首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Biogenic volatile organic compounds (BVOC) emissions from bioenergy crops may differ from those of conventional crops. We compared emission rates of isoprene and a number of monoterpenes from the lignocellulosic bioenergy crops short‐rotation coppice (SRC) willow and Miscanthus, with the conventional crops wheat and oilseed rape. BVOC emission rates were measured via dynamic vegetation enclosure and GC‐MS analysis approximately monthly between April 2010 and August 2012 at a location in England and from SRC willow at two locations in Scotland. The largest BVOC emission rates were measured from willow in England and varied between years. Isoprene emission rates varied between μg g?1 h?1. Of the monoterpenes detected from willow, α‐pinene emission rates were highest (μg g?1 h?1), followed by μg g?1 h?1 for δ‐3‐carene, μg g?1 h?1 for β‐pinene and μg g?1 h?1 for limonene. BVOC emission rates measured in Scotland were much lower. Low emission rates of isoprene and α‐pinene were measured from Miscanthus in 2010 (μg g?1 h?1 and μg g?1 h?1, respectively) but were not detected in subsequent years. Emission rates from wheat of isoprene were negligible but relatively high for monoterpenes (μg g?1 h?1 and μg g?1 h?1 for α‐pinene and limonene, respectively). No significant emission rates of BVOCs were measured from oilseed rape. The measured emission rates followed a clear seasonal trend. Crude extrapolations based solely on data gathered here indicate that isoprene emissions from willow could correspond to 0.004–0.03% (UK) and 0.76–5.5% (Europe) of current global isoprene if 50% of all land potentially available for bioenergy crops is planted with willow.  相似文献   

2.
3.
The toxigenic diatom Pseudo‐nitzschia cuspidata, isolated from the U.S. Pacific Northwest, was examined in unialgal batch cultures to evaluate domoic acid (DA) toxicity and growth as a function of light, N substrate, and growth phase. Experiments conducted at saturating (120 μmol photons · m?2 · s?1) and subsaturating (40 μmol photons · m?2 · s?1) photosynthetic photon flux density (PPFD), demonstrate that P. cuspidata grows significantly faster at the higher PPFD on all three N substrates tested [nitrate (NO3?), ammonium (NH4+), and urea], but neither cellular toxicity nor exponential growth rates were strongly associated with one N source over the other at high PPFD. However, at the lower PPFD, the exponential growth rates were approximately halved, and the cells were significantly more toxic regardless of N substrate. Urea supported significantly faster growth rates, and cellular toxicity varied as a function of N substrate with NO3?‐supported cells being significantly more toxic than both NH4+‐ and urea‐supported cells at the low PPFD. Kinetic uptake parameters were determined for another member of the P. pseudodelicatissima complex, P. fryxelliana. After growth of these cells on NO3? they exhibited maximum specific uptake rates (Vmax) of 22.7, 29.9, 8.98 × 10?3 · h?1, half‐saturation constants (Ks) of 1.34, 2.14, 0.28 μg‐at N · L?1, and affinity values (α) of 17.0, 14.7, 32.5 × 10?3 · h?1/(μg‐at N · L?1) for NO3?, NH4+ and urea, respectively. These labo‐ratory results demonstrate the capability of P. cuspidata to grow and produce DA on both oxidized and reduced N substrates during both exponential and stationary growth phases, and the uptake kinetic results for the pseudo‐cryptic species, P. fryxelliana suggest that reduced N sources from coastal runoff could be important for maintenance of these small pennate diatoms in U.S. west coast blooms, especially during times of low ambient N concentrations.  相似文献   

