首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zinc (Zn) is essential for normal plant growth and development. The Zn-regulated transporter, iron-regulated transporter (IRT)-like protein (ZIP) family members are involved in Zn transport and cellular Zn homeostasis throughout the domains of life. In this study, we have characterized four ZIP transporters from Arabidopsis thaliana (IRT3, ZIP4, ZIP6, and ZIP9) to better understand their functional roles. The four ZIP proteins can restore the growth defect of a yeast Zn uptake mutant and are upregulated under Zn deficiency. Single and double mutants show no phenotypes under Zn-sufficient or Zn-limited growth conditions. In contrast, triple and quadruple mutants show impaired growth irrespective of external Zn supply due to reduced Zn translocation from root to shoot. All four ZIP genes are highly expressed during seed development, and siliques from all single and higher-order mutants exhibited an increased number of abnormal seeds and decreased Zn levels in mature seeds relative to wild type. The seed phenotypes could be reversed by supplementing the soil with Zn. Our data demonstrate that IRT3, ZIP4, ZIP6, and ZIP9 function redundantly in maintaining Zn homeostasis and seed development in A. thaliana.  相似文献   

2.
3.
Zinc (Zn) is an essential micronutrient for most organisms including humans, and Zn deficiency is widespread in human populations, particularly in underdeveloped regions. Cereals such as rice (Oryza sativa) are the major dietary source of Zn for most people. However, the molecular mechanism underlying Zn uptake in rice is still not fully understood. Here, we report that a member of the ZIP (ZRT, IRT‐like protein) family, OsZIP9, contributes to Zn uptake in rice. It was expressed in the epidermal and exodermal cells of lateral roots, localized in the plasma membrane and induced during Zn deficiency. Yeast‐expressed OsZIP9 showed much higher Zn influx transport activity than other rice ZIP proteins in a wide range of Zn concentrations. OsZIP9 knockout rice plants showed a significant reduction in growth at low Zn concentrations, but could be rescued by a high Zn supply. Compared with the wild type, accumulation of Zn in root, shoot and grain was much lower in knockout lines, particularly with a low supply of Zn under both hydroponic and paddy soil conditions. OsZIP9 also showed Co uptake activity. Natural variation of OsZIP9 expression level is highly associated with Zn content in milled grain among rice varieties in the germplasm collection. Taken together, these results show that OsZIP9 is an important influx transporter responsible for the take up of Zn and Co from external media into root cells.  相似文献   

4.
5.
6.
Phosphorus availability is often limiting for plant growth. However, little is known of the pathways and mechanisms that regulate phosphorus (P) uptake and distribution in plants. We have developed a screen based on the induction of secreted root acid phosphatase activity by low‐P stress to identify mutants of Arabidopsis thaliana with defects in P metabolism. Acid phosphatase activity was detected visually in the roots of A. thaliana seedlings grown in vitro on low‐P medium, using the chromogenic substrate, 5‐bromo‐4‐chloro‐3‐indolyl‐phosphate (BCIP). In low‐P stress conditions the roots of wild‐type plants stained blue, as the induced root acid phosphatase cleaved BCIP to release the coloured product. Potential mutants were identified as having white, or pale blue, roots under these conditions. Out of approximately 79 000 T‐DNA mutagenised seedlings screened, two mutants with reduced acid phosphatase staining were further characterised. Both exhibited reduced growth and differences in their P contents when compared to wild‐type A. thaliana. The mutant with the most severe phenotype, pho3, accumulated high levels of anthocyanins and starch in a distinctive visual pattern within the leaves. The phenotypes of these mutants are distinct from two previously identified phosphorus mutants (phol and pho2) and from an acid phosphatase deficient mutant (pupl) of A. thaliana. This suggested that the screening method was robust and might lead to the identification of further mutants with the potential for increasing our understanding of P nutrition.  相似文献   

7.
We investigated the relationship between the blue light receptor phototropin 1 (phot1) and lateral root growth in Arabidopsis thaliana seedlings. Fluorescence and confocal microscopy images, as well as PHOT1 mRNA expression studies provide evidence that it is highly expressed in the elongation zone of lateral roots where auxin is accumulating. However, treatment with the auxin transport inhibitor N‐1‐naphthylphthalamic acid significantly reduced PHOT1 expression in this zone. In addition, PHOT1 expression was higher in darkness than in light. The total number of lateral roots was higher in the phot1 mutant than in wild‐type Arabidopsis. Cells in the elongation zone of lateral roots of the phot1 mutant were longer than those of wild‐type lateral roots. These findings suggest that PHOT1 plays a role(s) in elongation of lateral roots through the control of an auxin‐related signalling pathway.  相似文献   

8.
9.
During the evolution of plant genomes, sequence inversions occurred repeatedly making the respective regions inaccessible for meiotic recombination and thus for breeding. Therefore, it is important to develop technologies that allow the induction of inversions within chromosomes in a directed and efficient manner. Using the Cas9 nuclease from Staphylococcus aureus (SaCas9), we were able to obtain scarless heritable inversions with high efficiency in the model plant Arabidopsis thaliana. Via deep sequencing, we defined the patterns of junction formation in wild‐type and in the non‐homologous end‐joining (NHEJ) mutant ku70‐1. Surprisingly, in plants deficient of KU70, inversion induction is enhanced, indicating that KU70 is required for tethering the local broken ends together during repair. However, in contrast to wild‐type, most junctions are formed by microhomology‐mediated NHEJ and thus are imperfect with mainly deletions, making this approach unsuitable for practical applications. Using egg‐cell‐specific expression of Cas9, we were able to induce heritable inversions at different genomic loci and at intervals between 3 and 18 kb, in the percentage range, in the T1 generation. By screening individual lines, inversion frequencies of up to the 10% range were found in T2. Most of these inversions had scarless junctions and were without any sequence change within the inverted region, making the technology attractive for use in crop plants. Applying our approach, it should be possible to reverse natural inversions and induce artificial ones to break or fix linkages between traits at will.  相似文献   

