首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In clathrin‐mediated endocytosis (CME), specificity and selectivity for cargoes are thought to be tightly regulated by cargo‐specific adaptors for distinct cellular functions. Here, we show that the actin‐binding protein girdin is a regulator of cargo‐selective CME. Girdin interacts with dynamin 2, a GTPase that excises endocytic vesicles from the plasma membrane, and functions as its GTPase‐activating protein. Interestingly, girdin depletion leads to the defect in clathrin‐coated pit formation in the center of cells. Also, we find that girdin differentially interacts with some cargoes, which competitively prevents girdin from interacting with dynamin 2 and confers the cargo selectivity for CME. Therefore, girdin regulates transferrin and E‐cadherin endocytosis in the center of cells and their subsequent polarized intracellular localization, but has no effect on integrin and epidermal growth factor receptor endocytosis that occurs at the cell periphery. Our results reveal that girdin regulates selective CME via a mechanism involving dynamin 2, but not by operating as a cargo‐specific adaptor.  相似文献   

2.
Clathrin‐mediated endocytosis (CME) and clathrin‐independent endocytosis (CIE) co‐exist in most cells but little is known about their communication and coordination. Here we show that when CME was inhibited, endocytosis by CIE continued but endosomal trafficking of CIE cargo proteins was altered. CIE cargo proteins that normally traffic directly into Arf6‐associated tubules after internalization and avoid degradation (CD44, CD98 and CD147) now trafficked to lysosomes and were degraded. The endosomal tubules were also absent and Arf6‐GTP levels were elevated. The altered trafficking, loss of the tubular endosomal network and elevated Arf6‐GTP levels caused by inhibition of CME were rescued by expression of Rab35, a Rab associated with clathrin‐coated vesicles, or its effector ACAPs, Arf6 GTPase activating proteins (GAP) that inactivate Arf6. Furthermore, siRNA knockdown of Rab35 recreated the phenotype of CME ablation on CIE cargo trafficking without altering endocytosis of transferrin. These observations suggest that Rab35 serves as a CME detector and that loss of CME, or Rab35 input, leads to elevated Arf6‐GTP and shifts the sorting of CIE cargo proteins to lysosomes and degradation.   相似文献   

3.
In eukaryotic cells, clathrin‐mediated endocytosis (CME) is a central pathway for the internalization of proteins from the cell surface, thereby contributing to the maintenance of the plasma membrane protein composition. A key component for the formation of endocytic clathrin‐coated vesicles (CCVs) is AP‐2, as it sequesters cargo membrane proteins, recruits a multitude of other endocytic factors and initiates clathrin polymerization. Here, we inhibited CME by depletion of AP‐2 and explored the consequences for the plasma membrane proteome. Quantitative analysis revealed accumulation of major constituents of the endosomal‐lysosomal system reflecting a block in retrieval by compensatory CME. The noticeable enrichment of integrins and blockage of their turnover resulted in severely impaired cell migration. Rare proteins such as the anti‐cancer drug target CA9 and tumor markers (CD73, CD164, CD302) were significantly enriched. The AP‐2 knockdown attenuated the global endocytic capacity, but clathrin‐independent entry pathways were still operating, as indicated by persistent internalization of specific membrane‐spanning and GPI‐anchored receptors (PVR, IGF1R, CD55, TNAP). We hypothesize that blocking AP‐2 function and thus inhibiting CME may be a novel approach to identify new druggable targets, or to increase their residence time at the plasma membrane, thereby increasing the probability for efficient therapeutic intervention.  相似文献   