4.
Co‐cultures for simultaneous production of ethanol and xylitol were studied under different operation bioreactor modes using Candida tropicalis IEC5‐ITV and Saccharomyces cerevisiae ITV01‐RD in a simulated medium of sugarcane bagasse hydrolyzates. Xylitol and ethanol tolerance by S. cerevisiae and C. tropicalis, respectively, was evaluated. The results showed that C. tropicalis was sensitive to ethanol concentrations up to 30 g/L, while xylitol had no effect on S. cerevisiae viability and metabolism. The best condition found for simultaneous culture was S. cerevisiae co‐culture and C. tropicalis sequential cultivation at 24 h. Under these conditions, productivity and yield for ethanol were QEtOH = 0.72 g L?1 h?1 and YEtOH/s = 0.37 g/g, and for xylitol, QXylOH = 0.10 g L?1 h?1 and YXylOH/S = 0.31 g/g, respectively; using fed‐batch culture, the results were QEtOH = 0.87 g L?1 h?1 and YEtOH/s = 0.44 g L?1 h?1, and QEtOH = 0.27 g L?1 h?1 and YEtOH/s = 0.57 g/g, respectively. Maximum volumetric productivity in continuous multistep cultures of ethanol and xylitol was at dilution rates of 0.131 and 0.074 h?1, respectively. Continuous multistep production, QEtOH increased up to 50% more than in fed‐batch culture, even though xylitol yield remained unchanged.  相似文献   

5.
Life can thrive in extreme environments where inhospitable conditions prevail. Organisms which resist, for example, acidity, pressure, low or high temperature, have been found in harsh environments. Most of them are bacteria and archaea. The bacterium Deinococcus radiodurans is considered to be a champion among all living organisms, surviving extreme ionizing radiation levels. We have discovered a new extremophile eukaryotic organism that possesses a resistance to ionizing radiations similar to that of D. radiodurans. This microorganism, an autotrophic freshwater green microalga, lives in a peculiar environment, namely the cooling pool of a nuclear reactor containing spent nuclear fuels, where it is continuously submitted to nutritive, metallic, and radiative stress. We investigated its morphology and its ultrastructure by light, fluorescence and electron microscopy as well as its biochemical properties. Its resistance to UV and gamma radiation was assessed. When submitted to different dose rates of the order of some tens of mGy · h?1 to several thousands of Gy · h?1, the microalga revealed to be able to survive intense gamma‐rays irradiation, up to 2,000 times the dose lethal to human. The nuclear genome region spanning the genes for small subunit ribosomal RNA‐Internal Transcribed Spacer (ITS) 1‐5.8S rRNA‐ITS2‐28S rRNA (beginning) was sequenced (4,065 bp). The phylogenetic position of the microalga was inferred from the 18S rRNA gene. All the revealed characteristics make the alga a new species of the genus Coccomyxa in the class Trebouxiophyceae, which we name Coccomyxa actinabiotis sp. nov.  相似文献   

6.
The underwater light field in blackwater environments is strongly skewed toward the red end of the electromagnetic spectrum due to blue light absorption by colored dissolved organic matter (CDOM). Exposure of phytoplankton to full spectrum irradiance occurs only when cells are mixed up to the surface. We studied the potential effects of mixing‐induced changes in spectral irradiance on photoacclimation, primary productivity and growth in cultures of the cryptophyte Rhodomonas salina and the diatom Skeletonema costatum. We found that these taxa have very different photoacclimation strategies. While S. costatum showed classical complementary chromatic adaption, R. salina showed inverse chromatic adaptation, a strategy previously unknown in the cryptophytes. Transfer of R. salina to periodic full spectrum light (PFSL) significantly enhanced growth rate (μ) by 1.8 times and primary productivity from 0.88 to 1.35 mg C · (mg Chl?1) · h?1. Overall, R. salina was less dependent on PFSL than was S. costatum, showing higher μ and net primary productivity rates. In the high‐CDOM simulation, carbon metabolism of the diatom was impaired, leading to suppression of growth rate, short‐term 14C uptake and net primary production. Upon transfer to PFSL, μ of the diatom increased by up to 3‐fold and carbon fixation from 2.4 to 6.0 mg C · (mg Chl?1) · h?1. Thus, a lack of PFSL differentially impairs primarily CO2‐fixation and/or carbon metabolism, which, in turn, may determine which phytoplankton dominate the community in blackwater habitats and may therefore influence the structure and function of these ecosystems.  相似文献   

