首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background and aims

Manganese (Mn) deficiency represents a major plant nutritional disorder in winter cereals. The deficiency frequently occurs latently and the lack of visual symptoms prevents timely remediation and cause significant yield reductions. These problems prompted us to investigate chlorophyll (Chl) a fluorescence as a tool for diagnosis of latent Mn deficiency.

Methods

Barley plants grown under controlled greenhouse conditions or in the field were exposed to different intensities of Mn deficiency. The responses were characterised by analysis of Chl a fluorescence, photosystem II (PSII) proteins and mineral elements.

Results

Analysis of the Chl a fluorescence induction kinetics (FIK) revealed distinct changes long before any visual symptoms of Mn deficiency were apparent. The changes were specific for Mn and did not occur in Mg, S, Fe or Cu deficient plants. The changes in Mn deficient plants were accompanied by a marked reduction of the D1 protein in PSII. Foliar Mn application fully restored PSII functionality, ensured winter survival, and increased grain yields under field conditions.

Conclusions

The efficiency and stability of PSII are markedly affected by latent Mn deficiency. Chlorophyll a fluorescence measurements constitute a powerful and valuable tool for diagnosis and remediation of latent Mn deficiency.  相似文献   

2.
Inter‐vascular transfer in rice (Oryza sativa) nodes is required for delivering mineral elements to developing tissues, which is mediated by various transporters in the nodes. However, the effect of these transporters on distribution of mineral elements in the nodes at a cellular level is still unknown. Here, we established a protocol for bioimaging of multiple elements at a cellular level in rice node by laser ablation‐inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS), and compared the mineral distribution profile between wild‐type (WT) rice and mutants. Both relative comparison of mineral distribution normalized by endogenous 13C and quantitative analysis using spiked standards combined with soft ablation gave valid results. Overall, macro‐nutrients such as K and Mg were accumulated more in the phloem region, while micro‐nutrients such as Fe and Zn were highly accumulated at the inter‐vascular tissues of the node. In mutants of nodal Zn transporter OsHMA2, Zn localization pattern in the node tissues did not differ from that of WT; however, Zn accumulation in the inter‐vascular tissues was lower in uppermost node I but higher in the third upper node III compared with the WT. In contrast, Si deposition in the mutants of three nodal Si transporters Lsi2, Lsi3 and Lsi6 showed different patterns, which are consistent with the localization of these transporters. This improved LA‐ICP‐MS analysis combined with functional characterization of transporters will provide further insight into mineral element distribution mechanisms in rice and other plant species.  相似文献   

3.
4.
Manganese is one of the ubiquitous environmental pollutants that can induce an indirect excitotoxicity caused by altered glutamate (Glu) metabolism. The present study has been carried out to investigate the effect of Mn on the expression of N‐methyl‐d ‐aspartate receptor (NR) subunit mRNAs and proteins in rat striatum when rats were in manganism. The rats were divided randomly into four groups of six males and six females each: control group (group 1) and 8, 40, and 200 μmol/kg Mn‐treated groups (groups 2–4). The control group rats were subcutaneously (s.c.) injected with normal saline. Manganese‐treated rats were s.c. injected with respectively 8, 40, and 200 μmol/kg of MnCl2 · 6H2O in normal saline. The administration of MnCl2 · 6H2O for 4 weeks significantly increased Mn concentration in the striatum. With the increase in administered MnCl2 dosage, Glu concentration and cell apoptosis rate increased significantly. The relative intensity of NR2A mRNA decreased significantly in 8 μmol/kg Mn‐treated rats. However, relative intensities of NR1 and NR2B mRNAs decreased significantly in 40 μmol/kg Mn‐treated rats. Similarly, the relative intensity of NR2A protein showed a significant decrease in 40 μmol/kg Mn‐treated rats whereas those of NR1 and NR2B decreased significantly in 200 μmol/kg Mn‐treated rats. Therefore, the expression of NR2A mRNA and protein were much more sensitive to Mn than that of NR1 and NR2B. In conclusion, the results suggested that Mn induced nerve cell damage by increasing extracellular Glu level and altered expression of NR subunit mRNAs and proteins in rat striatum. © 2010 Wiley Periodicals, Inc. J Biochem Mol Toxicol 24:1–9, 2010; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20306  相似文献   

