首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We characterized the tyrosine phosphorylation sites of free pp60c-src and of pp60c-src associated with the polyomavirus middle tumor antigen (mT) in transformed avian and rodent cells. The sites of tyrosine phosphorylation in the two populations of pp60c-src were different, both in vitro and in vivo. Free pp60c-src was phosphorylated in vitro at a single site, tyrosine 416. pp60c-src associated with mT was phosphorylated in vitro on tyrosine 416 and on one or more additional tyrosine residues located in the amino-terminal region of the molecule. Free pp60c-src in polyomavirus mT-transformed cells was phosphorylated in vivo on tyrosine 527. In contrast, pp60c-src associated with mT was phosphorylated in vivo on tyrosine 416 and not detectably on tyrosine 527. Thus, the in vivo phosphorylation sites of pp60c-src associated with mT in transformed cells are identical to those of pp60v-src, the Rous sarcoma virus transforming protein. The results suggest that altered phosphorylation of pp60c-src associated with mT may play a role in the enhancement of the pp60c-src protein kinase activity and in cell transformation by polyomavirus.  相似文献   

2.
The transforming protein of polyomavirus, middle T (mT), forms a complex with two cellular enzymes: the protein tyrosine kinase pp60c-src and a phosphatidylinositol (PtdIns) 3-kinase. A mutant virus, Py1178T, encodes an mT protein which associates with and activates pp60c-src to the same extent as the wild type but fails to associate with PtdIns 3-kinase. To investigate relationships between activation of pp60c-src, association of PtdIns 3-kinase, and cellular levels of the second messenger inositol 1,4,5-trisphosphate (InsP3), we examined the effects of wild-type and mutant mT proteins on inositol metabolism in rat and mouse fibroblasts. Expression of either wild-type or 1178T mT caused a 300 to 500% increase in the InsP3 level. Cells transformed by Rous sarcoma virus also showed similar increases in InsP3 levels. Mutant mT proteins which failed to activate pp60c-src (NG59 and 1387T) had no effect on InsP3 levels. Pulse-chase experiments with [3H]inositol showed that the turnover of phosphoinositides was increased in cells transformed by either wild-type polyomavirus or Py1178T as compared with the normal parent cell line. The turnover of inositol phosphates was unchanged upon transformation. These data indicate that cells expressing either wild-type or mutant 1178T mT or pp60v-src exhibit elevated levels of InsP3 because of activation of phospholipase C. This activation appears to depend, directly or indirectly, upon activation of pp60src protein kinase activity. Activation of pp60c-src and elevation of InsP3 content are not sufficient for full transformation. Full transformation also requires the association of mT-pp60c-src complexes with PtdIns 3-kinase.  相似文献   

3.
Overexpression of the full-length GTPase-activating protein (GAP) has recently been shown to suppress c-ras transformation of NIH 3T3 cells but not v-ras transformation (36). Here, we show that focus formation induced by c-src was inhibited by approximately 80% when cotransfected with a plasmid encoding full-length GAP. In a similar assay, focus formation by the activated c-src (Tyr-527 to Phe) gene was inhibited by 33%. Cotransfection of the GAP C terminus coding sequences (which encode the GTPase-accelerating domain) with c-src or c-src527F inhibited transformation more efficiently than did the full-length GAP, while the GAP N terminus coding sequences had no effect on src transformation. When cells transformed by c-ras, c-src, c-src527F, or v-src were transfected with GAP or the GAP C terminus sequence in the presence of a selectable marker, 40 to 85% of the resistant colonies were found to be morphologically revertant. The GAP C terminus induced reversion of each src-transformed cell line more efficiently than the full-length GAP, but this was not the case for reversion of c-ras transformation. Biochemical analysis of v-src revertant subclones showed that the reversion correlated with overexpression of full-length GAP or the GAP C terminus. There was no decrease in the level of pp60src expression or the level of protein-tyrosine phosphorylation in vivo. We conclude that GAP can suppress transformation by src via inhibition of endogenous ras activity, without inhibiting in vivo tyrosine phosphorylation of cellular proteins induced by pp60src, and that src may negatively regulate GAP's inhibitory action on endogenous ras.  相似文献   

