首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Methylated inositol, d ‐pinitol (3‐O‐methyl‐d ‐chiro‐inositol), is a common constituent in legumes. It is synthesized from myo‐inositol in two reactions: the first reaction, catalyzed by myo‐inositol‐O‐methyltransferase (IMT), consists of a transfer of a methyl group from S‐adenosylmethionine to myo‐inositol with the formation of d ‐ononitol, while the second reaction, catalyzed by d ‐ononitol epimerase (OEP), involves epimerization of d ‐ononitol to d ‐pinitol. To identify the genes involved in d ‐pinitol biosynthesis in a model legume Medicago truncatula, we conducted a BLAST search on its genome using soybean IMT cDNA as a query and found putative IMT (MtIMT) gene. Subsequent co‐expression analysis performed on publicly available microarray data revealed two potential OEP genes: MtOEPA, encoding an aldo‐keto reductase and MtOEPB, encoding a short‐chain dehydrogenase. cDNAs of all three genes were cloned and expressed as recombinant proteins in E. coli. In vitro assays confirmed that putative MtIMT enzyme catalyzes methylation of myo‐inositol to d ‐ononitol and showed that MtOEPA enzyme has NAD+‐dependent d ‐ononitol dehydrogenase activity, while MtOEPB enzyme has NADP+‐dependent d ‐pinitol dehydrogenase activity. Both enzymes are required for epimerization of d ‐ononitol to d ‐pinitol, which occurs in the presence of NAD+ and NADPH. Introduction of MtIMT, MtOEPA, and MtOEPB genes into tobacco plants resulted in production of d ‐ononitol and d ‐pinitol in transformants. As this two‐step pathway of d ‐ononitol epimerization is coupled with a transfer of reducing equivalents from NADPH to NAD+, we speculate that one of the functions of this pathway might be regeneration of NADP+ during drought stress.  相似文献   

3.
Kijanimicin is an antitumor antibiotic isolated from Actinomadura kijaniata. It is composed of three distinct moieties: a pentacyclic core, a monosaccharide referred to as d ‐kijanose, and a tetrasaccharide chain composed of l ‐digitoxose units. d ‐Kijanose is a highly unusual nitro‐containing tetradeoxysugar, which requires at least ten enzymes for its production. Here we describe a structural analysis of one of these enzymes, namely KijD1, which functions as a C‐3′‐methyltransferase using S‐adenosylmethionine as its cofactor. For this investigation, two ternary complexes of KijD1, determined in the presence of S‐adenosylhomocysteine (SAH) and dTDP or SAH and dTDP‐3‐amino‐2,3,6‐trideoxy‐4‐keto‐3‐methyl‐d ‐glucose, were solved to 1.7 or 1.6 Å resolution, respectively. Unexpectedly, these structures, as well as additional biochemical analyses, demonstrated that the quaternary structure of KijD1 is a dimer. Indeed, this is in sharp contrast to that previously observed for the sugar C‐3′‐methyltransferase isolated from Micromonospora chalcea. By the judicious use of site‐directed mutagenesis, it was possible to convert the dimeric form of KijD1 into a monomeric version. The quaternary structure of KijD1 could not have been deduced based solely on bioinformatics approaches, and thus this investigation highlights the continuing need for experimental validation.  相似文献   

4.
5.
6.
Four new steroidal glycosides, protolinckiosides A – D ( 1 – 4 , resp.), were isolated along with four previously known glycosides, 5 – 8 , from the MeOH/EtOH extract of the starfish Protoreaster lincki. The structures of 1 – 4 were elucidated by extensive NMR and ESI‐MS techniques as (3β,4β,5α,6β,7α,15α,16β,25S)‐4,6,7,8,15,16,26‐heptahydroxycholestan‐3‐yl 2‐O‐methyl‐β‐d ‐xylopyranoside ( 1 ), (3β,5α,6β,15α,24S)‐3,5,6,8,15‐pentahydroxycholestan‐24‐yl α‐l ‐arabinofuranoside ( 2 ), sodium (3β,6β,15α,16β,24R)‐29‐(β‐d ‐galactofuranosyloxy)‐6,8,16‐trihydroxy‐3‐[(2‐O‐methyl‐β‐d ‐xylopyranosyl)oxy]stigmast‐4‐en‐15‐yl sulfate ( 3 ), and sodium (3β,6β,15α,16β,22E,24R)‐28‐(β‐d ‐galactofuranosyloxy)‐6,8,16‐trihydroxy‐3‐[(2‐O‐methyl‐β‐d ‐xylopyranosyl)oxy]ergosta‐4,22‐dien‐15‐yl sulfate ( 4 ). The unsubstituted β‐d ‐galactofuranose residue at C(28) or C(29) of the side chains was found in starfish steroidal glycosides for the first time. Compounds 1 – 4 significantly decreased the intracellular reactive oxygen species (ROS) content in RAW 264.7 murine macrophages at induction by proinflammatory endotoxic lipopolysaccharide (LPS) from E. coli.  相似文献   