5.
The peptide‐based quantitation accuracy and precision of LC‐ESI (QSTAR Elite) and LC‐MALDI (4800 MALDI TOF/TOF) were compared by analyzing identical Escherichia coli tryptic digests containing iTRAQ‐labeled peptides of defined abundances (1:1, 2.5:1, 5:1, and 10:1). Only 51.4% of QSTAR spectra were used for quantitation by ProteinPilot Software versus 66.7% of LC‐MALDI spectra. The average protein sequence coverages for LC‐ESI and LC‐MALDI were 24.0 and 18.2% (14.9 and 8.4 peptides per protein), respectively. The iTRAQ‐based expression ratios determined by ProteinPilot from the 57 467 ESI‐MS/MS and 26 085 MALDI‐MS/MS spectra were analyzed for measurement accuracy and reproducibility. When the relative abundances of peptides within a sample were increased from 1:1 to 10:1, the mean ratios calculated on both instruments differed by only 0.7–6.7% between platforms. In the 10:1 experiment, up to 64.7% of iTRAQ ratios from LC‐ESI MS/MS spectra failed S/N thresholds and were excluded from quantitation, while only 0.1% of the equivalent LC‐MALDI iTRAQ ratios were rejected. Re‐analysis of an archived LC‐MALDI sample set stored for 5 months generated 3715 MS/MS spectra for quantitation, compared with 3845 acquired originally, and the average ratios differed by only 3.1%. Overall, MS/MS‐based peptide quantitation performance of offline LC‐MALDI was comparable with on‐line LC‐ESI, which required threefold less time. However, offline LC‐MALDI allows the re‐analysis of archived HPLC‐separated samples.  相似文献   

6.
7.
The functional impact of multisite protein phosphorylation can depend on both the numbers and the positions of phosphorylated sites—the global pattern of phosphorylation or ‘phospho‐form’—giving biological systems profound capabilities for dynamic information processing. A central problem in quantitative systems biology, therefore, is to measure the ‘phospho‐form distribution’: the relative amount of each of the 2n phospho‐forms of a protein with n‐phosphorylation sites. We compared four potential methods—western blots with phospho‐specific antibodies, peptide‐based liquid chromatography (LC) and mass spectrometry (MS; pepMS), protein‐based LC/MS (proMS) and nuclear magnetic resonance spectroscopy (NMR)—on differentially phosphorylated samples of the well‐studied mitogen‐activated protein kinase Erk2, with two phosphorylation sites. The MS methods were quantitatively consistent with each other and with NMR to within 10%, but western blots, while highly sensitive, showed significant discrepancies with MS. NMR also uncovered two additional phosphorylations, for which a combination of pepMS and proMS yielded an estimate of the 16‐member phospho‐form distribution. This combined MS strategy provides an optimal mixture of accuracy and coverage for quantifying distributions, but positional isomers remain a challenging problem.  相似文献   

8.
An analytical scheme was developed for the separation and detection of organoarsenicals using a zwitterionic stationary phase of hydrophilic interaction chromatography (ZIC®‐HILIC) coupled in parallel to electrospray ionization mass spectrometry (ESI‐MS) and to inductively coupled plasma mass spectroscopy (ICP‐MS). The optimization of separation and detection for organoarsenicals was mainly focused on the influence of the percentage of acetonitrile (MeCN) used as a major component of the mobile phase. Isocratic and gradient elution was applied by varying the MeCN percentage from 78 % to 70 % MeCN and 22 % to 30 % of an aqueous solution of ammonium acetate (125 mM NH4Ac; pH 8.3) on a ZIC®‐HILIC column (150 × 2.1 mm id, 3.5 μm), to allow for the separation and successful detection of nine organoarsenicals (i.e., 3‐nitro‐4‐hydroxyphenylarsonic acid (roxarsone, Rox), phenylarsonic acid (PAA), p‐arsanilic acid (p‐ASA), phenylarsine oxide (PAO), dimethylarsinate (DMA), methylarsonate (MMA), arsenobetaine (AsB), arsenocholine (AsC) and trimethylarsine oxide (TMAO)) within 45 min. All analytes were prepared in the mobile phase. The flow rate of the mobile phase, the splitting ratio between ICP‐MS and ESI‐MS detection, and the oxygen addition were adapted to ensure that there appeared a stably burning inductively coupled plasma. Furthermore, the analytical method was evaluated by the identification and quantification of AsB in the reference material DORM‐2 (dogfish muscle) resulting in a 95‐% recovery with respect to the AsB concentration in the extract.  相似文献   