7.
The red seaweed Gracilariopsis is an important crop extensively cultivated in China for high‐quality raw agar. In the cultivation site at Nanao Island, Shantou, China, G. lemaneiformis experiences high variability in environmental conditions like seawater temperature. In this study, G. lemaneiformis was cultured at 12, 19, or 26°C for 3 weeks, to examine its photosynthetic acclimation to changing temperature. Growth rates were highest in G. lemaneiformis thalli grown at 19°C, and were reduced with either decreased or increased temperature. The irradiance‐saturated rate of photosynthesis (Pmax) decreased with decreasing temperature, but increased significantly with prolonged cultivation at lower temperatures, indicating the potential for photosynthesis acclimation to lower temperature. Moreover, Pmax increased with increasing temperature (~30 μmol O2 · g?1FW · h?1 at 12°C to 70 μmol O2 · g?1FW · h?1 at 26°C). The irradiance compensation point for photosynthesis (Ic) decreased significantly with increasing temperature (28 μmol photons · m?2 · s?1 at high temperature vs. 38 μmol photons · m?2 · s?1 at low temperature). Both the photosynthetic light‐ and carbon‐use efficiencies increased with increasing growth or temperatures (from 12°C to 26°C). The results suggested that the thermal acclimation of photosynthetic performance of G. lemaneiformis would have important ecophysiological implications in sea cultivation for improving photosynthesis at low temperature and maintaining high standing biomass during summer. Ongoing climate change (increasing atmospheric CO2 and global warming) may enhance biomass production in G. lemaneiformis mariculture through the improved photosynthetic performances in response to increasing temperature.  相似文献   

8.
In Greenland, free‐living red coralline algae contribute to and dominate marine habitats along the coastline. Lithothamnion glaciale dominates coralline algae beds in many regions of the Arctic, but never in Godthåbsfjord, Greenland, where Clathromorphum sp. is dominant. To investigate environmental impacts on coralline algae distribution, calcification and primary productivity were measured in situ during summers of 2015 and 2016, and annual patterns of productivity in L. glaciale were monitored in laboratory‐based mesocosm experiments where temperature and salinity were manipulated to mimic high glacial melt. The results of field and cold‐room measurements indicate that both L. glaciale and Clathromorphum sp. had low calcification and photosynthetic rates during the Greenland summer (2015 and 2016), with maximum of 1.225 ± 0.17 or 0.002 ± 0.023 μmol CaCO 3 · g?1 · h?1 and ?0.007 ±0.003 or ?0.004 ± 0.001 mg O2 · L?1 · h?1 in each species respectively. Mesocosm experiments indicate L. glaciale is a seasonal responder; photosynthetic and calcification rates increase with annual light cycles. Furthermore, metabolic processes in L. glaciale were negatively influenced by low salinity; positive growth rates only occurred in marine treatments where individuals accumulated an average of 1.85 ± 1.73 mg · d?1 of biomass through summer. These results indicate high freshwater input to the Godthåbsfjord region may drive the low abundance of L glaciale , and could decrease species distribution as climate change increases freshwater input to the Arctic marine system via enhanced ice sheet runoff and glacier calving.  相似文献   

9.
Aims: The objective of this study was to examine the effect of dilution rates (Ds, varying from 0·05 to 0·42 h?1) in glucose‐limited continuous culture on cell yield, cell composition, fermentation pattern and ammonia assimilation enzymes of Selenomonas ruminantium strain D. Methods and Results: All glucose‐limited continuous culture experiments were conducted under anaerobic conditions. Except for protein, all cell constituents including carbohydrates, RNA and DNA yielded significant cubic responses to Ds with the highest values at Ds of either 0·10 or 0·20 h?1. At Ds higher than 0·2 h?1, fermentation acid pattern shifted primarily from propionate and acetate to lactate production. Succinate also accumulated at the higher Ds (0·30 and 0·42 h?1). Glucose was most efficiently utilized by S. ruminantium D at 0·20 h?1 after which decreases in glucose and ATP yields were observed. Under energy limiting conditions, glutamine synthetase (GS) and glutamate dehydrogenase (GDH) appeared to be the major enzymes involved in nitrogen assimilation suggesting that other potential ammonia incorporating enzymes were of little importance in ammonia assimilation in S. ruminantium D. GS exhibited lower activities than GDH at all Ds, which indicates that the bacterial growth rate is not a primary regulator of their activities. Conclusions: Studied dilution rates influenced cell composition, fermentation pattern and nitrogen assimilation of S. ruminantium strain D grown in glucose‐limited continuous culture. Significance and Impact of the Study: Selenomonas ruminantium D is an ecologically and evolutionary important bacterium in ruminants and is present under most rumen dietary conditions. Characterizing the growth physiology and ammonia assimilation enzymes of S. ruminantium D during glucose limitation at Ds, which simulate the liquid turnover rates in rumen, will provide a better understanding of how this micro‐organism responds to differing growth conditions.  相似文献   