10.
11.
Roots provide physical and nutritional support to plant organs that are above ground and play critical roles for adaptation via intricate movements and growth patterns. Through screening the effects of bacterial isolates from roots of halophyte Mesquite (Prosopis sp.) on Arabidopsis thaliana, we identified Achromobacter sp. 5B1 as a probiotic bacterium that influences plant functional traits. Detailed genetic and architectural analyses in Arabidopsis grown in vitro and in soil, cell division measurements, auxin transport and response gene expression and brefeldin A treatments demonstrated that root colonization with Achromobacter sp. 5B1 changes the growth and branching patterns of roots, which were related to auxin perception and redistribution. Expression analysis of auxin transport and signaling revealed a redistribution of auxin within the primary root tip of wild‐type seedlings by Achromobacter sp. 5B1 that is disrupted by brefeldin A and correlates with repression of auxin transporters PIN1 and PIN7 in root provasculature, and PIN2 in the epidermis and cortex of the root tip, whereas expression of PIN3 was enhanced in the columella. In seedlings harboring AUX1, EIR1, AXR1, ARF7ARF19, TIR1AFB2AFB3 single, double or triple loss‐of‐function mutations, or in a dominant (gain‐of‐function) mutant of SLR1, the bacterium caused primary roots to form supercoils that are devoid of lateral roots. The changes in growth and root architecture elicited by the bacterium helped Arabidopsis seedlings to resist salt stress better. Thus, Achromobacter sp. 5B1 fine tunes both root movements and the auxin response, which may be important for plant growth and environmental adaptation.  相似文献   

12.
13.
14.
15.
Developing tissues such as meristem with low transpiration require high Zn levels for their active growth, but the molecular mechanisms underlying the preferential distribution to these tissues are poorly understood. We found that a member of the ZIP (ZRT, IRT‐like protein), OsZIP3, showed high expression in the nodes of rice (Oryza sativa). Immunostaining revealed that OsZIP3 was localized at the xylem intervening parenchyma cells and xylem transfer cells of the enlarged vascular bundle in both basal and upper nodes. Neither OsZIP3 gene expression nor encoded protein was affected by either deficiency or toxic levels of Zn. Knockdown of OsZIP3 resulted in significantly reduced Zn levels in the shoot basal region containing the shoot meristem and elongating zone, but increased Zn levels in the transpiration flow. A short‐term experiment with the 67Zn stable isotope showed that more Zn was distributed to the lower leaves, but less to the shoot elongating zone and nodes in the knockdown lines compared with the wild‐type rice at both the vegetative and reproductive growth stages. Taken together, OsZIP3 located in the node is responsible for unloading Zn from the xylem of enlarged vascular bundles, which is the first step for preferential distribution of Zn to the developing tissues in rice.  相似文献   

16.
17.
We studied the effect of reducing the levels of the mitochondrial electron carrier cytochrome c (CYTc) in Arabidopsis thaliana. Plants with CYTc deficiency have delayed growth and development, and reach flowering several days later than the wild‐type but with the same number of leaves. CYTc‐deficient plants accumulate starch and glucose during the day, and contain lower levels of active gibberellins (GA) and higher levels of DELLA proteins, involved in GA signaling. GA treatment abolishes the developmental delay and reduces glucose accumulation in CYTc‐deficient plants, which also show a lower raise in ATP levels in response to glucose. Treatment of wild‐type plants with inhibitors of mitochondrial energy production limits plant growth and increases the levels of DELLA proteins, thus mimicking the effects of CYTc deficiency. In addition, an increase in the amount of CYTc decreases DELLA protein levels and expedites growth, and this depends on active GA synthesis. We conclude that CYTc levels impinge on the activity of the GA pathway, most likely through changes in mitochondrial energy production. In this way, hormone‐dependent growth would be coupled to the activity of components of the mitochondrial respiratory chain.  相似文献   

18.
19.
Three pathogenic forms, or formae speciales (f. spp.), of Fusarium oxysporum infect the roots of Arabidopsis thaliana below ground, instigating symptoms of wilt disease in leaves above ground. In previous reports, Arabidopsis mutants that are deficient in the biosynthesis of abscisic acid or salicylic acid or insensitive to ethylene or jasmonates exhibited either more or less wilt disease, than the wild‐type, implicating the involvement of hormones in the normal host response to F. oxysporum. Our analysis of hormone‐related mutants finds no evidence that endogenous hormones contribute to infection in roots. Mutants that are deficient in abscisic acid and insensitive to ethylene show no less infection than the wild‐type, although they exhibit less disease. Whether a mutant that is insensitive to jasmonates affects infection depends on which forma specialis (f. sp.) is infecting the roots. Insensitivity to jasmonates suppresses infection by F. oxysporum f. sp. conglutinans and F. oxysporum f. sp. matthioli, which produce isoleucine‐ and leucine‐conjugated jasmonate (JA‐Ile/Leu), respectively, in culture filtrates, whereas insensitivity to jasmonates has no effect on infection by F. oxysporum f. sp. raphani, which produces no detectable JA‐Ile/Leu. Furthermore, insensitivity to jasmonates has no effect on wilt disease of tomato, and the tomato pathogen F. oxysporum f. sp. lycopersici produces no detectable jasmonates. Thus, some, but not all, F. oxysporum pathogens appear to utilize jasmonates as effectors, promoting infection in roots and/or the development of symptoms in shoots. Only when the infection of roots is promoted by jasmonates is wilt disease enhanced in a mutant deficient in salicylic acid biosynthesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号