4.
Although we have previously demonstrated that cell entry of bovine ephemeral fever virus (BEFV) follows a clathrin‐mediated and dynamin 2‐dependent endocytosis pathway, the cellular mechanism mediating virus entry remains unknown. Here, we report that BEFV triggers simultaneously Src‐JNK‐AP1 and PI3K‐Akt‐NF‐κB signalling pathways in the stage of virus binding to induce clathrin and dynamin 2 expressions, while vesicular stomatitis virus only activates Src‐JNK signalling to enhance its entry. Activation of these pathways by ultraviolet‐inactivated BEFV suggests a role for virus binding but not viral internalization and gene expression. By blocking these signalling pathways with specific inhibitors, BEFV‐induced expressions of clathrin and dynamin 2 were significantly diminished. By labelling BEFV with 3,3′‐dilinoleyloxacarbocyanine perchlorate to track viral entry, we found that virus entry was hindered by both Src and Akt inhibitors, suggesting that these signalling pathways are crucial for efficient virus entry. In addition, BEFV also triggers Cox‐2‐catalysed prostaglandin E2 (PGE2) synthesis and induces expressions of G‐protein‐coupled E‐prostanoid (EP) receptors 2 and 4, leading to amplify signal cascades of Src‐JNK‐AP1 and PI3K‐Akt‐NF‐κB, which elevates both clathrin and dynamin 2 expressions. Furthermore, pretreatment of cells with adenylate cyclase (cAMP) inhibitor SQ22536 reduced BEFV‐induced Src phosphorylation as well as clathrin and dynamin 2 expressions. Our findings reveal for the first time that BEFV activates the Cox‐2‐mediated PGE2/EP receptor signalling pathways, further enhancing Src‐JNK‐AP1 in a cAMP‐dependent manner and PI3K‐Akt‐NF‐κB in a cAMP‐independent manner. Accordingly, BEFV stimulates PGE2/EP receptor signalling amplifying Src‐JNK‐AP1 and PI3K‐Akt‐NF‐κB pathways in an autocrine or paracrine fashion to enhance virus entry.  相似文献   

5.
Herpes simplex virus‐1 (HSV‐1) is a large enveloped DNA virus that belongs to the family of Herpesviridae. It has been recently shown that the cytoplasmic membranes that wrap the newly assembled capsids are endocytic compartments derived from the plasma membrane. Here, we show that dynamin‐dependent endocytosis plays a major role in this process. Dominant‐negative dynamin and clathrin adaptor AP180 significantly decrease virus production. Moreover, inhibitors targeting dynamin and clathrin lead to a decreased transport of glycoproteins to cytoplasmic capsids, confirming that glycoproteins are delivered to assembly sites via endocytosis. We also show that certain combinations of glycoproteins colocalize with each other and with the components of clathrin‐dependent and ‐independent endocytosis pathways. Importantly, we demonstrate that the uptake of neutralizing antibodies that bind to glycoproteins when they become exposed on the cell surface during virus particle assembly leads to the production of non‐infectious HSV‐1. Our results demonstrate that transport of viral glycoproteins to the plasma membrane prior to endocytosis is the major route by which these proteins are localized to the cytoplasmic virus assembly compartments. This highlights the importance of endocytosis as a major protein‐sorting event during HSV‐1 envelopment.   相似文献   

6.
Hepatitis B virus (HBV) is a leading cause of cirrhosis and hepatocellular carcinoma worldwide, with 250 million individuals chronically infected. Many stages of the HBV infectious cycle have been elucidated, but the mechanisms of HBV entry remain poorly understood. The identification of the sodium taurocholate cotransporting polypeptide (NTCP) as an HBV receptor and the establishment of NTCP‐overexpressing hepatoma cell lines susceptible to HBV infection opens up new possibilities for investigating these mechanisms. We used HepG2‐NTCP cells, and various chemical inhibitors and RNA interference (RNAi) approaches to investigate the host cell factors involved in HBV entry. We found that HBV uptake into these cells was dependent on the actin cytoskeleton and did not involve macropinocytosis or caveolae‐mediated endocytosis. Instead, entry occurred via the clathrin‐mediated endocytosis pathway. HBV internalisation was inhibited by pitstop‐2 treatment and RNA‐mediated silencing (siRNA) of the clathrin heavy chain, adaptor protein AP‐2 and dynamin‐2. We were able to visualise HBV entry in clathrin‐coated pits and vesicles by electron microscopy (EM) and cryo‐EM with immunogold labelling. These data demonstrating that HBV uses a clathrin‐mediated endocytosis pathway to enter HepG2‐NTCP cells increase our understanding of the complete HBV life cycle.  相似文献   

7.
Dynamin is the most-studied membrane fission machinery and has served as a paradigm for studies of other fission GTPases; however, several critical questions regarding its function remain unresolved. In particular, because most dynamin GTPase domain mutants studied to date equally impair both basal and assembly-stimulated GTPase activities, it has been difficult to distinguish their respective roles in clathrin-mediated endocytosis (CME) or in dynamin catalyzed membrane fission. Here we compared a new dynamin mutant, Q40E, which is selectively impaired in assembly-stimulated GTPase activity with S45N, a GTP-binding mutant equally defective in both basal and assembly-stimulated GTPase activities. Both mutants potently inhibit CME and effectively recruit other endocytic accessory proteins to stalled coated pits. However, the Q40E mutant blocks at a later step than S45N, providing additional evidence that GTP binding and/or basal GTPase activities of dynamin are required throughout clathrin coated pit maturation. Importantly, using in vitro assays for assembly-stimulated GTPase activity and membrane fission, we find that the latter is much more potently inhibited by both dominant-negative mutants than the former. These studies establish that efficient fission from supported bilayers with excess membrane reservoir (SUPER) templates requires coordinated GTP hydrolysis across two rungs of an assembled dynamin collar.  相似文献   