9.
Manganese (Mn) is a required element for biological systems; however, its excessive exposure may lead to a neurological syndrome known as manganism. The aim of the present study was to assess the toxic effects of subacute exposure of Mn by measuring weight gain, motor performance, and biochemical parameters (complex I activity, lipid peroxides, and protein carbonyls) in brain mitochondria in rats. We also examined whether edaravone (EDA), a radical scavenger, exerts protective effects against Mn‐induced neurotoxicity. In addition, we evaluated the accumulation of Mn in brain regions using magnetic resonance imaging. Mn‐exposed rats revealed significantly impaired motor performance, weight loss, and Mn accumulation in particular brain area. Lipid peroxides and protein carbonyls were significantly increased in Mn‐exposed rats, whereas complex I activity was found to be decreased. EDA treatment significantly prevented mitochondrial oxidative damage and improved motor performance. These findings suggested that EDA might serve as a clinically effective agent against Mn‐induced neurotoxicity.  相似文献   

10.
Etioplasts lack thylakoid membranes and photosystem complexes. Light triggers differentiation of etioplasts into mature chloroplasts, and photosystem complexes assemble in parallel with thylakoid membrane development. Plastids isolated at various time points of de‐etiolation are ideal to study the kinetic biogenesis of photosystem complexes during chloroplast development. Here, we investigated the chronology of photosystem II (PSII) biogenesis by monitoring assembly status of chlorophyll‐binding protein complexes and development of water splitting via O2 production in plastids (etiochloroplasts) isolated during de‐etiolation of barley (Hordeum vulgare L.). Assembly of PSII monomers, dimers and complexes binding outer light‐harvesting antenna [PSII‐light‐harvesting complex II (LHCII) supercomplexes] was identified after 1, 2 and 4 h of de‐etiolation, respectively. Water splitting was detected in parallel with assembly of PSII monomers, and its development correlated with an increase of bound Mn in the samples. After 4 h of de‐etiolation, etiochloroplasts revealed the same water‐splitting efficiency as mature chloroplasts. We conclude that the capability of PSII to split water during de‐etiolation precedes assembly of the PSII‐LHCII supercomplexes. Taken together, data show a rapid establishment of water‐splitting activity during etioplast‐to‐chloroplast transition and emphasize that assembly of the functional water‐splitting site of PSII is not the rate‐limiting step in the formation of photoactive thylakoid membranes.  相似文献   

11.
Iron (Fe)‐homeostasis in the plastids is closely associated with Fe transport proteins that prevent Fe from occurring in its toxic free ionic forms. However, the number of known protein families related to Fe transport in the plastids (about five) and the function of iron in non‐green plastids is limited. In the present study, we report the functional characterization of Zea mays Fe deficiency‐related 4 (ZmFDR4), which was isolated from a differentially expressed clone of a cDNA library of Fe deficiency‐induced maize roots. ZmFDR4 is homologous to the bacterial FliP superfamily, coexisted in both algae and terrestrial plants, and capable of restoring the normal growth of the yeast mutant fet3fet4, which possesses defective Fe uptake systems. ZmFDR4 mRNA is ubiquitous in maize and is inducible by iron deficiency in wheat. Transient expression of the 35S:ZmFDR4–eGFP fusion protein in rice protoplasts indicated that ZmFDR4 maybe localizes to the plastids envelope and thylakoid. In 35S:c‐Myc‐ZmFDR4 transgenic tobacco, immunohistochemistry and immunoblotting confirmed that ZmFDR4 is targeted to both the chloroplast envelope and thylakoid. Meanwhile, ultrastructure analysis indicates that ZmFDR4 promotes the density of plastids and accumulation of starch grains. Moreover, Bathophenanthroline disulfonate (BPDS) colorimetry and inductively coupled plasma mass spectrometry (ICP‐MS) indicate that ZmFDR4 is related to Fe uptake by plastids and increases seed Fe content. Finally, 35S:c‐Myc‐ZmFDR4 transgenic tobacco show enhanced photosynthetic efficiency. Therefore, the results of the present study demonstrate that ZmFDR4 functions as an iron transporter in monocot plastids and provide insight into the process of Fe uptake by plastids.  相似文献   

