首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
  • Surface moisture induces microcracking in the cuticle of fruit skins. Our objective was to study the effects of surface moisture on cuticular microcracking, the permeance to water vapour and russeting in developing ‘Pinova’ apple fruit.
  • Surface moisture was applied by fixing to the fruit a plastic tube containing deionized water. Microcracking was quantified by fluorescence microscopy and image analysis following infiltration with acridine orange. Water vapour permeance was determined gravimetrically using skin segments (ES) mounted in diffusion cells.
  • Cumulative water loss through the ES increased linearly with time. Throughout development, surface moisture significantly increased skin permeance. The effect was largest during early development and decreased towards maturity. Recovery time courses revealed that following moisture treatment of young fruit for 12 days, skin permeance continued to increase until about 14 days after terminating the moisture treatment. Thereafter, skin permeance decreased over the next 28 days, then approaching the control level. This behaviour indicates gradual healing of the impaired cuticular barrier. Nevertheless, permeance still remained significantly higher compared with the untreated control. Similar patterns of permeance change were observed following moisture treatments at later stages of development. The early moisture treatment beginning at 23 DAFB resulted in russeting of the exposed surfaces. There was no russet in control fruit without a tube or in control fruit with a tube mounted for 12 days without water.
  • The data demonstrate that surface moisture increases microcracking and water vapour permeance. This may lead to the formation of a periderm and, hence, a russeted fruit surface.
  相似文献   

2.
Using resistance genes from a crossable donor to obtain cultivars resistant to diseases and the use of such cultivars in production appears an economically and environmentally advantageous approach. In apple, introgression of resistance genes by classical breeding results in new cultivars, while introducing cisgenes by biotechnological methods maintains the original cultivar characteristics. Recently, plants of the popular apple ‘Gala’ were genetically modified by inserting the apple scab resistance gene Rvi6 (formerly HcrVf2) under control of its own regulatory sequences. This gene is derived from the scab‐resistant apple ‘Florina’ (originally from the wild apple accession Malus floribunda 821). The vector used for genetic modification allowed a postselection marker gene elimination to achieve cisgenesis. In this work, three cisgenic lines were analysed to assess copy number, integration site, expression level and resistance to apple scab. For two of these lines, a single insertion was observed and, despite a very low expression of 0.07‐ and 0.002‐fold compared with the natural expression of ‘Florina’, this was sufficient to induce plant reaction and reduce fungal growth by 80% compared with the scab‐susceptible ‘Gala’. Similar results for resistance and expression analysis were obtained also for the third line, although it was impossible to determine the copy number and TDNA integration site–such molecular characterization is requested by the (EC) Regulation No. 1829/2003, but may become unnecessary if cisgenic crops become exempt from GMO regulation.  相似文献   

3.
Although the selection of coding genes during plant domestication has been well studied, the evolution of MIRNA genes (MIRs) and the interaction between microRNAs (miRNAs) and their targets in this process are poorly understood. Here, we present a genome‐wide survey of the selection of MIRs and miRNA targets during soybean domestication and improvement. Our results suggest that, overall, MIRs have higher evolutionary rates than miRNA targets. Nonetheless, they do demonstrate certain similar evolutionary patterns during soybean domestication: MIRs and miRNA targets with high expression and duplication status, and with greater numbers of partners, exhibit lower nucleotide divergence than their counterparts without these characteristics, suggesting that expression level, duplication status, and miRNA–target interaction are essential for evolution of MIRs and miRNA targets. Further investigation revealed that miRNA–target pairs that are subjected to strong purifying selection have greater similarities than those that exhibited genetic diversity. Moreover, mediated by domestication and improvement, the similarities of a large number of miRNA–target pairs in cultivated soybean populations were increased compared to those in wild soybeans, whereas a small number of miRNA–target pairs exhibited decreased similarity, which may be associated with the adoption of particular domestication traits. Taken together, our results shed light on the co‐evolution of MIRs and miRNA targets during soybean domestication.  相似文献   