10.
Woody biomass produced from short rotation coppice (SRC) poplar (Populus spp.) and willow (Salix spp.) is a bioenergy feedstock that can be grown widely across temperate landscapes and its use is likely to increase in future. Process‐based models are therefore required to predict current and future yield potential that are spatially resolved and can consider new genotypes and climates that will influence future yield. The development of a process‐based model for SRC poplar and willow, ForestGrowth‐SRC, is described and the ability of the model to predict SRC yield and water use efficiency (WUE) was evaluated. ForestGrowth‐SRC was parameterized from a process‐based model, ForestGrowth for high forest. The new model predicted annual above ground yield well for poplar (r2 = 0.91, RMSE = 1.46 ODT ha?1 yr?1) and willow (r2 = 0.85, RMSE = 1.53 ODT ha?1 yr?1), when compared with measured data from seven sites in contrasting climatic zones across the United Kingdom. Average modelled yields for poplar and willow were 10.3 and 9.0 ODT ha?1 yr?1, respectively, and interestingly, the model predicted a higher WUE for poplar than for willow: 9.5 and 5.5 g kg?1 respectively. Using regional mapped climate and soil inputs, modelled and measured yields for willow compared well (r2 = 0.58, RMSE = 1.27 ODT ha?1 yr?1), providing the first UK map of SRC yield, from a process‐based model. We suggest that the model can be used for predicting current and future SRC yields at a regional scale, highlighting important species and genotype choices with respect to water use efficiency and yield potential.  相似文献   

11.
Identification of alleles towards the selection for improved seedling vigour is a key objective of many wheat breeding programmes. A multiparent advanced generation intercross (MAGIC) population developed from four commercial spring wheat cultivars (cvv. Baxter, Chara, Westonia and Yitpi) and containing ca. 1000 F2‐derived, F6:7 RILs was assessed at two contrasting soil temperatures (12 and 20 °C) for shoot length and coleoptile characteristics length and thickness. Narrow‐sense heritabilities were high for coleoptile and shoot length (h2 = 0.68–0.70), indicating a strong genetic basis for the differences among progeny. Genotypic variation was large, and distributions of genotype means were approximately Gaussian with evidence for transgressive segregation for all traits. A number of significant QTL were identified for all early growth traits, and these were commonly repeatable across the different soil temperatures. The largest negative effects on coleoptile lengths were associated with Rht‐B1b (?8.2%) and Rht‐D1b (?10.9%) dwarfing genes varying in the population. Reduction in coleoptile length with either gene was particularly large at the warmer soil temperature. Other large QTL for coleoptile length were identified on chromosomes 1A, 2B, 4A, 5A and 6B, but these were relatively smaller than allelic effects at the Rht‐B1 and Rht‐D1 loci. A large coleoptile length effect allele (= 5.3 mm at 12 °C) was identified on chromosome 1AS despite the relatively shorter coleoptile length of the donor Yitpi. Strong, positive genetic correlations for coleoptile and shoot lengths (rg = 0.85–0.90) support the co‐location of QTL for these traits and suggest a common physiological basis for both. The multiparent population has enabled the identification of promising shoot and coleoptile QTL despite the potential for the confounding of large effect dwarfing gene alleles present in the commercial parents. The incidence of these alleles in commercial wheat breeding programmes should facilitate their ready implementation in selection of varieties with improved establishment and early growth.  相似文献   