4.
The high amount of pp60c-src in platelets has led to speculation that this kinase is responsible for tyrosine-specific phosphorylation of cellular proteins during platelet activation by different agonists, and is, therefore, implicated in signal transduction of these cells. Unlike pp60v-src, the association of which with the cytoskeleton appears to be a prerequisite for transformation, pp60c-src is detergent-soluble in fibroblasts overexpressing the c-src gene, and its role in normal cellular function remains elusive. To gain a better understanding of the function of pp60c-src we have investigated the subcellular distribution of pp60c-src and its relationship to the cytoskeleton during platelet activation. Quantitative immunoblotting and immunoprecipitation have revealed that pp60c-src is detergent-soluble in resting platelets, while 40% of total platelet pp60c-src becomes associated with the cytoskeletal fraction upon platelet activation. We have also shown that a small pool of pp60c-src is associated with the membrane skeletal fraction which remains unchanged during the activation process. The interaction of pp60c-src with cytoskeletal proteins strongly correlates with aggregation and is mediated by GPIIb/IIIa receptor-fibrinogen binding. We suggest that the translocation of pp60c-src to the cytoskeleton and its association with cytoskeletal proteins may regulate tyrosine phosphorylation in platelets.  相似文献   

5.
Altered phosphorylation and activation of pp60c-src during fibroblast mitosis   总被引:39,自引:0,他引:39  
At least half the pp60c-src in NIH 3T3-derived c-src overexpresser cells in modified by novel threonine and, possibly, serine phosphorylation within its amino 16 kd region during mitosis. At the same time, the tryptic phosphopeptide containing Ser 17, the site of cyclic AMP-dependent phosphorylation, is either modified or dephosphorylated. While the amount of pp60c-src is not significantly altered, the in vitro-specific kinase activity of modified pp60c-src is enhanced 4- to 7-fold. Modified pp60c-src has the same tyrosine-containing tryptic phosphopeptides as pp60c-src from unsynchronized cells, indicating that activation is independent of Tyr 416/Tyr 527 phosphorylation. Electrophoretic mobility retardations indicated that endogenous pp60c-src and pp60v-src are similarly modified during mitosis. The modifications and enhanced activity disappear near the time of cell division. These results suggest that pp60c-src is regulated by and, in turn, may regulate mitosis-specific events in fibroblasts.  相似文献   

6.
The transforming protein of polyoma virus, middle T antigen, associates with the protein tyrosine kinase pp60c-src, and analysis of mutants of middle T suggests that this complex plays an important role in transformation by polyoma. It has recently been reported that pp60c-src from polyoma virus-transformed cells has enhanced tyrosine kinase activity in vitro. The data presented here confirm these findings and show that the enhanced kinase activity of pp60c-src is due to an increase in the Vmax of the enzyme. Sucrose density gradient analysis demonstrates that only the form of pp60c-src which is bound to middle T antigen is activated. The difference in enzyme activity between pp60c-src from normal and middle T-transformed cells is more marked when the enzyme is prepared from lysates containing the phosphotyrosine protein phosphatase inhibitor, sodium orthovanadate. pp60c-src from middle T transformed cells is unaffected, but pp60c-src from normal cells has reduced kinase activity if dephosphorylation is prevented. The kinase activity of pp60c-src thus appears to be regulated by its degree of phosphorylation at tyrosine, and data are presented which support this hypothesis. pp60c-src is the first example of a protein tyrosine kinase whose activity is inhibited by phosphorylation at tyrosine. Middle T antigen may increase the kinase activity of pp60c-src by preventing phosphorylation at this regulatory site.  相似文献   

7.
The tyrosine protein kinase activities of pp60c-src and pp60v-src were compared. The activities were qualitatively similar in vitro when the src proteins were bound in an immune complex with monoclonal antibody; both proteins utilized either ATP or GTP as phosphate donors, preferred Mn2+ to Mg2+, and had similar exogenous substrate specificities. The specific activity of pp60c-src was about 10-fold lower than that of pp60v-src for exogenous substrate phosphorylation but was only 1.1- to 2-fold lower than that of pp60v-src for autophosphorylation. Six glycolytic enzymes, including three not previously identified as substrates for pp60src phosphorylation, were phosphorylated by both pp60c-src and pp60v-src. Levels of pp60c-src fourfold higher than the amount of pp60v-src in src-plasmid-transformed cells did not detectably alter the level of phosphotyrosine in cellular proteins, but increasing the expression of pp60c-src another twofold (which induces cells to form foci in monolayer culture (P.J. Johnson, P.M. Coussens, A.V. Danko, and D. Shalloway, Mol. Cell. Biol. 5:1073-1083, 1985) resulted in a threefold increase in the level of cellular protein phosphotyrosine. Immunoprecipitation and analysis of the alkali-stable phosphoproteins by two-dimensional electrophoresis showed that, in contrast to pp60v-src-transformed cells, pp36 and enolase are only weakly phosphorylated in these high-level pp60c-src overexpresser cells. Even allowing for the in vitro differences in specific activities of phosphorylation, these results suggest that the pp60c-src tyrosine protein phosphorylating activity may be restricted relative to that of pp60v-src by additional in vivo mechanisms.  相似文献   