7.
Chitin, a major component of fungal cell walls, is a well‐known pathogen‐associated molecular pattern (PAMP) that triggers defense responses in several mammal and plant species. Here, we show that two chitooligosaccharides, chitin and chitosan, act as PAMPs in grapevine (Vitis vinifera) as they elicit immune signalling events, defense gene expression and resistance against fungal diseases. To identify their cognate receptors, the grapevine family of LysM receptor kinases (LysM‐RKs) was annotated and their gene expression profiles were characterized. Phylogenetic analysis clearly distinguished three V. vinifera LysM‐RKs (VvLYKs) located in the same clade as the Arabidopsis CHITIN ELICITOR RECEPTOR KINASE1 (AtCERK1), which mediates chitin‐induced immune responses. The Arabidopsis mutant Atcerk1, impaired in chitin perception, was transformed with these three putative orthologous genes encoding VvLYK1‐1, ‐2, or ‐3 to determine if they would complement the loss of AtCERK1 function. Our results provide evidence that VvLYK1‐1 and VvLYK1‐2, but not VvLYK1‐3, functionally complement the Atcerk1 mutant by restoring chitooligosaccharide‐induced MAPK activation and immune gene expression. Moreover, expression of VvLYK1‐1 in Atcerk1 restored penetration resistance to the non‐adapted grapevine powdery mildew (Erysiphe necator). On the whole, our results indicate that the grapevine VvLYK1‐1 and VvLYK1‐2 participate in chitin‐ and chitosan‐triggered immunity and that VvLYK1‐1 plays an important role in basal resistance against E. necator.  相似文献   

8.
9.
Six new polyhydroxysteroidal glycosides, anthenosides S1  –  S6 ( 1  –  6 ), along with a mixture of two previously known related glycosides, 7 and 8 , were isolated from the methanolic extract of the starfish Anthenea sibogae. The structures of 1  –  6 were established by NMR and HR‐ESI‐MS techniques as well as by chemical transformations. All new compounds have a 5α‐cholest‐8(14)‐ene‐3α,6β,7β,16α‐tetrahydroxysteroidal nucleus and differ from majority of starfish glycosides in positions of carbohydrate moieties at C(7) and C(16) ( 1  –  4 , 6 ) or only at C(16) ( 5 ). The 4‐O‐methyl‐β‐d ‐glucopyranose residue ( 2 ) and Δ24‐cholestane side chain ( 3 ) have not been found earlier in the starfish steroidal glycosides. The mixture of 7 and 8 slightly inhibited the proliferation of human breast cancer T‐47D cells and decreased the colony size in the colony formation assay.  相似文献   

10.
Flavonol 3‐O‐diglucosides with a 1→2 inter‐glycosidic linkage are representative pollen‐specific flavonols that are widely distributed in plants, but their biosynthetic genes and physiological roles are not well understood. Flavonoid analysis of four Arabidopsis floral organs (pistils, stamens, petals and calyxes) and flowers of wild‐type and male sterility 1 (ms1) mutants, which are defective in normal development of pollen and tapetum, showed that kaempferol/quercetin 3‐O‐β‐d ‐glucopyranosyl‐(1→2)‐β‐d ‐glucopyranosides accumulated in Arabidopsis pollen. Microarray data using wild‐type and ms1 mutants, gene expression patterns in various organs, and phylogenetic analysis of UDP‐glycosyltransferases (UGTs) suggest that UGT79B6 (At5g54010) is a key modification enzyme for determining pollen‐specific flavonol structure. Kaempferol and quercetin 3‐O‐glucosyl‐(1→2)‐glucosides were absent from two independent ugt79b6 knockout mutants. Transgenic ugt79b6 mutant lines transformed with the genomic UGT79B6 gene had the same flavonoid profile as wild‐type plants. Recombinant UGT79B6 protein converted kaempferol 3‐O‐glucoside to kaempferol 3‐O‐glucosyl‐(1→2)‐glucoside. UGT79B6 recognized 3‐O‐glucosylated/galactosylated anthocyanins/flavonols but not 3,5‐ or 3,7‐diglycosylated flavonoids, and prefers UDP‐glucose, indicating that UGT79B6 encodes flavonoid 3‐O‐glucoside:2″‐O‐glucosyltransferase. A UGT79B6‐GUS fusion showed that UGT79B6 was localized in tapetum cells and microspores of developing anthers.  相似文献   