4.
The bacterium Erwinia amylovora, the causal agent of fire blight disease in apple, triggers its infection through the DspA/E effector which interacts with the apple susceptibility protein MdDIPM4. In this work, MdDIPM4 knockout has been produced in two Malus × domestica susceptible cultivars using the CRISPR/Cas9 system delivered via Agrobacterium tumefaciens. Fifty‐seven transgenic lines were screened to identify CRISPR/Cas9‐induced mutations. An editing efficiency of 75% was obtained. Seven edited lines with a loss‐of‐function mutation were inoculated with the pathogen. Highly significant reduction in susceptibility was observed compared to control plants. Sequencing of five potential off‐target sites revealed no mutation event. Moreover, our construct contained a heat‐shock inducible FLP/FRT recombination system designed specifically to remove the T‐DNA harbouring the expression cassettes for CRISPR/Cas9, the marker gene and the FLP itself. Six plant lines with reduced susceptibility to the pathogen were heat‐treated and screened by real‐time PCR to quantify the exogenous DNA elimination. The T‐DNA removal was further validated by sequencing in one plant line. To our knowledge, this work demonstrates for the first time the development and application of a CRISPR/Cas9‐FLP/FRT gene editing system for the production of edited apple plants carrying a minimal trace of exogenous DNA.  相似文献   

5.
6.
7.
8.
A high-quality reference genome is necessary to determine the molecular mechanisms underlying important biological phenomena; therefore, in the present study, a chromosome-level genome assembly of the Chinese shrimp Fenneropenaeus chinensis was performed. Muscle of a male shrimp was sequenced using PacBio platform, and assembled by Hi-C technology. The assembled F. chinensis genome was 1.47 Gb with contig N50 of 472.84 Kb, including 57.73% repetitive sequences, and was anchored to 43 pseudochromosomes, with scaffold N50 of 36.87 Mb. In total, 25,026 protein-coding genes were predicted. The genome size of F. chinensis showed significant contraction in comparison with that of other penaeid species, which is likely related to migration observed in this species. However, the F. chinensis genome included several expanded gene families related to cellular processes and metabolic processes, and the contracted gene families were associated with virus infection process. The findings signify the adaptation of F. chinensis to the selection pressure of migration and cold environment. Furthermore, the selection signature analysis identified genes associated with metabolism, phototransduction, and nervous system in cultured shrimps when compared with wild population, indicating targeted, artificial selection of growth, vision, and behavior during domestication. The construction of the genome of F. chinensis provided valuable information for the further genetic mechanism analysis of important biological processes, and will facilitate the research of genetic changes during evolution.  相似文献   

9.
Fruit accumulate a diverse set of volatiles including esters and phenylpropenes. Volatile esters are synthesised via fatty acid degradation or from amino acid precursors, with the final step being catalysed by alcohol acyl transferases (AATs). Phenylpropenes are produced as a side branch of the general phenylpropanoid pathway. Major quantitative trait loci (QTLs) on apple (Malus × domestica) linkage group (LG)2 for production of the phenylpropene estragole and volatile esters (including 2‐methylbutyl acetate and hexyl acetate) both co‐located with the MdAAT1 gene. MdAAT1 has previously been shown to be required for volatile ester production in apple (Plant J., 2014, https://doi.org/10.1111/tpj.12518 ), and here we show it is also required to produce p‐hydroxycinnamyl acetates that serve as substrates for a bifunctional chavicol/eugenol synthase (MdoPhR5) in ripe apple fruit. Fruit from transgenic ‘Royal Gala’ MdAAT1 knockdown lines produced significantly reduced phenylpropene levels, whilst manipulation of the phenylpropanoid pathway using MdCHS (chalcone synthase) knockout and MdMYB10 over‐expression lines increased phenylpropene production. Transient expression of MdAAT1, MdoPhR5 and MdoOMT1 (O‐methyltransferase) genes reconstituted the apple pathway to estragole production in tobacco. AATs from ripe strawberry (SAAT1) and tomato (SlAAT1) fruit can also utilise p‐coumaryl and coniferyl alcohols, indicating that ripening‐related AATs are likely to link volatile ester and phenylpropene production in many different fruit.  相似文献   

