首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although tocopherols play an important role in plants and animals, the genetic architecture of tocopherol content in maize kernels has remained largely unknown. In this study, linkage and association analyses were conducted to examine the genetic architecture of tocopherol content in maize kernels. Forty‐one unique quantitative trait loci (QTLs) were identified by linkage mapping in six populations of recombinant inbred lines (RILs). In addition, 32 significant loci were detected via genome‐wide association study (GWAS), 18 of which colocalized with the QTLs identified by linkage mapping. Fine mapping of a major QTL validated the accuracy of GWAS and QTL mapping results and suggested a role for nontocopherol pathway genes in the modulation of natural tocopherol variation. We provided genome‐wide evidence that genes involved in fatty acid metabolism, chlorophyll metabolism and chloroplast function may affect natural variation in tocopherols. These findings were confirmed through mutant analysis of a particular gene from the fatty acid pathway. In addition, the favourable alleles for many of the significant SNPs/QTLs represented rare alleles in natural populations. Together, our results revealed many novel genes that are potentially involved in the variation of tocopherol content in maize kernels. Pyramiding of the favourable alleles of the newly elucidated genes and the well‐known tocopherol pathway genes would greatly improve tocopherol content in maize.  相似文献   

2.
Cultivated soybean (Glycine max) suffers from a narrow germplasm relative to other crop species, probably because of under‐use of wild soybean (Glycine soja) as a breeding resource. Use of a single nucleotide polymorphism (SNP) genotyping array is a promising method for dissecting cultivated and wild germplasms to identify important adaptive genes through high‐density genetic mapping and genome‐wide association studies. Here we describe a large soybean SNP array for use in diversity analyses, linkage mapping and genome‐wide association analyses. More than four million high‐quality SNPs identified from high‐depth genome re‐sequencing of 16 soybean accessions and low‐depth genome re‐sequencing of 31 soybean accessions were used to select 180 961 SNPs for creation of the Axiom® SoyaSNP array. Validation analysis for a set of 222 diverse soybean lines showed that 170 223 markers were of good quality for genotyping. Phylogenetic and allele frequency analyses of the validation set data indicated that accessions showing an intermediate morphology between cultivated and wild soybeans collected in Korea were natural hybrids. More than 90 unanchored scaffolds in the current soybean reference sequence were assigned to chromosomes using this array. Finally, dense average spacing and preferential distribution of the SNPs in gene‐rich chromosomal regions suggest that this array may be suitable for genome‐wide association studies of soybean germplasm. Taken together, these results suggest that use of this array may be a powerful method for soybean genetic analyses relating to many aspects of soybean breeding.  相似文献   

3.
In perennial woody plants, the coordinated increase of stem height and diameter during juvenile growth improves competitiveness (i.e. access to light); however, the factors underlying variation in stem growth remain unknown in trees. Here, we used linkage‐linkage disequilibrium (linkage‐LD) mapping to decipher the genetic architecture underlying three growth traits during juvenile stem growth. We used two Populus populations: a linkage mapping population comprising a full‐sib family of 1,200 progeny and an association mapping panel comprising 435 unrelated individuals from nearly the entire natural range of Populus tomentosa. We mapped 311 quantitative trait loci (QTL) for three growth traits at 12 timepoints to 42 regions in 17 linkage groups. Of these, 28 regions encompassing 233 QTL were annotated as 27 segmental homology regions (SHRs). Using SNPs identified by whole‐genome re‐sequencing of the 435‐member association mapping panel, we identified significant SNPs ( 9.4 × 10?7) within 27 SHRs that affect stem growth at nine timepoints with diverse additive and dominance patterns, and these SNPs exhibited complex allelic epistasis over the juvenile growth period. Nineteen genes linked to potential causative alleles that have time‐specific or pleiotropic effects, and mostly overlapped with significant signatures of selection within SHRs between climatic regions represented by the association mapping panel. Five genes with potential time‐specific effects showed species‐specific temporal expression profiles during the juvenile stages of stem growth in five representative Populus species. Our observations revealed the importance of considering temporal genetic basis of complex traits, which will facilitate the molecular design of tree ideotypes.  相似文献   

