation at the TGN as is typical for ductal cells, affirming a central role for Rho‐signaling in different aspects of the hepatocytic polarity phenotype. Nevertheless, Rho‐induced cargo segregation was not sufficient to target the apical protein directly; thus, failure to recruit apical targeting machinery also contributes to its indirect itinerary.  相似文献   

8.
The high‐affinity choline transporter (CHT) is responsible for choline uptake into cholinergic neurons, with this being the rate‐limiting step for acetylcholine production. Altering CHT protein disposition directly impacts choline uptake activity and cholinergic neurotransmission. Amyloid precursor protein (APP) interacts with CHT proteins and increases their endocytosis from the cell surface. The goal of this study was to examine regulation of CHT trafficking and activity by wild‐type APP (APPwt) and determine if this differs with Swedish mutant APP (APPSwe) in SH‐SY5Y human neuroblastoma cells. APPSwe differs from APPwt in its trafficking from the cell surface through endosomes. We report for the first time that CHT interacts significantly less with APPSwe than with APPwt. Surprisingly, however, CHT cell surface levels and choline uptake activity are decreased to the same extent and CHT co‐localization to early endosomes increased similarly in cells expressing either APPwt or APPSwe. A critical observation is that CHT co‐immunoprecipitates with βCTF from APPSwe‐expressing cells. We propose that decreased CHT function is mediated differently by APPwt and APPSwe; APPwt interaction with CHT facilitates its endocytosis from the cell surface, whereas the effect of APPSwe on CHT is mediated indirectly potentially by binding to the βCTF fragment or by Aβ released from cells.

  相似文献   


9.
To investigate the role of cytoplasmic sequences in directing transmembrane protein trafficking through the Golgi, we analyzed the sorting of VSV tsO45 G fusions with either the native G cytoplasmic domain (G) or an alternative cytoplasmic tail derived from the chicken AE1‐4 anion exchanger (GAE). At restrictive temperature GAE and G accumulated in the ER, and upon shifting the cells to permissive temperature both proteins folded and underwent transport through the Golgi. However, GAE and G did not form hetero‐oligomers upon the shift to permissive temperature and they progressed through the Golgi with distinct kinetics. In addition, the transport of G through the proximal Golgi was Arf1 and COPI‐dependent, while GAE progression through the proximal Golgi was Arf1 and COPI‐independent. Although Arf1 did not regulate the sorting of GAE in the cis‐Golgi, Arf1 did regulate the exit of GAE from the TGN. The trafficking of GAE through the Golgi was similar to that of the native AE1‐4 anion exchanger, in that the progression of both proteins through the proximal Golgi was Arf1‐independent, while both required Arf1 to exit the TGN. We propose that the differential recognition of cytosolic signals in membrane‐spanning proteins by the Arf1‐dependent sorting machinery may influence the rate at which cargo progresses through the Golgi.   相似文献   

10.

Background

Retrograde transport of several transmembrane proteins from endosomes to the trans-Golgi network (TGN) occurs via Rab 5-containing endosomes, mediated by clathrin and the recently characterized retromer complex. This complex and one of its putative sorting receptor components, SorLA, were reported to be associated to late onset Alzheimer's disease (AD). The pathogenesis of this neurodegenerative disorder is still elusive, although accumulation of amyloidogenic Abeta is a hallmark. This peptide is generated from the sucessive β- and γ- secretase proteolysis of the Alzheimer's amyloid precursor protein (APP), events which are associated with endocytic pathway compartments. Therefore, APP targeting and time of residence in endosomes would be predicted to modulate Abeta levels. However, the formation of an APP- and retromer-containing protein complex with potential functions in retrieval of APP from the endosome to the TGN had, to date, not been demonstrated directly. Further, the motif(s) in APP that regulate its sorting to the TGN have not been characterized.