11.
Isoprenoids consist of a large class of compounds that are present in all living organisms. They are derived from the 5C building blocks isopentenyl diphosphate (IDP) and its isomer dimethylallyl diphosphate (DMADP). In plants, IDP is synthesized in the cytoplasm from mevalonic acid via the MVA pathway, and in plastids from 2‐C‐methyl‐d ‐erythritol‐4‐phosphate through the MEP pathway. The enzyme IDP isomerase (IDI) catalyzes the interconversion between IDP and DMADP. Most plants contain two IDI enzymes, the functions of which are characteristically compartmentalized in the cells. Carotenoids are isoprenoids that play essential roles in photosynthesis and provide colors to flowers and fruits. They are synthesized in the plastids via the MEP pathway. Fruits of Solanum lycopersicum (tomato) accumulate high levels of the red carotene lycopene. We have identified mutations in tomato that reduce overall carotenoid accumulation in fruits. Four alleles of a locus named FRUIT CAROTENOID DEFICIENT 1 (fcd1) were characterized. Map‐based cloning of fcd1 indicated that this gene encodes the plastidial enzyme IDI1. Lack of IDI1 reduced the concentration of carotenoids in fruits, flowers and cotyledons, but not in mature leaves. These results indicate that the plastidial IDI plays an important function in carotenoid biosynthesis, thus highlighting its role in optimizing the ratio between IDP and DMADP as precursors for different downstream isoprenoid pathways.  相似文献   

12.
The synthesis of [(2′,5′‐dihydrofuran‐2‐yl)oxy]methyl‐phosphonate nucleosides with a 2‐substituted adenine base moiety starting from 2‐deoxy‐3,5‐bis‐O‐(4‐methylbenzoyl)‐α‐L ‐ribofuranosyl chloride and 2,6‐dichloropurine is described. The key step is the regiospecific and stereoselective introduction of a phosphonate synthon at C(2) of the furan ring. None of the synthesized compounds showed significant in vitro activity against HIV, BVDV, and HBV.  相似文献   

13.
N‐Acetyl‐d ‐glucosamino‐1,5‐lactone 1 has been reported as a candidate component of the sex pheromone mixture of female blue crabs, Callinectes sapidus, since it is present in the urine of reproductive females and males detect it. Theoretically, 1 can convert to a 1,4‐lactone isomer 2 or to the corresponding carboxylic acid, 2‐acetamido‐2‐deoxygluconic acid 3 by hydrolysis in aqueous solution. In this study, we examined the biologically relevant state of equilibrium mixture of 1 , 2 , and 3 in crab urine using ESI‐MS and NMR analyses. The ESI‐MS analysis showed that the dominant form of solubilized synthetic 1 is lactone 1 and/or 2 , immediately after solubilization in deuterated water, seawater, and phosphate buffer and gradually changing to carboxylic acid 3 which becomes most predominant in phosphate buffer. The NMR analysis showed that synthetic 1 converts to other forms in deuterated water and seawater, and reaches an equilibrium mixture of at least three forms within 24 h. In contrast, 1 converts to a single state of another form in deuterated water with 35 mm phosphate buffer pH 7.6 within 24 h, which is identical to the state in urine with or without phosphate buffer. Thus, we conclude that the molting biomarker sensed by male crabs is 3 .  相似文献   

14.
The defatted fractions of the Faramea hyacinthina and Ftruncata (Rubiaceae) leaf MeOH extracts showed in vitro non‐cytotoxic and anti‐dengue virus serotype 2 (DENV2) activity in human hepatocarcinoma cell lineage (HepG2). Submitting these fractions to the developed RP‐SPE method allowed isolating the antiviral flavanone (2S)‐isosakuranetin‐7‐Oβ‐d ‐apiofuranosyl‐(1→6)‐β‐d ‐glucopyranoside ( 1 ) from both species and yielded less active sub‐fractions. The new diastereoisomeric epimer pair (2S) + (2R) of 5,3′,5′‐trihydroxyflavanone‐7‐Oβ‐d ‐apiofuranosyl‐(1→6)‐β‐d ‐glucopyranoside ( 2a / 2b ) from Fhyacinthina; the known narigenin‐7‐Oβ‐d ‐apiofuranosyl‐(1→6)‐β‐d ‐glucopyranoside ( 3 ) from both species; rutin ( 4 ) and quercetin‐4′‐β‐d ‐O‐glucopyranosyl‐3‐O‐rutinoside ( 5 ) from Fhyacinthina, and kaempferol‐3‐O‐rutinoside ( 6 ), erythroxyloside A ( 7 ) and asperuloside ( 8 ) from Ftruncata have been isolated from these sub‐fractions. Compounds 4  –  8 are reported for the first time in Faramea spp.  相似文献   