8.
A few proteins required for clathrin‐mediated endocytosis (CME) are associated with successful completion of mitosis at distinct mitotic stages. Clathrin heavy chain (CHC) and epsin are required for chromosome segregation independent of their CME function and dynamin II (dynII) functions in the abscission stage of cytokinesis. In this study we screened for mitotic roles of eight CME proteins: CHC, α‐adaptin, CALM, epsin, eps15, endophilin II (edpnII), syndapin II (sdpnII) and the GTPase dynII using a small interfering RNA targeting approach. All proteins, except for CALM, are associated with completion of the abscission stage of cytokinesis, suggesting that they function in this process in an endocytic‐dependent manner. In support of this concept, overexpression of epsinS357D, which blocks endocytosis, induced multinucleation. Moreover, six of them have a secondary role at earlier mitotic stages that is not dependent on their endocytic function: CHC, epsin and eps15 in chromosome segregation, and sdpnII, α‐adaptin and CALM have a role in furrow ingression. Therefore, the role of endocytic proteins in mitosis is much broader than previously recognized.  相似文献   

9.
Clathrin‐mediated endocytosis is a major route for the retrieval of plasma‐membrane cargoes, and defects of this process can cause catastrophic human dysfunctions. However, the processes governing how a clathrin‐coated profile (ccp) is initiated are still murky. Despite an ever‐growing cast of molecules proposed as triggers of ccp nucleation and increasingly sophisticated bioimaging techniques examining clathrin‐mediated endocytosis, it is yet unknown if ccp formation is governed by a universal mechanism. A recent paper by Cocucci et al. has tracked single‐molecule events to identify that stable accumulation of ccps requires the near‐simultaneous arrival of two AP2 adaptors bridged by one clathrin triskelion. This commentary examines the role of AP2 in cargo‐mediated endocytosis in the light of recent advances in biophotonics, chemical inhibitors and genetics, examines the claims of other molecules to be the initiators of ccp formation and proposes future directions in research into this topic. Editor's suggested further reading in BioEssays: The evolution of dynamin to regulate clathrin‐mediated endocytosis Abstract Clathrin‐mediated endocytosis: What works for small, also works for big Abstract  相似文献   

10.
Clostridial binary toxins, such as Clostridium perfringens Iota and Clostridium botulinum C2, are composed of a binding protein (Ib and C2II respectively) that recognizes distinct membrane receptors and mediates internalization of a catalytic protein (Ia and C2‐I respectively) with ADP‐ribosyltransferase activity that disrupts the actin cytoskeleton. We show here that the endocytic pathway followed by these toxins is independent of clathrin but requires the activity of dynamin and is regulated by Rho‐GDI. This endocytic pathway is similar to a recently characterized clathrin‐independent pathway followed by the interleukin‐2 (IL2) receptor. We found indeed that Ib and C2II colocalized intracellularly with the IL2 receptor but not the transferrin receptor after different times of endocytosis. Accordingly, the intracellular effects of Iota and C2 on the cytoskeleton were inhibited by inactivation of dynamin or by Rho‐GDI whereas inhibitors of clathrin‐dependent endocytosis had no protective effect.  相似文献   

11.
Endocytosis regulates many processes, including signaling pathways, nutrient uptake, and protein turnover. During clathrin‐mediated endocytosis (CME), adaptors bind to cytoplasmic regions of transmembrane cargo proteins, and many endocytic adaptors are also directly involved in the recruitment of clathrin. This clathrin‐associated sorting protein family includes the yeast epsins, Ent1/2, and AP180/PICALM homologs, Yap1801/2. Mutant strains lacking these four adaptors, but expressing an epsin N‐terminal homology (ENTH) domain necessary for viability (4Δ+ENTH), exhibit endocytic defects, such as cargo accumulation at the plasma membrane (PM). This CME‐deficient strain provides a sensitized background ideal for revealing cellular components that interact with clathrin adaptors. We performed a mutagenic screen to identify alleles that are lethal in 4Δ+ENTH cells using a colony‐sectoring reporter assay. After isolating candidate synthetic lethal genes by complementation, we confirmed that mutations in VPS4 led to inviability of a 4Δ+ENTH strain. Vps4 mediates the final step of endosomal sorting complex required for transport (ESCRT)‐dependent trafficking, and we found that multiple ESCRTs are also essential in 4Δ+ENTH cells, including Snf7, Snf8 and Vps36. Deletion of VPS4 from an end3Δ strain, another CME mutant, similarly resulted in inviability, and upregulation of a clathrin‐independent endocytosis pathway rescued 4Δ+ENTH vps4Δ cells. Loss of Vps4 from an otherwise wild‐type background caused multiple cargoes to accumulate at the PM because of an increase in Rcy1‐dependent recycling of internalized protein to the cell surface. Additionally, vps4Δ rcy1Δ mutants exhibited deleterious growth phenotypes. Together, our findings reveal previously unappreciated effects of disrupted ESCRT‐dependent trafficking on endocytic recycling and the PM.  相似文献   