Results

Through the use of APP-GFP constructs, we show that APP containing endocytic vesicles targeted for the TGN, are also immunoreactive for clathrin-, Rab 5- and VPS35. Further, they frequently generate protruding tubules near the TGN, supporting an association with a retromer-mediated pathway. Importantly, we show for the first time, that mimicking APP phosphorylation at S655, within the APP 653YTSI656 basolateral motif, enhances APP retrieval via a retromer-mediated process. The phosphomimetic APP S655E displays decreased APP lysosomal targeting, enhanced mature half-life, and decreased tendency towards Abeta production. VPS35 downregulation impairs the phosphorylation dependent APP retrieval to the TGN, and decreases APP half-life.

Conclusions

We reported for the first time the importance of APP phosphorylation on S655 in regulating its retromer-mediated sorting to the TGN or lysosomes. Significantly, the data are consistent with known interactions involving the retromer, SorLA and APP. Further, these findings add to our understanding of APP targeting and potentially contribute to our knowledge of sporadic AD pathogenesis representing putative new targets for AD therapeutic strategies.  相似文献   

11.
Several exogenous and endogenous cargo proteins are internalized independently of clathrin, including the bacterial Shiga toxin. The mechanisms underlying early steps of clathrin‐independent uptake remain largely unknown. In this study, we have designed a protocol to obtain gradient fractions containing Shiga toxin internalization intermediates. Using stable isotope labeling with amino acids in cell culture (SILAC) and quantitative mass spectrometry, Rab12 was found in association with these very early uptake carriers. The localization of the GTPase on Shiga toxin‐induced plasma membrane invaginations was shown by fluorescence microscopy in cells transfected with GFP‐Rab12. Furthermore, using a quantitative biochemical assay, it was found that the amount of receptor‐binding B‐subunit of Shiga toxin reaching the trans‐Golgi/TGN membranes was decreased in Rab12‐depleted cells, and that cells were partially protected against intoxication by Shiga‐like toxin 1 under these conditions. These findings demonstrate the functional importance of Rab12 for retrograde toxin trafficking. Among several other intracellular transport pathways, only the steady‐state localizations of TGN46 and cation‐independent mannose‐6‐phosphate receptor were affected. These data thus strongly suggest that Rab12 functions in the retrograde transport route.   相似文献   

12.
Aberrant and/or cumulative amyloid-beta (Aβ) production, resulting from proteolytic processing of the amyloid precursor protein (APP) by β and γ-secretases, have been postulated to be a main etiological basis of Alzheimer disease (AD). A number of proteins influence the subcellular trafficking itinerary of APP and the β-site APP-cleaving enzyme (BACE1) between the cell surface, endosomes and the trans-Golgi network (TGN). Available evidence suggests that co-residence of APP and BACE1 in the endosomal compartments promotes amyloidogenesis. Retrograde transport of APP out of the endosome to the TGN reduces Aβ production, while APP routed to and kept at the cell surface enhances its non-amyloidogenic, α-secretase-mediated processing. Changes in post-Golgi membrane trafficking in aging neurons that may influence APP processing is particularly relevant to late-onset, idiopathic AD. Dystrophic axons are key features of AD pathology, and impaired axonal transport could play crucial roles in the pathogenesis of idiopathic AD. Recent evidence has also indicated that Aβ-induced synaptic defects and memory impairment could be explained by a loss of both AMPA and NMDA receptors through endocytosis. Detail understanding of factors that influence these neuronal trafficking processes will open up novel therapeutic avenues for preventing or delaying the onset of symptomatic AD.Key words: amyloid precursor protein (APP), β-site APP cleaving enzyme 1 (BACE1), endosome, glutamate receptors, trans-Golgi network (TGN)  相似文献   