15.
Gerbera (Gerbera hybrida) is an economically important ornamental species and a model plant of the Asteraceae family for flower development and secondary metabolism. Gerberin and parasorboside, two bitter tasting glucosidic lactones, are produced in high amounts in nearly all gerbera tissues. Gerbera and its close relatives also produce a rare coumarin, 4‐hydroxy‐5‐methylcoumarin (HMC). Unlike most coumarins, 5‐methylcoumarins have been suggested to be derived through the acetate‐malonate pathway. All of these polyketide‐derived glucosylated molecules are considered to have a role in defense against herbivores and phytopathogens in gerbera. Gerbera expresses three genes encoding 2‐pyrone synthases (G2PS1–3). The enzymes are chalcone synthase‐like polyketide synthases with altered starter substrate specificity. We have shown previously that G2PS1 is responsible for the synthesis of 4‐hydroxy‐6‐methyl‐2‐pyrone (triacetolactone), a putative precursor of gerberin and parasorboside. Here we show that polyketide synthases G2PS2 and G2PS3 are necessary for the biosynthesis of HMC in gerbera, and that a reductase enzyme is likely required to complete the pathway to HMC. G2PS2 is expressed in the leaf blade and inflorescences of gerbera, while G2PS3 is strictly root specific. Heterologous expression of G2PS2 or G2PS3 in tobacco leads to the formation of 4,7‐dihydroxy‐5‐methylcoumarin, apparently an unreduced precursor of HMC, while ectopic expression in gerbera leads to HMC formation in tissues where nontransgenic tissue does not express the genes and does not accumulate the compound. Using protein modelling and site‐directed mutagenesis we identified the residues I203 and T344 in G2PS2 and G2PS3 to be critical for pentaketide synthase activity.  相似文献   

16.
In plants, 3‐deoxy‐d ‐manno‐oct‐2‐ulosonic acid (Kdo) is a monosaccharide that is only found in the cell wall pectin, rhamnogalacturonan‐II (RG‐II). Incubation of 4‐day‐old light‐grown Arabidopsis seedlings or tobacco BY‐2 cells with 8‐azido 8‐deoxy Kdo (Kdo‐N3) followed by coupling to an alkyne‐containing fluorescent probe resulted in the specific in muro labelling of RG‐II through a copper‐catalysed azide–alkyne cycloaddition reaction. CMP‐Kdo synthetase inhibition and competition assays showing that Kdo and D‐Ara, a precursor of Kdo, but not L‐Ara, inhibit incorporation of Kdo‐N3 demonstrated that incorporation of Kdo‐N3 occurs in RG‐II through the endogenous biosynthetic machinery of the cell. Co‐localisation of Kdo‐N3 labelling with the cellulose‐binding dye calcofluor white demonstrated that RG‐II exists throughout the primary cell wall. Additionally, after incubating plants with Kdo‐N3 and an alkynated derivative of L‐fucose that incorporates into rhamnogalacturonan I, co‐localised fluorescence was observed in the cell wall in the elongation zone of the root. Finally, pulse labelling experiments demonstrated that metabolic click‐mediated labelling with Kdo‐N3 provides an efficient method to study the synthesis and redistribution of RG‐II during root growth.  相似文献   