12.
Mass spectrometry (MS) is an attractive alternative to quantification of proteins by immunoassays, particularly for protein biomarkers of clinical relevance. Reliable quantification requires that the MS-based assays are robust, selective, and reproducible. Thus, the development of standardized protocols is essential to introduce MS into clinical research laboratories. The aim of this study was to establish a complete workflow for assessing the transferability and reproducibility of selected reaction monitoring (SRM) assays between clinical research laboratories. Four independent laboratories in North America, using identical triple-quadrupole mass spectrometers (Quantum Ultra, Thermo), were provided with standard protocols and instrumentation settings to analyze unknown samples and internal standards in a digested plasma matrix to quantify 51 peptides from 39 human proteins using a multiplexed SRM assay. The interlaboratory coefficient of variation (CV) was less than 10% for 25 of 39 peptides quantified (12 peptides were not quantified based upon hydrophobicity) and exhibited CVs less than 20% for the remaining peptides. In this report, we demonstrate that previously developed research platforms for SRM assays can be improved and optimized for deployment in clinical research environments.  相似文献   

13.
Circulating polypeptides and proteins have been implicated in reversing or accelerating aging phenotypes, including growth/differentiation factor 8 (GDF8), GDF11, eotaxin, and oxytocin. These proteoforms, which are defined as the protein products arising from a single gene due to alternative splicing and PTMs, have been challenging to study. Both GDF8 and GDF11 have known antagonists such as follistatin (FST), and WAP, Kazal, immunoglobulin, Kunitz, and NTR domain‐containing proteins 1 and 2 (WFIKKN1, WFIKKN2). We developed a novel multiplexed SRM assay using LC‐MS/MS to measure five proteins related to GDF8 and GDF11 signaling, and in addition, eotaxin, and oxytocin. Eighteen peptides consisting of 54 transitions were monitored and validated in pooled human plasma. In 24 adults, the mean (SD) concentrations (ng/mL) were as follows: GDF8 propeptide, 11.0 (2.4); GDF8 mature protein, 25.7 (8.0); GDF11 propeptide, 21.3 (10.9); GDF11 mature protein, 16.5 (12.4); FST, 29.8 (7.1); FST cleavage form FST303, 96.4 (69.2); WFIKKN1, 38.3 (8.3); WFIKKN2, 32.2 (10.5); oxytocin, 1.9 (0.9); and eotaxin, 2.3 (0.5). This novel multiplexed SRM assay should facilitate the study of the relationships of these proteoforms with major aging phenotypes.  相似文献   

14.
The structure and function of photosystem II (PSII) are highly susceptible to photo‐oxidative damage induced by high‐fluence or fluctuating light. However, many of the mechanistic details of how PSII homeostasis is maintained under photoinhibitory light remain to be determined. We describe an analysis of the Arabidopsis thaliana gene At5g07020, which encodes an unannotated integral thylakoid membrane protein. Loss of the protein causes altered PSII function under high‐irradiance light, and hence it is named ‘Maintenance of PSII under High light 1’ (MPH1). The MPH1 protein co‐purifies with PSII core complexes and co‐immunoprecipitates core proteins. Consistent with a role in PSII structure, PSII complexes (supercomplexes, dimers and monomers) of the mph1 mutant are less stable in plants subjected to photoinhibitory light. Accumulation of PSII core proteins is compromised under these conditions in the presence of translational inhibitors. This is consistent with the hypothesis that the mutant has enhanced PSII protein damage rather than defective repair. These data are consistent with the distribution of the MPH1 protein in grana and stroma thylakoids, and its interaction with PSII core complexes. Taken together, these results strongly suggest a role for MPH1 in the protection and/or stabilization of PSII under high‐light stress in land plants.  相似文献   