12.
Various large‐scale behaviors (e.g., locomotion, shape changes, contractions) have been documented numerous times in intact sponges of the class Demospongiae. However, little is known about such motile events in calcareous sponges (Class Calcarea). Here, we report on whole‐sponge behaviors of the calcareous asconoid sponge Leucosolenia botryoides, as revealed by time‐lapse videos. These behaviors included locomotion and contraction. Locomotion in these sponges appeared as an outward movement (25–130 μm h?1) of the asconoid tubes away from the sponge's center; such translocations were always accompanied by extensive movements of protruding spicules, which appear to act as anchoring hooks for the sponge's translocations. This is the first report of whole‐sponge locomotion in the Calcarea. Contractile waves also were propagated in these sponges at speeds of 50–150 μm h?1, and they involved systemic contraction, then re‐extension of the asconoid tubes. The observations suggest that, like the more complex demosponges, these simple calcareous sponges are capable of adaptive whole‐animal behaviors (changes in flow, shape, and location), which occur in response to environmental stimuli such as crawling intruders.  相似文献   

13.
A field trial was carried out on a 15 year old Miscanthus stand, subject to nitrogen fertilizer treatments of 0, 63 and 125 kg‐N ha?1, measuring N2O emissions, as well as annual crop yield over a full year. N2O emission intensity (N2O emissions calculated as a function of above‐ground biomass) was significantly affected by fertilizer application, with values of 52.2 and 59.4 g N2O‐N t?1 observed at 63 and 125 kg‐N ha?1, respectively, compared to 31.3 g N2O‐N t?1 in the zero fertilizer control. A life cycle analyses approach was applied to calculate the increase in yield required to offset N2O emissions from Miscanthus through fossil fuel substitution in the fuel chain. For the conditions observed during the field trial yield increases of 0.33 and 0.39 t ha?1 were found to be required to offset N2O emissions from the 63 kg‐N ha?1 treatment, when replacing peat and coal, respectively, while increases of 0.71 and 0.83 t ha?1 were required for the 125 kg‐N ha?1 treatment, for each fuel. These values are considerably less than the mean above‐ground biomass yield increases observed here of 1.57 and 2.79 t ha?1 at fertilization rates 63 and 125 kg‐N ha?1 respectively. Extending this analysis to include a range of fertilizer application rates and N2O emission factors found increases in yield necessary to offset soil N2O emissions ranging from 0.26 to 2.54 t ha?1. These relatively low yield increase requirements indicate that where nitrogen fertilizer application improves yield, the benefits of such a response will not be offset by soil N2O emissions.  相似文献   

14.
15.
Bioenergy crops are expected to provide biomass to replace fossil resources and reduce greenhouse gas emissions. In this context, changes in soil organic carbon (SOC) stocks are of primary importance. The aim of this study was to measure changes in SOC stocks in bioenergy cropping systems comparing perennial (Miscanthus × giganteus and switchgrass), semi‐perennial (fescue and alfalfa), and annual (sorghum and triticale) crops, all established after arable crops. The soil was sampled at the start of the experiment and 5 or 6 years later. SOC stocks were calculated at equivalent soil mass, and δ13C measurements were used to calculate changes in new and old SOC stocks. Crop residues found in soil at the time of SOC measurements represented 3.5–7.2 t C ha?1 under perennial crops vs. 0.1–0.6 t C ha?1 for the other crops. During the 5‐year period, SOC concentrations under perennial crops increased in the surface layer (0–5 cm) and slightly declined in the lower layers. Changes in δ13C showed that C inputs were mainly located in the 0–18 cm layer. In contrast, SOC concentrations increased over time under semi‐perennial crops throughout the old ploughed layer (ca. 0–33 cm). SOC stocks in the old ploughed layer increased significantly over time under semi‐perennials with a mean increase of 0.93 ± 0.28 t C ha?1 yr?1, whereas no change occurred under perennial or annual crops. New SOC accumulation was higher for semi‐perennial than for perennial crops (1.50 vs. 0.58 t C ha?1 yr?1, respectively), indicating that the SOC change was due to a variation in C input rather than a change in mineralization rate. Nitrogen fertilization rate had no significant effect on SOC stocks. This study highlights the interest of comparing SOC changes over time for various cropping systems.  相似文献   