4.
The Ethiopian plateau hosts thousands of durum wheat (Triticum turgidum subsp. durum) farmer varieties (FV) with high adaptability and breeding potential. To harness their unique allelic diversity, we produced a large nested association mapping (NAM) population intercrossing fifty Ethiopian FVs with an international elite durum wheat variety (Asassa). The Ethiopian NAM population (EtNAM) is composed of fifty interconnected bi‐parental families, totalling 6280 recombinant inbred lines (RILs) that represent both a powerful quantitative trait loci (QTL) mapping tool, and a large pre‐breeding panel. Here, we discuss the molecular and phenotypic diversity of the EtNAM founder lines, then we use an array featuring 13 000 single nucleotide polymorphisms (SNPs) to characterize a subset of 1200 EtNAM RILs from 12 families. Finally, we test the usefulness of the population by mapping phenology traits and plant height using a genome wide association (GWA) approach. EtNAM RILs showed high allelic variation and a genetic makeup combining genetic diversity from Ethiopian FVs with the international durum wheat allele pool. EtNAM SNP data were projected on the fully sequenced AB genome of wild emmer wheat, and were used to estimate pairwise linkage disequilibrium (LD) measures that reported an LD decay distance of 7.4 Mb on average, and balanced founder contributions across EtNAM families. GWA analyses identified 11 genomic loci individually affecting up to 3 days in flowering time and more than 1.6 cm in height. We argue that the EtNAM is a powerful tool to support the production of new durum wheat varieties targeting local and global agriculture.  相似文献   

5.
Drought stress was imposed on two sets of Arabidopsis thaliana genotypes grown in sand under short‐day conditions and analysed for several shoot and root growth traits. The response to drought was assessed for quantitative trait locus (QTL) mapping in a genetically diverse set of Arabidopsis accessions using genome‐wide association (GWA) mapping, and conventional linkage analysis of a recombinant inbred line (RIL) population. Results showed significant genotype by environment interaction (G×E) for all traits in response to different watering regimes. For the RIL population, the observed G×E was reflected in 17 QTL by environment interactions (Q×E), while 17 additional QTLs were mapped not showing Q×E. GWA mapping identified 58 single nucleotide polymorphism (SNPs) associated with loci displaying Q×E and an additional 16 SNPs associated with loci not showing Q×E. Many candidate genes potentially underlying these loci were suggested. The genes for RPS3C and YLS7 were found to contain conserved amino acid differences when comparing Arabidopsis accessions with strongly contrasting drought response phenotypes, further supporting their candidacy. One of these candidate genes co‐located with a QTL mapped in the RIL population.  相似文献   

6.
7.
The soybean aphid (Aphis glycines Matsumura) is the most damaging insect pest of soybean [Glycine max (L.) Merr.] in North America. New soybean aphid biotypes have been evolving quickly and at least three confirmed biotypes have been reported in USA. These biotypes are capable of defeating most known aphid resistant soybean genes indicating the need for identification of new genes. Plant Introduction (PI) 567301B was earlier identified to have antixenosis resistance against biotype 1 and 2 of the soybean aphid. Two hundred and three F7:9 recombinant inbred lines (RILs) developed from a cross of soybean aphid susceptible cultivar Wyandot and resistant PI 567301B were used for mapping aphid resistance genes using the quantitative trait loci (QTL) mapping approach. A subset of 94 RILs and 516 polymorphic SNP makers were used to construct a genome-wide molecular linkage map. Two candidate QTL regions for aphid resistance were identified on this linkage map. Fine mapping of the QTL regions was conducted with SSR markers using all 203 RILs. A major gene on chromosome 13 was mapped near the previously identified Rag2 gene. However, an earlier study revealed that the detached leaves of PI 567301B had no resistance against the soybean aphids while the detached leaves of PI 243540 (source of Rag2) maintained aphid resistance. These results and the earlier finding that PI 243540 showed antibiosis resistance and PI 567301B showed antixenosis type resistance, indicating that the aphid resistances in the two PIs are not controlled by the same gene. Thus, we have mapped a new gene near the Rag2 locus for soybean aphid resistance that should be useful in breeding for new aphid-resistant soybean cultivars. Molecular markers closely linked to this gene are available for marker-assisted breeding. Also, the minor locus found on chromosome 8 represents the first reported soybean aphid-resistant locus on this chromosome.  相似文献   