12.
Circuit formation in the brain requires neurite outgrowth throughout development to establish synaptic contacts with target cells. Active endocytosis of several adhesion molecules facilitates the dynamic exchange of these molecules at the surface and promotes neurite outgrowth in developing neurons. The endocytosis of N‐cadherin, a calcium‐dependent adhesion molecule, has been implicated in the regulation of neurite outgrowth, but the mechanism remains unclear. Here, we identified that a fraction of N‐cadherin internalizes through clathrin‐mediated endocytosis (CME). Two tyrosine‐based motifs in the cytoplasmic domain of N‐cadherin recognized by the μ2 subunit of the AP‐2 adaptor complex are responsible for CME of N‐cadherin. Moreover, β‐catenin, a core component of the N‐cadherin adhesion complex, inhibits N‐cadherin endocytosis by masking the 2 tyrosine‐based motifs. Removal of β‐catenin facilitates μ2 binding to N‐cadherin, thereby increasing clathrin‐mediated N‐cadherin endocytosis and neurite outgrowth without affecting the steady‐state level of surface N‐cadherin. These results identify and characterize the mechanism controlling N‐cadherin endocytosis through β‐catenin‐regulated μ2 binding to modulate neurite outgrowth.   相似文献   

13.
Clathrin mediated endocytosis (CME) has been extensively studied in living cells by quantitative total internal reflection fluorescence microscopy (TIRFM). Fluorescent protein fusions to subunits of the major coat proteins, clathrin light chains or the heterotetrameric adaptor protein (AP2) complexes, have been used as fiduciary markers of clathrin coated pits (CCPs). However, the functionality of these fusion proteins has not been rigorously compared. Here, we generated stable cells lines overexpressing mRuby‐CLCa and/or μ2‐eGFP, σ2‐eGFP, two markers currently in use, or a novel marker generated by inserting eGFP into the unstructured hinge region of the α subunit (α‐eGFP). Using biochemical and TIRFM‐based assays, we compared the functionality of the AP2 markers. All of the eGFP‐tagged subunits were efficiently incorporated into AP2 and displayed greater accuracy in image‐based CCP analyses than mRuby‐CLCa. However, overexpression of either μ2‐eGFP or σ2‐eGFP impaired transferrin receptor uptake. In addition, μ2‐eGFP reduced the rates of CCP initiation and σ2‐eGFP perturbed AP2 incorporation into CCPs and CCP maturation. In contrast, CME and CCP dynamics were unperturbed in cells overexpressing α‐eGFP. Moreover, α‐eGFP was a more sensitive and accurate marker of CCP dynamics than mRuby‐CLCa. Thus, our work establishes α‐eGFP as a robust, fully functional marker for CME.  相似文献   

14.
How clathrin‐mediated endocytosis (CME) retrieves vesicle proteins into newly formed synaptic vesicles (SVs) remains a major puzzle. Besides its roles in stimulating clathrin‐coated vesicle formation and regulating SV size, the clathrin assembly protein AP180 has been identified as a key player in retrieving SV proteins. The mechanisms by which AP180 recruits SV proteins are not fully understood. Here, we show that following acute inactivation of AP180 in Drosophila, SV recycling is severely impaired at the larval neuromuscular synapse based on analyses of FM 1‐43 uptake and synaptic ultrastructure. More dramatically, AP180 activity is important to maintain the integrity of SV protein complexes at the plasma membrane during endocytosis. These observations suggest that AP180 normally clusters SV proteins together during recycling. Consistent with this notion, SV protein composition and distribution are altered in AP180 mutant flies. Finally, AP180 co‐immunoprecipitates with SV proteins, including the vesicular glutamate transporter and neuronal synaptobrevin. These results reveal a new mode by which AP180 couples protein retrieval to CME of SVs. AP180 is also genetically linked to Alzheimer's disease. Hence, the findings of this study may provide new mechanistic insight into the role of AP180 dysfunction in Alzheimer's disease.   相似文献   