17.
Two new oleanane‐type saponins: β‐d ‐xylopyranosyl‐(1 → 4)‐6‐deoxy‐α‐l ‐mannopyranosyl‐(1 → 2)‐1‐O‐{(3β)‐28‐oxo‐3‐[(2‐Oβ‐d ‐xylopyranosyl‐β‐d ‐glucopyranosyl)oxy]olean‐12‐en‐28‐yl}‐β‐d ‐glucopyranose ( 1 ) and 1‐O‐[(3β)‐28‐oxo‐3‐{[β‐d ‐xylopyranosyl‐(1 → 2)‐α‐l ‐arabinopyranosyl‐(1 → 6)‐2‐acetamido‐2‐deoxy‐β‐d ‐glucopyranosyl]oxy}olean‐12‐en‐28‐yl]β‐d ‐glucopyranose ( 2 ), along with two known saponins: (3β)‐3‐[(β‐d ‐Glucopyranosyl‐(1 → 2)‐β‐d ‐glucopyranosyl)oxy]olean‐12‐en‐28‐oic acid ( 3 ) and (3β)‐3‐{[α‐l ‐arabinopyranosyl‐(1 → 6)‐[β‐d ‐glucopyranosyl‐(1 → 2)]‐β‐d ‐glucopyranosyl]oxy}olean‐12‐en‐28‐oic acid ( 4 ) were isolated from the acetone‐insoluble fraction obtained from the 80% aqueous MeOH extract of Albizia anthelmintica Brongn . leaves. Their structures were identified using different NMR experiments including: 1H‐ and 13C‐NMR, HSQC, HMBC and 1H,1H‐COSY, together with HR‐ESI‐MS/MS, as well as by acid hydrolysis. The four isolated saponins and the fractions of the extract exhibited cytotoxic activity against HepG‐2 and HCT‐116 cell lines. Compound 2 showed the most potent cytotoxic activity among the other tested compounds against the HepG2 cell line with an IC50 value of 3.60μm . Whereas, compound 1 showed the most potent cytotoxic effect with an IC50 value of 4.75μm on HCT‐116 cells.  相似文献   

18.
β‐d ‐glucans from mushroom strains play a major role as biological response modifiers in several clinical disorders. Therefore, a specific assay method is of critical importance to find useful and novel sources of β‐d ‐glucans with anti‐tumor activity. Hybridoma technology was used to raise monoclonal antibodies (Mabs) against extracellular β‐d ‐glucans (EBG) from Pleurotus ostreatus. Two of these hybridoma clones (3F8_3H7 and 1E6_1E8_B3) secreting Mabs against EBG from P. ostreatus were selected and 3F8_3H7 was used to investigate if they are polyol‐responsive Mabs (PR‐Mabs) by using ELlSA‐elution assay. This hybridoma cell line secreted Mab of IgM class, which was purified in a single step by gel filtration chromatography on Sephacryl S‐300HR, which revealed a protein band on native PAGE with Mr of 917 kDa. Specificity studies of Mab 3F8_3H7 revealed that it recognized a common epitope on several β‐d ‐glucans from different basidiomycete strains as determined by indirect ELlSA and Western blotting under native conditions. This Mab exhibited high apparent affinity constant (KApp) for β‐d ‐glucans from several mushroom strains. However, it revealed differential reactivity to some heat‐treated β‐d ‐glucans compared with the native forms suggesting that it binds to a conformation‐sensitive epitope on β‐d ‐glucan molecule. Epitope analysis of Mab 3F8_3H7 and 1E6_1E8_B3 was investigated by additivity index parameter, which revealed that they bound to the same epitope on some β‐d ‐glucans and to different epitopes in other antigens. Therefore, these Mab can be used to assay for β‐d ‐glucans as well as to act as powerful probes to detect conformational changes in these biopolymers. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 32:116–125, 2016  相似文献   

19.
20.
Five chromone glycosides were isolated from the water‐soluble portions of 70% EtOH extract of the roots of Saposhnikovia divaricata, including two new chromone glycosides 1 and 2 . The structures of the chromone glycosides were identified as (3′S)‐3′‐O‐β‐d ‐apiofuranosyl‐(1 → 6)‐β‐d ‐glucopyranosylhamaudol ( 1 ), (2′S)‐4′‐Oβ‐d ‐apiofuranosyl‐(1 → 6)‐β‐d ‐glucopyranosylvisamminol ( 2 ), 3′‐O‐glucopyranosylhamaudol ( 3 ), 4′‐O‐β‐d ‐glucopyranosylvisamminol ( 4 ), and 4′‐O‐β‐d ‐glucopyranosyl‐5‐O‐methylvisamminol ( 5 ) on the basis of extensive spectroscopic methods, and the absolute configurations of the new compounds were elucidated by the electronic circular dichroism (ECD) calculation and acid hydrolysis. The cytotoxic activities of the glycosides 1 – 5 against three human cancer cell lines (PC‐3, SK‐OV‐3, and H460) were evaluated. The result showed that compounds 1 – 5 had weak cytotoxic activities against the human cancer cell lines with IC50 values in the range of 48.54 ± 0.80 – 94.25 ± 1.45 μm .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号