8.
Whole genome resequencing of 51 Populus nigra (L.) individuals from across Western Europe was performed using Illumina platforms. A total number of 1 878 727 SNPs distributed along the P. nigra reference sequence were identified. The SNP calling accuracy was validated with Sanger sequencing. SNPs were selected within 14 previously identified QTL regions, 2916 expressional candidate genes related to rust resistance, wood properties, water‐use efficiency and bud phenology and 1732 genes randomly spread across the genome. Over 10 000 SNPs were selected for the construction of a 12k Infinium Bead‐Chip array dedicated to association mapping. The SNP genotyping assay was performed with 888 P. nigra individuals. The genotyping success rate was 91%. Our high success rate was due to the discovery panel design and the stringent parameters applied for SNP calling and selection. In the same set of P. nigra genotypes, linkage disequilibrium throughout the genome decayed on average within 5–7 kb to half of its maximum value. As an application test, ADMIXTURE analysis was performed with a selection of 600 SNPs spread throughout the genome and 706 individuals collected along 12 river basins. The admixture pattern was consistent with genetic diversity revealed by neutral markers and the geographical distribution of the populations. These newly developed SNP resources and genotyping array provide a valuable tool for population genetic studies and identification of QTLs through natural‐population based genetic association studies in P. nigra.  相似文献   

9.
Soybean mosaic virus (SMV) disease is one of the most serious and broadly distributed soybean (Glycine max (L.) Merr.) diseases. Here, we combine the advantages of association and linkage analysis to i...  相似文献   

10.
Seed-size traits, which are controlled by multiple genes in soybean, play an important role in determining seed yield, quality and appearance. However, the molecular mechanisms controlling the size of soybean seeds remain unclear, and little research has been done to investigate these mechanisms. In this study, we performed a genetic analysis to determine the genetic architecture of soybean seed size and shape via linkage and association analyses. We used 184 recombinant inbred lines (RILs) and 219 cultivated soybean accessions to evaluate seed length, seed width and seed height as seed-size traits, and their ratios of these values as seed-shape traits. Our results showed that all six traits had high heritability ranging from 92.46 to 98.47 %. Linkage analysis in the RILs identified 12 quantitative traits loci (QTLs), with five of these QTLs being associated with seed size, five with seed shape and two with the two first principal components of our principal component analysis (PCA). Association analysis in the 219 accessions detected 41 single nucleotide polymorphism (SNP)-trait associations, with 20 of these SNPs being associated with seed-size traits, seven with seed-shape traits and 14 with the two first principal components of our PCA. This analysis reveals that seed-size and seed-shape may be controlled by different genetic factors. Our results provide a greater understanding of phenotypic structure and genetic architecture of soybean seed, and the QTLs detected in this study form a basis for future fine mapping, quantitative trait gene cloning and molecular breeding in soybean.  相似文献   

11.
Identification of the polymorphisms controlling quantitative traits remains a challenge for plant geneticists. Multiparent advanced generation intercross (MAGIC) populations offer an alternative to traditional linkage or association mapping populations by increasing the precision of quantitative trait loci (QTL) mapping. Here, we present the first tomato MAGIC population and highlight its potential for the valorization of intraspecific variation, QTL mapping and causal polymorphism identification. The population was developed by crossing eight founder lines, selected to include a wide range of genetic diversity, whose genomes have been previously resequenced. We selected 1536 SNPs among the 4 million available to enhance haplotype prediction and recombination detection in the population. The linkage map obtained showed an 87% increase in recombination frequencies compared to biparental populations. The prediction of the haplotype origin was possible for 89% of the MAGIC line genomes, allowing QTL detection at the haplotype level. We grew the population in two greenhouse trials and detected QTLs for fruit weight. We mapped three stable QTLs and six specific of a location. Finally, we showed the potential of the MAGIC population when coupled with whole genome sequencing of founder lines to detect candidate SNPs underlying the QTLs. For a previously cloned QTL on chromosome 3, we used the predicted allelic effect of each founder and their genome sequences to select putative causal polymorphisms in the supporting interval. The number of candidate polymorphisms was reduced from 12 284 (in 800 genes) to 96 (in 54 genes), including the actual causal polymorphism. This population represents a new permanent resource for the tomato genetics community.  相似文献   