15.
Flotillins were proposed to mediate clathrin‐independent endocytosis, and recently, flotillin‐1 was implicated in the protein kinase C (PKC)‐triggered endocytosis of the dopamine transporter (DAT). Since endocytosis of DAT was previously shown to be clathrin‐mediated, we re‐examined the role of clathrin coat proteins and flotillin in DAT endocytosis using DAT tagged with the hemagglutinin epitope (HA) in the extracellular loop and a quantitative HA antibody uptake assay. Depletion of flotillin‐1, flotillin‐2 or both flotillins together by small interfering RNAs (siRNAs) did not inhibit PKC‐dependent internalization and degradation of HA‐DAT. In contrast, siRNAs to clathrin heavy chain and μ2 subunit of clathrin adaptor complex AP‐2 as well as a dynamin inhibitor Dyngo‐4A significantly decreased PKC‐dependent endocytosis of HA‐DAT. Similarly, endocytosis and degradation of DAT that is not epitope‐tagged were highly sensitive to the clathrin siRNAs and dynamin inhibition but were not affected by flotillin knockdown. Very little co‐localization of DAT with flotillins was observed in cells ectopically expressing DAT and in cultured mouse dopaminergic neurons. Depletion of flotillins increased diffusion rates of HA‐DAT in the plasma membrane, suggesting that flotillin‐organized microdomains may regulate the lateral mobility of DAT. We propose that clathrin‐mediated endocytosis is the major pathway of PKC‐dependent internalization of DAT, and that flotillins may modulate functional association of DAT with plasma membrane rafts rather than mediate DAT endocytosis .  相似文献   

16.
Clostridium botulinum C2 toxin is an ADP‐ribosyltransferase, causing depolymerization of the actin cytoskeleton in eukaryotic cells. The C2 toxin is a binary toxin consisting of the enzymatic subunit C2I and the binding subunit C2II. Proteolytical activation of the binding subunit triggers the formation of heptameric structures (C2IIa), which bind to cellular receptors. C2I is able to bind to C2IIa oligomers, and it has been suggested that the whole complex is internalized by a raft‐dependent mechanism. Here we analysed by which mechanism C2 toxin is endocytosed. In HeLa cells expressing a dominant‐negative dynamin mutant, cytotoxicity and C2 toxin uptake were blocked. Furthermore, siRNA‐mediated knockdown of flotillins or inhibition of Arf6 function, proteins suggested to be involved in dynamin‐independent endocytosis, did not affect C2 toxicity. Knockdown of caveolin did not inhibit endocytosis of C2 toxin, whereas inhibition of clathrin function reduced the uptake of C2 toxin and delayed the cytotoxic effect. Finally, we found evidence for a Rho‐mediated uptake of C2 toxin. In conclusion, C2 toxin is endocytosed by dynamin‐dependent mechanisms and we provide evidence for involvement of clathrin and Rho.  相似文献   

17.
Precise and efficient endocytosis is essential for vesicle recycling during a sustained neurotransmission. The regulation of endocytosis has been extensively studied, but inhibitors have rarely been found. Here, we show that synaptotagmin‐11 (Syt11), a non‐Ca2+‐binding Syt implicated in schizophrenia and Parkinson's disease, inhibits clathrin‐mediated endocytosis (CME) and bulk endocytosis in dorsal root ganglion neurons. The frequency of both types of endocytic event increases in Syt11 knockdown neurons, while the sizes of endocytosed vesicles and the kinetics of individual bulk endocytotic events remain unaffected. Specifically, clathrin‐coated pits and bulk endocytosis‐like structures increase on the plasma membrane in Syt11‐knockdown neurons. Structural–functional analysis reveals distinct domain requirements for Syt11 function in CME and bulk endocytosis. Importantly, Syt11 also inhibits endocytosis in hippocampal neurons, implying a general role of Syt11 in neurons. Taken together, we propose that Syt11 functions to ensure precision in vesicle retrieval, mainly by limiting the sites of membrane invagination at the early stage of endocytosis.  相似文献   