13.
Kidney anion exchanger 1 (kAE1) plays an important role in acid–base homeostasis by mediating chloride/bicarbornate (Cl?/HCO3?) exchange at the basolateral membrane of α‐intercalated cells in the distal nephron. Impaired intracellular trafficking of kAE1 caused by mutations of SLC4A1 encoding kAE1 results in kidney disease – distal renal tubular acidosis (dRTA). However, it is not known how the intracellular sorting and trafficking of kAE1 from trans‐Golgi network (TGN) to the basolateral membrane occurs. Here, we studied the role of basolateral‐related sorting proteins, including the mu1 subunit of adaptor protein (AP) complexes, clathrin and protein kinase D, on kAE1 trafficking in polarized and non‐polarized kidney cells. By using RNA interference, co‐immunoprecipitation, yellow fluorescent protein‐based protein fragment complementation assays and immunofluorescence staining, we demonstrated that AP‐1 mu1A, AP‐3 mu1, AP‐4 mu1 and clathrin (but not AP‐1 mu1B, PKD1 or PKD2) play crucial roles in intracellular sorting and trafficking of kAE1. We also demonstrated colocalization of kAE1 and basolateral‐related sorting proteins in human kidney tissues by double immunofluorescence staining. These findings indicate that AP‐1 mu1A, AP‐3 mu1, AP‐4 mu1 and clathrin are required for kAE1 sorting and trafficking from TGN to the basolateral membrane of acid‐secreting α‐intercalated cells.   相似文献   

14.
The β‐amyloid precursor protein (APP) has been extensively studied for its role as the precursor of the β‐amyloid protein (Aβ) of Alzheimer's disease. However, the normal function of APP remains largely unknown. This article reviews studies on the structure, expression and post‐translational processing of APP, as well as studies on the effects of APP in vitro and in vivo. We conclude that the published data provide strong evidence that APP has a trophic function. APP is likely to be involved in neural stem cell development, neuronal survival, neurite outgrowth and neurorepair. However, the mechanisms by which APP exerts its actions remain to be elucidated. The available evidence suggests that APP interacts both intracellularly and extracellularly to regulate various signal transduction mechanisms.

  相似文献   


15.
Endocytic sorting of activated receptor tyrosine kinases (RTKs), alternating between recycling and degradative processes, controls signal duration, location and surface complement of RTKs. The microtubule (MT) plus‐end tracking proteins (+TIPs) play essential roles in various cellular activities including translocation of intracellular cargo. However, mechanisms through which RTKs recycle back to the plasma membrane following internalization in response to ligand remain poorly understood. We report that net outward‐directed movement of endocytic vesicles containing the hepatocyte growth factor (HGF) Met RTK, requires recruitment of the +TIP, CLIP‐170, as well as the association of CLIP‐170 to MT plus‐ends. In response to HGF, entry of Met into Rab4‐positive endosomes results in Golgi‐localized γ‐ear‐containing Arf‐binding protein 3 (GGA3) and CLIP‐170 recruitment to an activated Met RTK complex. We conclude that CLIP‐170 co‐ordinates the recycling and the transport of Met‐positive endocytic vesicles to plus‐ends of MTs towards the cell cortex, including the plasma membrane and the lamellipodia, thereby promoting cell migration.   相似文献   

16.
Retroviruses incorporate specific host cell RNAs into virions. In particular, the host noncoding 7SL RNA is highly abundant in all examined retroviruses compared with its cellular levels or relative to common mRNAs such as actin. Using live cell imaging techniques, we have determined that the 7SL RNA does not arrive with the HIV‐1 RNA genome. Instead, it is recruited contemporaneously with assembly of the protein HIV‐1 Gag at the plasma membrane. Further, we demonstrate that complexes of 7SL RNA and Gag can be immunoprecipitated from both cytosolic and plasma membrane fractions. This indicates that 7SL RNAs likely interact with Gag prior to high‐order Gag multimerization at the plasma membrane. Thus, the interactions between Gag and the host RNA 7SL occur independent of the interactions between Gag and the host endosomal sorting complex required for transport (ESCRT) proteins, which are recruited temporarily at late stages of assembly. The interactions of 7SL and Gag are also independent of interactions of Gag and the HIV‐1 genome which are seen on the plasma membrane prior to assembly of Gag.   相似文献   