8.
Reconstitution of the polyoma virus middle T antigen (mT)-pp60-src complex and phosphatidylinositol 3-kinase (PtdIns 3-kinase) has been accomplished in vitro with immunopurified baculovirus-expressed mT-pp60c-src and PtdIns 3-kinase purified from rat liver. Both the 110- and 85-kDa subunits of the PtdIns 3-kinase associated with the mT-pp60c-src complex. The association of PtdIns 3-kinase with the mT-pp60c-src complex was dependent on the protein-tyrosine kinase activity of pp60c-src as a kinase-inactive mutant (pp60(295c-src)) still complexed with mT, but the mT-pp60(295c-src)) complex was unable to bind PtdIns 3-kinase. The mT-pp60c-src complex phosphorylated both subunits of PtdIns 3-kinase on tyrosine residues. The immunopurified mT-pp60c-src complex also associated with PtdIns 3-kinase activity from whole cell lysates, and this association was dependent upon the protein-tyrosine kinase activity of pp60c-src. Comparison of 35S-labeled proteins from whole cell lysates which associated with immunopurified mT-pp60c-src and mT-pp60(295c-src) revealed proteins of 110 and 85 kDa as the major peptides dependent on protein-tyrosine kinase activity for association with the complex. In addition, a synthetic phosphopeptide (13-mer) containing sequences conserved between the major tyrosine phosphorylation site of murine polyoma virus mT, hamster polyoma virus mT, and the insulin receptor substrate (IRS-1) specifically blocked the association of the 85- and 110-kDa polypeptides with the mT-pp60c-src complex. The ability to block the association was dependent on the tyrosine phosphorylation of the peptide. Association of PtdIns 3-kinase activity was blocked concurrently. This is the first demonstration that the 110-kDa subunit of PtdIns 3-kinase can associate with mT-pp60c-src. This association in vitro is a step toward understanding protein-protein interactions important in the signal transduction pathway of oncogenic proteins.  相似文献   

9.
The polyoma middle tumor antigen (MTAg) associates with the src proto-oncogene product pp60c-src in infected or transformed rodent cells. The tyrosine protein kinase activity of pp60c-src, as measured by in vitro phosphorylation of pp60c-src itself or the exogenous substrate enolase, was increased 10- to 20-fold in cells transformed or infected with transformation-competent polyoma virus compared with controls. pp60c-src associated with MTAg and precipitated with polyoma antitumor serum had a novel site(s) of in vitro tyrosine phosphorylation within its amino-terminal domain. These observations suggest that association of MTAg with pp60c-src alters the accessibility of pp60c-src tyrosine residues for phosphorylation in vitro and increases pp60c-src protein kinase activity. Several transformation-defective mutants of MTAg did not cause amino-terminal tyrosine phosphorylation of pp60c-src in vitro or enhance its protein kinase activity, suggesting that these properties correlate with the transforming ability of MTAg. However, one transformation-defective MTAg mutant, dl1015, did cause amino-terminal tyrosine phosphorylation of pp60c-src in vitro and did enhance its protein kinase activity. This suggests that properties of MTAg, in addition to modifying the structure and function of pp60c-src, may be important for transformation.  相似文献   