15.
There is a great interest in reliable ways to obtain absolute protein abundances at a proteome‐wide scale. To this end, label‐free LC‐MS/MS quantification methods have been proposed where all identified proteins are assigned an estimated abundance. Several variants of this quantification approach have been presented, based on either the number of spectral counts per protein or MS1 peak intensities. Equipped with several datasets representing real biological environments, containing a high number of accurately quantified reference proteins, we evaluate five popular low‐cost and easily implemented quantification methods (Absolute Protein Expression, Exponentially Modified Protein Abundance Index, Intensity‐Based Absolute Quantification Index, Top3, and MeanInt). Our results demonstrate considerably improved abundance estimates upon implementing accurately quantified reference proteins; that is, using spiked in stable isotope labeled standard peptides or a standard protein mix, to generate a properly calibrated quantification model. We show that only the Top3 method is directly proportional to protein abundance over the full quantification range and is the preferred method in the absence of reference protein measurements. Additionally, we demonstrate that spectral count based quantification methods are associated with higher errors than MS1 peak intensity based methods. Furthermore, we investigate the impact of miscleaved, modified, and shared peptides as well as protein size and the number of employed reference proteins on quantification accuracy.  相似文献   

16.
In Synechocystis sp. PCC 6803, the flv4‐2 operon encodes the flavodiiron proteins Flv2 and Flv4 together with a small protein, Sll0218, providing photoprotection for Photosystem II (PSII). Here, the distinct roles of Flv2/Flv4 and Sll0218 were addressed, using a number of flv4‐2 operon mutants. In the ?sll0218 mutant, the presence of Flv2/Flv4 rescued PSII functionality as compared with ?sll0218‐flv2, where neither Sll0218 nor the Flv2/Flv4 heterodimer are expressed. Nevertheless, both the ?sll0218 and ?sll0218‐flv2 mutants demonstrated deficiency in accumulation of PSII proteins suggesting a role for Sll0218 in PSII stabilization, which was further supported by photoinhibition experiments. Moreover, the accumulation of PSII assembly intermediates occurred in Sll0218‐lacking mutants. The YFP‐tagged Sll0218 protein localized in a few spots per cell at the external side of the thylakoid membrane, and biochemical membrane fractionation revealed clear enrichment of Sll0218 in the PratA‐defined membranes, where the early biogenesis steps of PSII occur. Further, the characteristic antenna uncoupling feature of the ?flv4‐2 operon mutants is shown to be related to PSII destabilization in the absence of Sll0218. It is concluded that the Flv2/Flv4 heterodimer supports PSII functionality, while the Sll0218 protein assists PSII assembly and stabilization, including optimization of light harvesting.  相似文献   

17.
Monocytes are a part of the innate immune system. Their differentiation into macrophages changes their cellular proteome and secretome. Particularly secretome components such as cytokines are crucial for immune response and inflammation in many diseases. Differentiation of human lymphoma cell line U937 can be triggered by phorbol 12‐myristate 13‐acetate (PMA). Screening of the cytokine release in U937 upon PMA stimulation by cytometric bead array almost exclusively showed interleukin‐8 (IL‐8). Next, a label‐free nanoLC‐ESI‐MS/MS‐sSRM method for quantification of IL‐8 in the cell secretome was established and applied to monitor the time kinetics of PMA treatment in different concentrations. Targeted secretome analysis was achieved by scheduled SRM‐MS using one proteotypic peptide as precursor ion and four mass transitions. Label‐free quantification was performed by external calibration using IL‐8 standard. Validation results indicated that the method was suited for the quantification of IL‐8 in the secretome. The maximal IL‐8 release of 62.4 ng/mL was observed after incubating cells treated by 50 ng/mL PMA for 48 h. The method can now be used for quantification of IL‐8 release from different cells under various conditions. Furthermore, it can be easily expanded to other secreted proteins detected by untargeted screening methods.  相似文献   