17.
The deposition of amyloid‐β (Aβ) peptide, which is generated from amyloid precursor protein (APP), is the pathological hallmark of Alzheimer's disease (AD). Three APP familial AD mutations (D678H, D678N, and H677R) located at the sixth and seventh amino acid of Aβ have distinct effect on Aβ aggregation, but their influence on the physiological and pathological roles of APP remain unclear. We found that the D678H mutation strongly enhances amyloidogenic cleavage of APP, thus increasing the production of Aβ. This enhancement of amyloidogenic cleavage is likely because of the acceleration of APPD678H sorting into the endosomal‐lysosomal pathway. In contrast, the APPD678N and APPH677R mutants do not cause the same effects. Therefore, this study indicates a regulatory role of D678H in APP sorting and processing, and provides genetic evidence for the importance of APP sorting in AD pathogenesis.

  相似文献   


18.
Calsyntenins Mediate TGN Exit of APP in a Kinesin-1-Dependent Manner   总被引:1,自引:0,他引:1  
Kinesin motors are required for the export of membranous cargo from the trans-Golgi network (TGN), yet information about how kinesins are recruited to forming transport intermediates is sparse. Here we show that the Kinesin-1 docking protein calsyntenin-1 localizes to the TGN in vivo and directly and specifically recruits Kinesin-1 to Golgi/TGN membranes as well as to dynamic post-Golgi carriers. Overexpression of various calsyntenin chimeras and kinesin light chain 1 (KLC1) at high levels caused the formation of aberrant membrane stacks at the endoplasmic reticulum (ER) or the Golgi, disrupted overall Golgi structure and blocked exit of calsyntenin from the TGN. Intriguingly, this blockade of calsyntenin exit strongly and selectively impeded TGN exit of amyloid precursor protein (APP). Using live cell microscopy we found that calsyntenins exit the TGN in Kinesin-1-decorated tubular structures which may serve as carriers for calsyntenin-1-mediated post-TGN transport of APP. Abrogation of this pathway via virus-mediated knockdown of calsyntenin-1 expression in primary cultured neurons caused a marked elevation of APP C-terminal fragments. Together, these results indicate a role for calsyntenin-1 in Kinesin-1-dependent TGN exit and post-Golgi transport of APP-containing organelles and further suggest that distinct intracellular routes may exhibit different capacities for proteolytic processing of APP.  相似文献   

19.
20.
Physiologic Cu levels regulate the intracellular location of the Cu ATPase ATP7B. Here, we determined the routes of Cu‐directed trafficking of endogenous ATP7B in the polarized hepatic cell line WIF‐B and in the liver in vivo. Copper (10 µm ) caused ATP7B to exit the trans‐Golgi network (TGN) in vesicles, which trafficked via large basolateral endosomes to the apical domain within 1 h. Although perturbants of luminal acidification had little effect on the TGN localization of ATP7B in low Cu, they blocked delivery to the apical membrane in elevated Cu. If the vesicular proton‐pump inhibitor bafilomycin‐A1 (Baf) was present with Cu, ATP7B still exited the TGN, but accumulated in large endosomes located near the coverslip, in the basolateral region. Baf washout restored ATP7B trafficking to the apical domain. If ATP7B was staged apically in high Cu, Baf addition promoted the accumulation of ATP7B in subapical endosomes, indicating a blockade of apical recycling, with concomitant loss of ATP7B at the apical membrane. The retrograde pathway to the TGN, induced by Cu removal, was far less affected by Baf than the anterograde (Cu‐stimulated) case. Overall, loss of acidification‐impaired Cu‐regulated trafficking of ATP7B at two main sites: (i) sorting and exit from large basolateral endosomes and (ii) recycling via endosomes near the apical membrane.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号