10.
The middle T antigen of polyomavirus transformed primary chicken embryo fibroblasts when expressed from a replication-competent avian retrovirus. This in vitro-constructed retrovirus, SRMT1, is a variant of Rous sarcoma virus that encodes the middle T antigen in place of v-src. Inoculation of SRMT1 into 1-week-old chickens rapidly induced hemangiomas and hemangiosarcomas. As shown with mammalian cells infected with polyomavirus, polyomavirus middle T antigen appears to be associated with p60c-src in chicken cells infected with SRMT1. When lysates of SRMT1-infected cells immunoprecipitated with either a monoclonal antibody against p60src or anti-T serum were assayed in an in vitro kinase reaction, the middle T antigen was heavily phosphorylated. To see whether an excess of p60c-src could alter the extent of phosphorylation of the middle T protein or the process of cell transformation by middle T, cells were doubly infected with SRMT1 and NY501, a virus which overexpresses p60c-src. Doubly infected chicken embryo fibroblasts transformed with the same kinetics and were morphologically indistinguishable from chicken embryo fibroblasts infected with SRMT1 alone. Phosphorylation of the middle T antigen was elevated two- to fivefold relative to cells infected only with SRMT1.  相似文献   

11.
Phosphoinositide kinase activity and transformation   总被引:1,自引:0,他引:1  
We have used the DNA tumor virus polyoma as a model system to examine whether the phosphatidylinositol (PI) turnover pathway is a critical target for transforming gene products. Polyoma-infected cells show elevated levels of polyphosphoinositides and polyphosphoinositols, and a PI kinase activity is associated with middle T antigen, a transforming gene product of polyoma virus. In anti-T immunoprecipitates from polyoma-infected or -transformed cells, comparisons of wild-type and polyoma mutants defective for transformation show a strong correlation between middle T-associated PI kinase activity and transforming ability. Middle T has previously been found to associate at the plasma membrane with pp60 c-src and to activate it as a tyrosine kinase. c-src itself does not appear to phosphorylate PI; however, the middle T/pp60 c-src tyrosine kinase activity may be important for activation of PI kinase. Ammonium orthovanadate, a tyrosine phosphatase inhibitor, elevates the middle T/pp60 c-src-associated PI kinase activity. We propose that middle T/pp60 c-src activates a PI kinase and modulates PI turnover in vivo by tyrosine phosphorylation.  相似文献   

12.
The src gene of Rous sarcoma virus (v-src) and its cellular homolog, the c-src gene, share extensive sequence homology. The most notable differences between these genes reside in the region encoding the carboxy terminus of the src proteins. We constructed mutations within the 3' end of the v-src gene to determine the significance of this region to the transforming potential of the v-src protein, pp60v-src. The mutants CHdl300 and CHis1511 contain mutations that alter the last 23 amino acids of pp60v-src, whereas the mutant CHis1545-C contains a linker insertion that alters the last 11 amino acids of pp60v-src, and the mutant CHis1545-H contains a linker insertion that results in a 9-amino-acid insertion at position 415. Plasmids bearing each of these mutations were unable to transform chicken cells when introduced into these cells by DNA transfection. In addition, the structurally altered src proteins encoded by the mutants had much-reduced levels of tyrosine protein kinase activity in vivo, as measured by autophosphorylation and phosphorylation of the 34,000-Mr cellular protein, and in vitro, as determined by measuring the level of pp60src autophosphorylation. These data indicate that the carboxy-terminal amino acid sequences play an important role in maintaining the structure of the catalytic domain of pp60v-src. In contrast, the transfection of chicken cells with plasmid DNA containing a chimeric v-c-src gene resulted in morphological cell transformation and the synthesis of an enzymatically active hybrid protein. Therefore, the carboxy-terminal sequence alterations observed in the c-src protein do not alone serve to alter the functional activity of a hybrid v-c-src protein appreciably.  相似文献   

13.
The phosphorylation of proteins on tyrosine in vivo and in vitro was examined in 3T3 cells stimulated by platelet-derived growth factor (PDGF) and transformed by polyoma middle T antigen (MTAg) by using an antibody directed against phosphotyrosine (P-tyr). Two common events were observed upon PDGF stimulation or MTAg transformation of cells: the appearance in the immunoprecipitates of an 85 kd phosphoprotein, and increased phosphatidylinositol (PI) kinase activity. In PDGF-stimulated cells, the 85 kd phosphoprotein and PI kinase activity appeared rapidly, within 1 min of growth factor addition. The PI kinase activity and 85 kd phosphorylation were also increased in anti-P-tyr immunoprecipitates from cells transformed by v-fms and v-sis, but not by SV40 T antigen. The presence of the tyrosine-phosphorylated 85 kd protein correlated with PI kinase activity during several purification steps. These results suggest that the 85 kd phosphoprotein, a putative PI kinase, is a substrate for both the PDGF receptor and MTAg/pp60c-src tyrosine kinase activities.  相似文献   