16.
We investigated the effects of zinc or lead on growth and on exudation of fluorescent dissolved organic matter (FDOM) by the marine toxic dinoflagellate Alexandrium catenella (Whedon & Kofoid) Balech. The species was exposed to increasing free zinc (1.34 × 10?7 M–3.98 × 10?6 M) or lead (5.13 × 10?9 M–1.82 × 10?7 M) concentra‐tions. Low metal levels ([Zn2+] = 1.34 × 10?7 M; [Pb2+] = 5.13 × 10?9 M) had no effect on cell growth. Toxic effects were observed from higher metal contamination ([Zn2+] = 3.98 × 10?6 M; [Pb2+] = 6.54 × 10?8 M), as a conversion of vegetative cells into cysts. Analysis of the released FDOM by three‐dimensional (3‐D) fluorescence spectroscopy was achieved, using the parallel factor analysis (PARAFAC). The PARAFAC modeling revealed four components associated with two contributions: one related to the biological activity; the other linked to the organic matter decomposition in the culture medium. The C1 component combined a tryptophan peak and characteristics of humic substances, whereas the C2 component was considered as a tryptophan protein fluorophore. The two others C3 and C4 components were associated with marine organic matter production. Relea‐sed fluorescent substances were induced by low ([Zn2+]= 1.34 × 10?7 M; [Pb2+] = 5.13 × 10?9 M) and moderate ([Zn2+] = 6.21 × 10?7 M; [Pb2+] = 2.64× 10?9 M) metal concentrations, suggesting the activation of cellular mechanisms in response to metal stress, to exudate FDOM that could complex metal cations and reduce their toxicity toward A. catenella cells.  相似文献   

17.
Planting the perennial biomass crop Miscanthus in the UK could offset 2–13 Mt oil eq. yr?1, contributing up to 10% of current energy use. Policymakers need assurance that upscaling Miscanthus production can be performed sustainably without negatively impacting essential food production or the wider environment. This study reviews a large body of Miscanthus relevant literature into concise summary statements. Perennial Miscanthus has energy output/input ratios 10 times higher (47.3 ± 2.2) than annual crops used for energy (4.7 ± 0.2 to 5.5 ± 0.2), and the total carbon cost of energy production (1.12 g CO2‐C eq. MJ?1) is 20–30 times lower than fossil fuels. Planting on former arable land generally increases soil organic carbon (SOC) with Miscanthus sequestering 0.7–2.2 Mg C4‐C ha?1 yr?1. Cultivation on grassland can cause a disturbance loss of SOC which is likely to be recovered during the lifetime of the crop and is potentially mitigated by fossil fuel offset. N2O emissions can be five times lower under unfertilized Miscanthus than annual crops and up to 100 times lower than intensive pasture. Nitrogen fertilizer is generally unnecessary except in low fertility soils. Herbicide is essential during the establishment years after which natural weed suppression by shading is sufficient. Pesticides are unnecessary. Water‐use efficiency is high (e.g. 5.5–9.2 g aerial DM (kg H2O)?1, but high biomass productivity means increased water demand compared to cereal crops. The perennial nature and belowground biomass improves soil structure, increases water‐holding capacity (up by 100–150 mm), and reduces run‐off and erosion. Overwinter ripening increases landscape structural resources for wildlife. Reduced management intensity promotes earthworm diversity and abundance although poor litter palatability may reduce individual biomass. Chemical leaching into field boundaries is lower than comparable agriculture, improving soil and water habitat quality.  相似文献   