10.
RNA interference (RNAi) has been exploited as a reverse genetic tool for functional genomics in the nonmodel species strawberry (Fragaria × ananassa) since 2006. Here, we analysed for the first time different but overlapping nucleotide sections (>200 nt) of two endogenous genes, FaCHS (chalcone synthase) and FaOMT (O‐methyltransferase), as inducer sequences and a transitive vector system to compare their gene silencing efficiencies. In total, ten vectors were assembled each containing the nucleotide sequence of one fragment in sense and corresponding antisense orientation separated by an intron (inverted hairpin construct, ihp). All sequence fragments along the full lengths of both target genes resulted in a significant down‐regulation of the respective gene expression and related metabolite levels. Quantitative PCR data and successful application of a transitive vector system coinciding with a phenotypic change suggested propagation of the silencing signal. The spreading of the signal in strawberry fruit in the 3′ direction was shown for the first time by the detection of secondary small interfering RNAs (siRNAs) outside of the primary targets by deep sequencing. Down‐regulation of endogenes by the transitive method was less effective than silencing by ihp constructs probably because the numbers of primary siRNAs exceeded the quantity of secondary siRNAs by three orders of magnitude. Besides, we observed consistent hotspots of primary and secondary siRNA formation along the target sequence which fall within a distance of less than 200 nt. Thus, ihp vectors seem to be superior over the transitive vector system for functional genomics in strawberry fruit.  相似文献   

11.
12.
Using microcosm experiments, we investigated the interactive effects of temperature and light on specific growth rates of three species each of the phytoplanktonic genera Cryptomonas and Dinobryon. Several species of these genera play important roles in the food web of lakes and seem to be sensitive to high water temperature. We measured growth rates at three to four photon flux densities ranging from 10 to 240 μmol photon · m?2 · s?1 and at 4–5 temperatures ranging from 10°C to 28°C. The temperature × light interaction was generally strong, species specific, and also genus specific. Five of the six species studied tolerated 25°C when light availability was high; however, low light reduced tolerance of high temperatures. Growth rates of all six species were unaffected by temperature in the 10°C–15°C range at light levels ≤50 μmol photon · m?2 · s?1. At high light, growth rates of Cryptomonas spp. increased with temperature until the temperature optimum was reached and then declined. The Dinobryon species were less sensitive than Cryptomonas spp. to photon flux densities of 40 μmol photon · m?2 · s?1 and 200 μmol photon · m?2 · s?1 over the entire temperature range but did not grow under a combination of very low light (10 μmol photon · m?2 · s?1) and high temperature (≥20°C). Among the three Cryptomonas species, cell volume declined with temperature and the maximum temperature tolerated was negatively related to cell size. Since Cryptomonas is important food for microzooplankton, these trends may affect the pelagic carbon flow if lake warming continues.  相似文献   

13.
Energy crops are currently promoted as potential sources of alternative energy that can help mitigate the climate change caused by greenhouse gases (GHGs). The perennial crop Miscanthus × giganteus is considered promising due to its high potential for biomass production under conditions of low input. However, to assess its potential for GHG mitigation, a better quantification of the crop's contribution to soil organic matter recycling under various management systems is needed. The aim of this work was to study the effect of abscised leaves on carbon (C) and nitrogen (N) recycling in a Miscanthus plantation. The dynamics of senescent leaf fall, the rate of leaf decomposition (using a litter bag approach) and the leaf accumulation at the soil surface were tracked over two 1‐year periods under field conditions in Northern France. The fallen leaves represented an average yearly input of 1.40 Mg C ha?1 and 16 kg N ha?1. The abscised leaves lost approximately 54% of their initial mass in 1 year due to decomposition; the remaining mass, accumulated as a mulch layer at the soil surface, was equivalent to 7 Mg dry matter (DM) ha?1 5 years after planting. Based on the estimated annual leaf‐C recycling rate and a stabilization rate of 35% of the added C, the annual contribution of the senescent leaves to the soil C was estimated to be approximately 0.50 Mg C ha?1yr?1 or 10 Mg C ha?1 total over the 20‐year lifespan of a Miscanthus crop. This finding suggested that for Miscanthus, the abscised leaves contribute more to the soil C accumulation than do the rhizomes or roots. In contrast, the recycling of the leaf N to the soil was less than for the other N fluxes, particularly for those involving the transfer of N from the tops of the plant to the rhizome.  相似文献   