12.
A genome‐wide association study of 2098 progeny‐tested Nordic Holstein bulls genotyped for 36 387 SNPs on 29 autosomes was conducted to confirm and fine‐map quantitative trait loci (QTL) for mastitis traits identified earlier using linkage analysis with sparse microsatellite markers in the same population. We used linear mixed model analysis where a polygenic genetic effect was fitted as a random effect and single SNPs were successively included as fixed effects in the model. We detected 143 SNP‐by‐trait significant associations (P < 0.0001) on 20 chromosomes affecting mastitis‐related traits. Among them, 21 SNP‐by‐trait combinations exceeded the genome‐wide significant threshold. For 12 chromosomes, both the present association study and the previous linkage study detected QTL, and of these, six were in the same chromosomal locations. Strong associations of SNPs with mastitis traits were observed on bovine autosomes 6, 13, 14 and 20. Possible candidate genes for these QTL were identified. Identification of SNPs in linkage disequilibrium with QTL will enable marker‐based selection for mastitis resistance. The candidate genes identified should be further studied to detect candidate polymorphisms underlying these QTL.  相似文献   

13.
14.

Key message

Eighty-six R1 QTLs accounting for 89.92% phenotypic variance in a soybean RIL population were identified using RTM-GWAS with SNPLDB marker which performed superior over CIM and MLM-GWAS with BIN/SNPLDB marker.

Abstract

A population (NJRIKY) composed of 427 recombinant inbred lines (RILs) derived from Kefeng-1?×?NN1138-2 (MGII?×?MGV, MG maturity group) was applied for detecting flowering date (R1) quantitative trait locus (QTL) system in soybean. From a low-depth re-sequencing (~?0.75?×), 576,874 SNPs were detected and organized into 4737 BINs (recombination breakpoint determinations) and 3683 SNP linkage disequilibrium blocks (SNPLDBs), respectively. Using the association mapping procedures “Restricted Two-stage Multi-locus Genome-wide Association Study” (RTM-GWAS), “Mixed Linear Model Genome-wide Association Study” (MLM-GWAS) and the linkage mapping procedure “Composite Interval Mapping” (CIM), 67, 36 and 10 BIN-QTLs and 86, 14 and 23 SNPLDB-QTLs were detected with their phenotypic variance explained (PVE) 88.70–89.92% (within heritability 98.2%), 146.41–353.62% (overflowing) and 88.29–172.34% (overflowing), respectively. The RTM-GWAS with SNPLDBs which showed to be more efficient and reasonable than the others was used to identify the R1 QTL system in NJRIKY. The detected 86 SNPLDB-QTLs with their PVE from 0.02 to 30.66% in a total of 89.92% covered 51 out of 104 R1 QTLs in 18 crosses in SoyBase and 26 out of 139 QTLs in a nested association mapping population, while the rest 29 QTLs were novel ones. From the QTL system, 52 candidate genes were annotated, including the verified gene E1, E2, E9 and J, and grouped into 3 categories of biological processes, among which 24 genes were enriched into three protein–protein interaction networks, suggesting gene networks working together. Since NJRIKY involves only MGII and MGV, the QTL/gene system among MG000–MGX should be explored further.
  相似文献   

15.
Kernel size‐related traits are the most direct traits correlating with grain yield. The genetic basis of three kernel traits of maize, kernel length (KL), kernel width (KW) and kernel thickness (KT), was investigated in an association panel and a biparental population. A total of 21 single nucleotide polymorphisms (SNPs) were detected to be most significantly (P < 2.25 × 10?6) associated with these three traits in the association panel under four environments. Furthermore, 50 quantitative trait loci (QTL) controlling these traits were detected in seven environments in the intermated B73 × Mo17 (IBM) Syn10 doubled haploid (DH) population, of which eight were repetitively identified in at least three environments. Combining the two mapping populations revealed that 56 SNPs (P < 1 × 10?3) fell within 18 of the QTL confidence intervals. According to the top significant SNPs, stable‐effect SNPs and the co‐localized SNPs by association analysis and linkage mapping, a total of 73 candidate genes were identified, regulating seed development. Additionally, seven miRNAs were found to situate within the linkage disequilibrium (LD) regions of the co‐localized SNPs, of which zma‐miR164e was demonstrated to cleave the mRNAs of Arabidopsis CUC1, CUC2 and NAC6 in vitro. Overexpression of zma‐miR164e resulted in the down‐regulation of these genes above and the failure of seed formation in Arabidopsis pods, with the increased branch number. These findings provide insights into the mechanism of seed development and the improvement of molecular marker‐assisted selection (MAS) for high‐yield breeding in maize.  相似文献   