18.
In saline soils, high levels of sodium (Na+) and chloride (Cl?) ions reduce root growth by inhibiting cell division and elongation, thereby impacting on crop yield. Soil salinity can lead to Na+ toxicity of plant cells, influencing the uptake and retention of other important ions [i.e. potassium (K+)] required for growth. However, measuring and quantifying soluble ions in their native, cellular environment is inherently difficult. Technologies that allow in situ profiling of plant tissues are fundamental for our understanding of abiotic stress responses and the development of tolerant crops. Here, we employ laser ablation‐inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) to quantify Na, K and other elements [calcium (Ca), magnesium (Mg), sulphur (S), phosphorus (P), iron (Fe)] at high spatial resolution in the root growth zone of two genotypes of barley (Hordeum vulgare) that differ in salt‐tolerance, cv. Clipper (tolerant) and Sahara (sensitive). The data show that Na+ was excluded from the meristem and cell division zone, indicating that Na+ toxicity is not directly reducing cell division in the salt‐sensitive genotype, Sahara. Interestingly, in both genotypes, K+ was strongly correlated with Na+ concentration, in response to salt stress. In addition, we also show important genetic differences and salt‐specific changes in elemental composition in the root growth zone. These results show that LA‐ICP‐MS can be used for fine mapping of soluble ions (i.e. Na+ and K+) in plant tissues, providing insight into the link between Na+ toxicity and root growth responses to salt stress.  相似文献   

19.
Apolipoprotein‐D is a glycosylated tetrameric lipocalin that binds and transports small hydrophobic molecules such as progesterone and arachidonic acid. Like other lipocalins, apolipoprotein‐D adopts an eight‐stranded β‐barrel fold stabilized by two intramolecular disulphide bonds, with an adjacent α‐helix. Crystallography studies of recombinant apolipoprotein‐D demonstrated no major conformational changes upon progesterone binding. Amide hydrogen‐deuterium exchange mass spectrometry (HDX‐MS) reports structural changes of proteins in solution by monitoring exchange of amide hydrogens in the protein backbone with deuterium. HDX‐MS detects changes in conformation and structural dynamics in response to protein function such as ligand binding that may go undetected in X‐ray crystallography, making HDX‐MS an invaluable orthogonal technique. Here, we report an HDX‐MS protocol for apolipoprotein‐D that solved challenges of high protein rigidity and low pepsin cleavage using rigorous quenching conditions and longer deuteration times, yielding 85% sequence coverage and 50% deuterium exchange. The relative fractional deuterium exchange of ligand‐free apolipoprotein‐D revealed apolipoprotein‐D to be a highly structured protein. Progesterone binding was detected by significant reduction in deuterium exchange in eight peptides. Stabilization of apolipoprotein‐D dynamics can be interpreted as a combined orthosteric effect in the ligand binding pocket and allosteric effect at the N‐terminus and C‐terminus. Together, our experiments provide insight into apolipoprotein‐D structural dynamics and map the effects of progesterone binding that are relayed to distal parts of the protein. The observed stabilization of apolipoprotein‐D dynamics upon progesterone binding demonstrates a common behaviour in the lipocalin family and may have implications for interactions of apolipoprotein‐D with receptors or lipoprotein particles. Statement: We reveal for the first time how apolipoprotein‐D, which is protective in Alzheimer's disease, becomes more ordered when bound to a molecule of steroid hormone. These results significantly extend the understanding of apolipoprotein‐D structure from X‐ray crystallography studies by incorporating information on how protein motion changes over time. To achieve these results an improved protocol was developed, suitable for proteins similar to apolipoprotein‐D, to elucidate how proteins change flexibility when binding to small molecules.  相似文献   

20.
The storage of packed red blood cells (RBCs) is associated with the development of morphological and biochemical changes leading to a reduced posttransfusion functionality and viability of the cells. Within this study, 2D DIGE and high‐resolution/high‐accuracy Orbitrap MS were used to analyze the storage‐induced changes of the cytosolic RBC proteome and identify characteristic protein patterns and potential marker proteins for the assessment of RBC storage lesions. Leukodepleted RBC concentrates were stored according to standard blood bank conditions for 0, 7, 14, 28, and 42 days and analyzed by using a characterized and validated protocol. Following statistical evaluation, a total of 14 protein spots were found to be significantly altered after 42 days of ex vivo storage. Protein identification was accomplished by tryptic digestion and LC‐MS/MS and three proteins potentially useful as biomarkers for RBC aging comprising transglutaminase 2, beta actin, and copper chaperone for superoxide dismutase were selected and validated by western blot analysis. These can serve as a basis for the development of a screening assay to detect RBC storage lesions and autologous blood doping in sports.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号