14.
Tyrosine phosphorylation and protein tyrosine kinase (PTK) activity in the growth cone membrane-associated glycoprotein (GCGP) fraction of 1-day-old rat brain were examined. Using immunoblotting and immunoprecipitation techniques, pp60c-src was identified as one of the major PTKs associated with GCGPs. Furthermore, only GCGP-associated src that was also tyrosine phosphorylated was active. Immunoprecipitation experiments using various src antibodies revealed that pp60c-src contributed partially to the PTK activity detected in GCGPs, and that it is associated with several proteins of Mr 140 K, 120 K, 85 K and 50 K. This association of src protein with GCGPs was specific, and another src family member p59fyn, which is also abundant in the brain, did not exhibit such an association. In addition to pp60c-src, the GCGP fraction contained several major phosphotyrosine-containing proteins of Mr 140 K, and a 97/90 K doublet that corresponded to the beta subunits of IGF-I/insulin receptors. These studies show that pp60c-src associated with GCGPs is an active PTK that could be involved in neuronal growth and development, transmembrane signalling, and in recognition and/or adhesive events.  相似文献   

15.
We have previously found that Rous sarcoma virus variants in which the viral src (v-src) gene is replaced by the cellular src (c-src) gene have no transforming activity. In this study, we analyzed the basis for the inability of the p60c-src overproduced by these variants to transform cells. Phosphorylations of tyrosine residues in total cell protein or in cellular 34K protein are known to be markedly enhanced upon infection with wild-type Rous sarcoma virus. We found that these tyrosine phosphorylations were only slightly increased in the c-src-containing virus-infected cells, whereas both levels were significantly increased by infection with wild-type Rous sarcoma virus, or transforming mutant viruses which are derived from c-src-containing viruses by spontaneous mutation. Phosphorylation at tyrosine 416 of p60 itself was also extremely low in overproduced p60c-src and high in p60s of transforming mutant viruses. In immunoprecipitates with monoclonal antibody, the overproduced p60c-src had much lower casein tyrosine kinase activity than did p60v-src. We previously showed that p60 myristylation and plasma membrane localization may be required for cell transformation. p60c-src was similar to transforming p60s in these properties. These results strongly suggest that the low level of tyrosine phosphorylation by overproduced p60c-src accounts for its inability to transform cells.  相似文献   

16.
R A Hipskind  S G Clarkson 《Cell》1983,34(3):881-890
We determined the nucleotide sequences of all coding regions and a significant part of the flanking regions of the chicken c-src gene, which is a cellular homolog of the v-src gene of Rous sarcoma virus. The c-src gene consists of 12 exons; the boundaries of the exons were determined by assuming that the amino acid sequence of its product, pp60c-src, is basically the same as that of pp60v-src. The deduced amino acid sequence of pp60c-src was very similar to that of pp60v-src, but the last 19 carboxy-terminal amino acids of pp60c-src were replaced by a new set of 12 amino acids of pp60v-src. The sequence encoding the carboxy-terminal sequence of pp60v-src was found 900 bp downstream from the termination codon of the c-src gene. We suggest that the c-src sequence was captured by a virus through recombination at both sides of the c-src gene, and that the recombinations occurred at the level of proviral DNA.  相似文献   

17.
T E Kmiecik  D Shalloway 《Cell》1987,49(1):65-73
pp60c-src is phosphorylated in vivo at tyrosine 527, a residue not present in pp60v-src (its transforming homolog), and not at tyrosine 416, its site of in vitro autophosphorylation. To test the hypothesis that tyrosine phosphorylation regulates pp60c-src biological activity, we constructed and studied pp60c-src mutants in which Tyr 527 and Tyr 416 were separately or coordinately altered to phenylalanine. Tyr----Phe 527 mutation strongly activated pp60c-src transforming and kinase activities, whereas the additional introduction of a Tyr----Phe 416 mutation suppressed these activities. Tyr----Phe 416 mutation of normal pp60c-src eliminated its partial transforming activity, which suggests that transient or otherwise restricted phosphorylation of Tyr 416 is important for pp60c-src function even though stable phosphorylation is not observed in vivo.  相似文献   