18.
Online monitoring and controlling of different cellular parameters are key issues in aerobic bioprocesses. Since mixotrophic cultivation, in which we observe a mixture of cellular respiration and oxygen production has gained more popularity, there is a need for an on‐process quantification of these parameters. The presented and adapted double gassing‐out method applied to a mixotrophic cultivation of Galdieria sulphuraria , will be a tool for monitoring and further optimization of algal fermentation in nonstirred photobioreactors (PBR). We measured the highest net specific oxygen production rate (opr net) as 5.73 · 10?3 molO2 g?1 h?1 at the lowest oxygen uptake rate (OUR) of 1.00 · 10?4 molO2 L?1 h?1. Due to higher cell densities, we also demonstrated the increasing shading effect by a decrease of opr net, reaching the lowest value of 1.25 10?5 molO2 g?1 h?1. Nevertheless, with this on process measurement, we can predict the relation between the zone in which oxygen is net produced to the area where cell respiration dominates in a PBR, which has a major impact to optimize cell growth along with the formation of different products of interest such as pigments.  相似文献   

19.
The effects of predicted climate change on aphid–natural enemy interactions have principally considered the effects of elevated carbon dioxide concentration and air temperature. However, increased incidence of summer droughts are also predicted in Northern Europe, which could affect aphid–plant interactions and aphid antagonists. We investigated how simulated summer drought affected the bird cherry–oat aphid, Rhopalosiphum padi L., and its natural enemy the parasitoid wasp Aphidius ervi. Drought and, to a greater extent, aphids reduced barley ( Hordeum vulgare) dry mass by 33% and 39%, respectively. Drought reduced leaf and root nitrogen concentrations by 13% and 28%, respectively, but foliar amino acid concentrations and composition remained similar. Aphid numbers were unaffected by drought, but population demography changed significantly; adults constituted 41% of the population on drought‐treated plants, but only 26% on those receiving ambient irrigation. Nymphs constituted 56% and 69% of the population on these plants, respectively, suggesting altered aphid development rates on drought‐stressed plants. Parasitism rates were significantly lower on drought‐stressed plants (9 attacks h?1 compared with 35 attacks h?1 on ambient‐irrigated plants), most likely because of lower incidence of nymphs and more adults, the latter being more difficult to parasitize. Any physiological changes in individual aphids did not affect parasitoid preferences, suggesting that attacks were postponed because of drought‐induced changes in aphid demography. This study demonstrates the potential for sporadic climate change events, such as summer drought, to be disruptive to herbivore–antagonist interactions.  相似文献   

20.
Dissolved inorganic phosphorus (DIP ) is an essential macronutrient for maintaining metabolism and growth in autotrophs. Little is known about DIP uptake kinetics and internal P‐storage capacity in seaweeds, such as Ulva lactuca (Chlorophyta). Ulva lactuca is a promising candidate for biofiltration purposes and mass commercial cultivation. We exposed U. lactuca to a wide range of DIP concentrations (1–50 μmol · L?1) and a nonlimiting concentration of dissolved inorganic nitrogen (DIN ; 5,000 μmol · L?1) under fully controlled laboratory conditions in a “pulse‐and‐chase” assay over 10 d. Uptake kinetics were standardized per surface area of U. lactuca fronds. Two phases of responses to DIP ‐pulses were measured: (i) a surge uptake (VS ) of 0.67 ± 0.10 μmol · cm?2 · d?1 and (ii) a steady state uptake (VM ) of 0.07 ± 0.03 μmol · cm?2 · d?1. Mean internal storage capacity (ISCP ) of 0.73 ± 0.13 μmol · cm?2 was calculated for DIP . DIP uptake did not affect DIN uptake. Parameters of DIN uptake were also calculated: VS  = 12.54 ± 1.90 μmol · cm?2 · d?1, VM  = 2.26 ± 0.86 μmol · cm?2 · d?1, and ISCN  = 22.90 ± 6.99 μmol · cm?2. Combining ISC and VM values of P and N, nutrient storage capacity of U. lactuca was estimated to be sufficient for ~10 d. Both P and N storage capacities were filled within 2 d when exposed to saturating nutrient concentrations, and uptake rates declined thereafter at 90% for DIP and at 80% for DIN . Our results contribute to understanding the ecological aspects of nutrient uptake kinetics in U. lactuca and quantitatively evaluating its potential for bioremediation and/or biomass production for food, feed, and energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号