18.
Dynamin (Dyn) is a multidomain and multifunctional GTPase best known for its essential role in clathrin‐mediated endocytosis (CME). Dyn2 mutations have been linked to two human diseases, centronuclear myopathy (CNM) and Charcot‐Marie‐Tooth (CMT) disease. Paradoxically, although Dyn2 is ubiquitously expressed and essential for embryonic development, the disease‐associated Dyn2 mutants are autosomal dominant, but result in slowly progressing and tissue‐specific diseases. Thus, although the cellular defects that cause disease remain unclear, they are expected to be mild. To gain new insight into potential pathogenic mechanisms, we utilized mouse Dyn2 conditional knockout cells combined with retroviral‐mediated reconstitution to mimic both heterozygous and homozygous states and characterized cellular phenotypes using quantitative assays for several membrane trafficking events. Surprisingly, none of the four mutants studied exhibited a defect in CME, but all were impaired in their ability to support p75/neurotrophin receptor export from the Golgi, the raft‐dependent endocytosis of cholera toxin and the clathrin‐independent endocytosis of epidermal growth factor receptor (EGFR). While it will be important to study these mutants in disease‐relevant muscle and neuronal cells, given the importance of neurotrophic factors and lipid rafts in muscle physiology, we speculate that these common cellular defects might contribute to the tissue‐specific diseases caused by a ubiquitously expressed protein.  相似文献   

19.
Signaling by epidermal growth factor receptor (EGFR) is controlled by endocytosis. However, mechanisms of EGFR endocytosis remain poorly understood. Here, we found that the EGFR mutant lacking known ubiquitylation, acetylation and clathrin adaptor AP‐2‐binding sites (21KRΔAP2) was internalized at relatively high rates via the clathrin‐dependent pathway in human duodenal adenocarcinoma HuTu‐80 cells. RNA interference analysis revealed that this residual internalization is strongly inhibited by depletion of Grb2 and the E2 ubiquitin‐conjugating enzyme UbcH5b/c, and partially affected by depletion of the E3 ubiquitin ligase Cbl and ubiquitin‐binding adaptors, indicating that an ubiquitylation process is involved. Several new ubiquitin conjugation sites were identified by mass spectrometry in the 21KRΔAP2 mutant, suggesting that cryptic ubiquitylation may mediate endocytosis of this mutant. Total internal reflection fluorescence microscopy imaging of HuTu‐80 cells transfected with labeled ubiquitin adaptor epsin1 demonstrated that the ubiquitylation‐deficient EGFR mutant was endocytosed through a limited population of epsin‐enriched clathrin‐coated pits (CCPs), although with a prolonged CCP lifetime. Native EGFR was recruited with the same efficiency into CCPs containing either AP‐2 or epsin1 that were tagged with fluorescent proteins by genome editing of MDA‐MD‐231 cells. We propose that two redundant mechanisms, ubiquitylation and interaction with AP‐2, contribute to EGFR endocytosis via CCPs in a stochastic fashion.   相似文献   

20.
Little is currently known about the infectious entry process of human enterovirus 71 (HEV71) into host cells, which may represent potential anti-viral targeting sites. In this study a targeted small-interfering RNA (siRNA) screening platform assay was established and validated to identify and profile key cellular genes involved in processes of endocytosis, cytoskeletal dynamics, and endosomal trafficking essential for HEV71 infection. Screen evaluation was conducted via the expression of well characterized dominant-negative mutants, bioimaging studies (double-labeled immunofluorescence assays, transmission electron microscopy analysis), secondary siRNA-based dosage dependence studies, and drug inhibition assays. The infectious entry of HEV71 into rhabdomyosarcoma cells was shown to be significantly inhibited by siRNAs targeting genes associated with clathrin-mediated endocytosis (CME) that include AP2A1, ARRB1, CLTC, CLTCL1, SYNJ1, ARPC5, PAK1, ROCK1, and WASF1. The functional role of CME was verified by the observation of strong co-localization between HEV71 particles and clathrin as well as dose-dependent inhibition of HEV71 infection upon siRNA knockdown of CME-associated genes. HEV71 entry by CME was further confirmed via inhibition by dominant-negative EPS15 mutants and treatment of CME drug inhibitors, with more than 80% inhibition observed at 20 μm chlorpromazine. Furthermore, HEV71 infection was shown to be sensitive to the disruption of human genes in regulating early to late endosomal trafficking as well as endosomal acidic pH. The identification of clathrin-mediated endocytosis as the entry pathway for HEV71 infection of susceptible host cells contributes to a better understanding of HEV71 pathogenesis and enables future development of anti-viral strategies against HEV71 infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号