18.
R C Parker  H E Varmus  J M Bishop 《Cell》1984,37(1):131-139
The retroviral oncogene v-src arose by transduction of the cellular gene c-src. The similarity between these genes raised the possibility that c-src might be able to elicit neoplastic growth. We explored this by constructing a chimeric plasmid that allows the expression of chicken c-src. A rat cell line containing ten times the normal intracellular level of pp60c -src was isolated after transfecting rat-2 cells with the chimeric DNA. These cells produce the protein encoded by c-src ( pp60c -src) in quantities at least three times greater than required to achieve transformation by the product of v-src ( pp60v -src). The cells remain phenotypically normal, contain actin cables, and do not grow in soft agar. However, transfection of the cell line containing elevated cells of pp60c -src or Rat-2 cells with a molecular clone of v-src produces cells that exhibit properties of biologically transformed cells: round morphology, disrupted actin cables, and ability to grow in soft agar.  相似文献   

19.
A protein tyrosine kinase involved in regulation of pp60c-src function   总被引:22,自引:0,他引:22  
We recently identified a novel protein tyrosine kinase that specifically phosphorylates truncated pp60c-src (Mr = 53,000) at a tyrosine residue(s) distinct from its autophosphorylation site. In this study, we examined whether this enzyme phosphorylates intact pp60c-src (Mr = 60,000) and determined its phosphorylation site. Non-neuronal and neuronal forms of intact pp60c-src were separately purified from the membrane fraction of neonatal rat brain by sequential column chromatographies. The novel kinase phosphorylated tyrosine residues of both forms of intact pp60c-src. The phosphorylation occurred in parallel with autophosphorylation of pp60c-src, and in both forms the final stoichiometry estimated was quite similar to that of autophosphorylation (about 5%). The enzyme also phosphorylated pp60c-src in which the kinase activity had been destroyed by an ATP analogue, p-fluorosulfonylbenzoyl 5'-adenosine. The phosphorylation site of the non-neuronal form was analyzed by sequential peptide mapping with tosylphenylalanyl chloromethyl ketone-treated trypsin and alpha-chymotrypsin. Tryptic digestion of the phosphorylated pp60c-src yielded a unique phosphopeptide that cross-reacted with an antibody specific for the carboxyl-terminal sequence of chicken pp60c-src. Digestion of the phosphopeptide with chymotrypsin yielded a product that comigrated with a synthetic phosphopeptide corresponding to the carboxyl-terminal 15 residues of chicken pp60c-src. These results clearly indicate that the carboxyl-terminal sequence of rat pp60c-src is identical to that of chicken pp60c-src, and a tyrosine residue corresponding to chicken Tyr527 is the phosphorylation site. This phosphorylation resulted in a decrease in the enolase phosphorylating activity of pp60c-src. Kinetic experiments indicated that this decrease in activity was due to a decrease in the Vmax value of pp60c-src. These findings support our previous proposal that the novel tyrosine kinase acts as a specific regulator of pp60c-src in cells.  相似文献   

20.
We introduced two mutations into the carboxy-terminal regulatory region of chicken pp60c-src. One, F527, replaces tyrosine 527 with phenylalanine. The other, Am517, produces a truncated pp60c-src protein lacking the 17 carboxy-terminal amino acids. Both mutant proteins were phosphorylated at tyrosine 416 in vivo. The specific activity of the Am517 mutant protein kinase was similar to that of wild-type pp60c-src whereas that of the F527 mutant was 5- to 10-fold higher. Both mutant c-src genes induced focus formation on NIH 3T3 cells, but the foci appeared at lower frequency, and were smaller than foci induced by polyoma middle tumor antigen (mT). The wild-type or F527 pp60c-src formed a complex with mT, whereas the Am517 pp60c-src did not. The results suggest that one, inability to phosphorylate tyrosine 527 increases pp60c-src protein kinase activity and transforming ability; two, transformation by mT involves other events besides lack of phosphorylation at tyrosine 527 of pp60c-src; three, activation of the pp60c-src protein kinase may not be required for transformation by the Am517 mutant; and four, the carboxyl terminus of pp60c-src appears to be required for association with mT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号