14.
15.
16.
Chrysanthemum [Chrysanthemum × morifolium Ramat. (Asteraceae)] is one of the economically most important greenhouse ornamentals worldwide. A major constraint in chrysanthemum production is adequate pest management, requiring the use of different tactics, such as improving host plant resistance, in the framework of an integrated pest management (IPM) approach. In this study, we investigated cross‐resistance of chrysanthemum to its three major pests: western flower thrips [Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae)], celery leafminer [Liriomyza trifolii (Burgess) (Diptera: Agromyzidae)], and two‐spotted spider mite [Tetranychus urticae Koch (Acari: Tetranychidae)]. We quantified resistance to each pest by performing greenhouse bioassays with a broad range of chrysanthemum types from commercial germplasm provided by Dutch breeding companies. Considerable variation was detected among the chrysanthemum cultivars in thrips silver damage and growth damage, leafminer damage, measured as number of mines and pupae, and spider mite numbers and damage. We observed significant positive correlations between thrips damage (both silver and growth damage) vs. leafminer numbers (both mines and pupae), and between leafminer numbers (both mines and pupae) vs. spider mite numbers. Our results indicate an overlap in resistance to all three herbivores. The important implications of this result for chrysanthemum breeding are discussed.  相似文献   

17.
18.
Grain size is one of the essential components determining rice yield and is a target for both domestication and artificial breeding. Gibberellins (GAs) are diterpenoid phytohormones that influence diverse aspects of plant growth and development. Several quantitative trait loci (QTLs) have been identified that control grain size through phytohormone regulation. However, little is known about the role of GAs in the control of grain size. Here we report the cloning and characterization of a QTL, GW6 (GRAIN WIDTH 6), which encodes a GA‐regulated GAST family protein and positively regulates grain width and weight. GW6 is highly expressed in the young panicle and increases grain width by promoting cell expansion in the spikelet hull. Knockout of GW6 exhibits reduced grain size and weight, whereas overexpression of GW6 results in increased grain size and weight. GW6 is induced by GA and its knockout downregulates the expression of GA biosynthesis genes and decreases GA content in the young panicle. We found that a natural variation in the cis element CAAT‐box in the promoter of GW6 is associated with its expression level and grain width and weight. Furthermore, introduction of GW6 to Oryza indica variety HJX74 can lead to a 10.44% increase in rice grain yield, indicating that GW6 has great potential to improve grain yield in rice.  相似文献   

19.
Atmospheric CO2 (ca) rise changes the physiology and possibly growth of tropical trees, but these effects are likely modified by climate. Such ca × climate interactions importantly drive CO2 fertilization effects of tropical forests predicted by global vegetation models, but have not been tested empirically. Here we use tree‐ring analyses to quantify how ca rise has shifted the sensitivity of tree stem growth to annual fluctuations in rainfall and temperature. We hypothesized that ca rise reduces drought sensitivity and increases temperature sensitivity of growth, by reducing transpiration and increasing leaf temperature. These responses were expected for cooler sites. At warmer sites, ca rise may cause leaf temperatures to frequently exceed the optimum for photosynthesis, and thus induce increased drought sensitivity and stronger negative effects of temperature. We tested these hypotheses using measurements of 5,318 annual rings from 129 trees of the widely distributed (sub‐)tropical tree species, Toona ciliata. We studied growth responses during 1950–2014, a period during which ca rose by 28%. Tree‐ring data were obtained from two cooler (mean annual temperature: 20.5–20.7°C) and two warmer (23.5–24.8°C) sites. We tested ca × climate interactions, using mixed‐effect models of ring‐width measurements. Our statistical models revealed several significant and robust ca × climate interactions. At cooler sites (and seasons), ca × climate interactions showed good agreement with hypothesized growth responses of reduced drought sensitivity and increased temperature sensitivity. At warmer sites, drought sensitivity increased with increasing ca, as predicted, and hot years caused stronger growth reduction at high ca. Overall, ca rise has significantly modified sensitivity of Toona stem growth to climatic variation, but these changes depended on mean climate. Our study suggests that effects of ca rise on tropical tree growth may be more complex and less stimulatory than commonly assumed and require a better representation in global vegetation models.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号