16.
17.
18.
Molecular mapping of soybean aphid resistance genes in PI 567541B   总被引:2,自引:0,他引:2  
The soybean aphid (Aphis glycines Matsumura) is an important pest of soybean [Glycine max (L.) Merr.] in North America since it was first reported in 2000. PI 567541B is a newly discovered aphid resistance germplasm with early maturity characteristics. The objectives of this study were to map and validate the aphid resistance genes in PI 567541B using molecular markers. A mapping population of 228 F3 derived lines was investigated for the aphid resistance in both field and greenhouse trials. Two quantitative trait loci (QTLs) controlling the aphid resistance were found using the composite interval mapping method. These two QTLs were localized on linkage groups (LGs) F and M. PI 567541B conferred resistant alleles at both loci. An additive × additive interaction between these two QTLs was identified using the multiple interval mapping method. These two QTLs combined with their interaction explained most of the phenotypic variation in both field and greenhouse trials. In general, the QTL on LG F had less effect than the one on LG M, especially in the greenhouse trial. These two QTLs were further validated using an independent population. The effects of these two QTLs were also confirmed using 50 advanced breeding lines, which were all derived from PI 567541B and had various genetic backgrounds. Hence, these two QTLs identified and validated in this study could be useful in improving soybean aphid resistance by marker-assisted selection.  相似文献   

19.
Whole‐genome sequencing‐based bulked segregant analysis (BSA) for mapping quantitative trait loci (QTL) provides an efficient alternative approach to conventional QTL analysis as it significantly reduces the scale and cost of analysis with comparable power to QTL detection using full mapping population. We tested the application of next‐generation sequencing (NGS)‐based BSA approach for mapping QTLs for ascochyta blight resistance in chickpea using two recombinant inbred line populations CPR‐01 and CPR‐02. Eleven QTLs in CPR‐01 and six QTLs in CPR‐02 populations were mapped on chromosomes Ca1, Ca2, Ca4, Ca6 and Ca7. The QTLs identified in CPR‐01 using conventional biparental mapping approach were used to compare the efficiency of NGS‐based BSA in detecting QTLs for ascochyta blight resistance. The QTLs on chromosomes Ca1, Ca4, Ca6 and Ca7 overlapped with the QTLs previously detected in CPR‐01 using conventional QTL mapping method. The QTLs on chromosome Ca4 were detected in both populations and overlapped with the previously reported QTLs indicating conserved region for ascochyta blight resistance across different chickpea genotypes. Six candidate genes in the QTL regions identified using NGS‐based BSA on chromosomes Ca2 and Ca4 were validated for their association with ascochyta blight resistance in the CPR‐02 population. This study demonstrated the efficiency of NGS‐based BSA as a rapid and cost‐effective method to identify QTLs associated with ascochyta blight in chickpea.  相似文献   

20.
Increasing evidence shows that quantitative inheritance is based on both DNA sequence and non‐DNA sequence variants. However, how to simultaneously detect these variants from a mapping study has been unexplored, hampering our effort to illustrate the detailed genetic architecture of complex traits. We address this issue by developing a unified model of quantitative trait locus (QTL) mapping based on an open‐pollinated design composed of randomly sampling maternal plants from a natural population and their half‐sib seeds. This design forms a two‐level hierarchical platform for a joint linkage‐linkage disequilibrium analysis of population structure. The EM algorithm was implemented to estimate and test DNA sequence‐based effects and non‐DNA sequence‐based effects of QTLs. We applied this model to analyze genetic mapping data from the OP design of a gymnosperm coniferous species, Torreya grandis, identifying 25 significant DNA sequence and non‐DNA sequence QTLs for seedling height and diameter growth in different years. Results from computer simulation show that the unified model has good statistical properties and is powerful for QTL detection. Our model enables the tests of how a complex trait is affected differently by DNA‐based effects and non‐DNA sequence‐based transgenerational effects, thus allowing a more comprehensive picture of genetic architecture to be charted and quantified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号