首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Succinic acid production from wheat using a biorefining strategy   总被引:2,自引:0,他引:2  
The biosynthesis of succinic acid from wheat flour was investigated in a two-stage bio-process. In the first stage, wheat flour was converted into a generic microbial feedstock either by fungal fermentation alone or by combining fungal fermentation for enzyme and fungal bio-mass production with subsequent flour hydrolysis and fungal autolysis. In the second stage, the generic feedstock was converted into succinic acid by bacterial fermentation by Actinobacillus succinogenes. Direct fermentation of the generic feedstock produced by fungal fermentation alone resulted in a lower succinic acid production, probably due to the low glucose and nitrogen concentrations in the fungal broth filtrate. In the second feedstock production strategy, flour hydrolysis conducted by mixing fungal broth filtrate with wheat flour generated a glucose-rich stream, while the fungal bio-mass was subjected to autolysis for the production of a nutrient-rich stream. The possibility of replacing a commercial semi-defined medium by these two streams was investigated sequentially. A. succinogenes fermentation using only the wheat-derived feedstock resulted in a succinic acid concentration of almost 16 g l–1 with an overall yield of 0.19 g succinic acid per g wheat flour. These results show that a wheat-based bio-refinery employing coupled fungal fermentation and subsequent flour hydrolysis and fungal autolysis can lead to a bacterial feedstock for the efficient production of succinic acid.  相似文献   

2.
In this study, a novel generic feedstock production strategy based on solid-state fermentation (SSF) has been developed and applied to the fermentative production of succinic acid. Wheat was fractionated into bran, gluten and gluten-free flour by milling and gluten extraction processes. The bran, which would normally be a waste product of the wheat milling industry, was used to produce glucoamylase and protease enzymes via SSF using Aspergillus awamori and Aspergillus oryzae, respectively. The resulting solutions were separately utilised for the hydrolysis of gluten-free flour and gluten to generate a glucose-rich stream of over 140gl(-1) glucose and a nitrogen-rich stream of more than 3.5gl(-1) free amino nitrogen. A microbial feedstock consisting of these two streams contained all the essential nutrients required for succinic acid fermentations using Actinobacillus succinogenes. In a fermentation using only the combined hydrolysate streams, around 22gl(-1) succinic acid was produced. The addition of MgCO(3) into the wheat-derived medium improved the succinic acid production further to more than 64gl(-1). These results demonstrate the SSF-based strategy is a successful approach for the production of a generic feedstock from wheat, and that this feedstock can be efficiently utilised for succinic acid production.  相似文献   

3.
The feasibility of a generic fermentation feedstock produced from wheat flour has been confirmed in several fermentations of yeasts, bacterium, and filamentous fungus for the production of commodity chemicals. Saccharomyces cerevisiae was incubated for the observation of yeast growth and ethanol production, Pichia farinosa for glycerol production, Monascus purpureus for fungal growth and pigment production, and Lactobacillus bulgaricus for bacteria growth and lactic acid production. The results confirmed that the feedstock contained no inhibitory components to the strains tested. Similar or higher metabolite yields were obtained in comparison with other studies carried in commonly used media.  相似文献   

4.
A wheat-based continuous process for the production of a nutrient-complete feedstock for bioethanol production by yeast fermentation has been cost-optimized. This process could substitute for the current wheat dry milling process employed in industry for bioethanol production. Each major wheat component (bran, gluten, starch) is extracted and processed for different end-uses. The separate stages, liquefaction and saccharification, used currently in industry for starch hydrolysis have been integrated into a simplified continuous process by exploiting the complex enzymatic consortium produced by on-site fungal bioconversions. A process producing 120 m3 h-1 nutrient-complete feedstock for bioethanol production containing 250 g L-1 glucose and 0.85 g L-1 free amino nitrogen would result in a production cost of $0.126/kg glucose.  相似文献   

5.
Restructuring the traditional fermentation industry into viable biorefineries for the production of fuels, chemicals and plastics is essential in order to replace (petro)chemical processing. This work presents engineering aspects of Aspergillus awamori submerged fermentation for on-site production of an enzymatic consortium that contains glucoamylase, protease and phosphatase. The crude broth filtrate was used for the production of wheat flour hydrolysates. Improvements on traditional starch hydrolysis carried out in two stages (liquefaction and saccharification) were attempted through integration of unit operations and reduction of processing temperature and reaction duration. An initial increase of temperature to 68 degrees C and a subsequent decrease to 60 degrees C for the rest of the enzymatic hydrolysis resulted in a starch to glucose conversion yield of 94 and 92% when a wheat flour concentration and commercial starch concentration of 225 g L(-1) was used, respectively. The use of crude broth filtrates resulted in the simultaneous hydrolysis of wheat protein and phytic acid, as was indicated by the increase in free amino nitrogen and phosphorus concentration, respectively.  相似文献   

6.
Phanerochaete chrysosporium is a wood‐rot fungus that is capable of degrading lignin via its lignolytic system. In this study, an environmentally friendly fungal pretreatment process that produces less inhibitory substances than conventional methods was developed using P. chrysosporium and then evaluated by various analytical methods. To maximize the production of manganese peroxidase, which is the primary lignin‐degrading enzyme, culture medium was optimized using response surface methodologies including the Plackett–Burman design and the Box–Behnken design. Fermentation of 100 g of rice straw feedstock containing 35.7 g of glucan (mainly in the form of cellulose) by cultivation with P. chrysosporium for 15 days in the media optimized by response surface methodology was resulted in a yield of 29.0 g of glucan that had an enzymatic digestibility of 64.9% of the theoretical maximum glucose yield. In addition, scanning electronic microscopy, confocal laser scanning microscopy, and X‐ray diffractometry revealed significant microstructural changes, fungal growth, and a reduction of the crystallinity index in the pretreated rice straw, respectively. When the fungal‐pretreated rice straw was used as a substrate for ethanol production in simultaneous saccharification and fermentation (SSF) for 24 h, the ethanol concentration, production yield and the productivity were 9.49 g/L, 58.2% of the theoretical maximum, and 0.40 g/L/h, respectively. Based on these experimental data, if 100 g of rice straw are subjected to fungal pretreatment and SSF, 9.9 g of ethanol can be produced after 96 h, which is 62.7% of the theoretical maximum ethanol yield. Biotechnol. Bioeng. 2009; 104: 471–482 © 2009 Wiley Periodicals, Inc.  相似文献   

7.
Currently, piperazic acid is chemically synthesized using ecologically unfriendly processes. Microbial synthesis from glucose is an attractive alternative to chemical synthesis. In this study, we report the production of L-piperazic acid via microbial fermentation with the first engineered fungal strain of Aureobasidium melanogenum; this strain was constructed by chassis development, genetic element reconstitution and optimization, synthetic rewiring and constitutive genetic circuit reconstitution, to build a robust L-piperazic acid synthetic cascade. These genetic modifications enable A. melanogenum to directly convert glucose to L-piperazic acid without relying on the use of either chemically synthesized precursors or harsh conditions. This bio-based process overcomes the shortcomings of the conventional synthesis routes. The ultimately engineered strain is a very high-efficient cell factory that can excrete 1.12 ± 0.05 g l-1 of L-piperazic acid after a 120-h 10.0-l fed-batch fermentation; this is the highest titre of L-piperazic acid reported using a microbial cell factory.  相似文献   

8.
Fermentative production of butanol--the industrial perspective   总被引:1,自引:0,他引:1  
A sustainable bacterial fermentation route to produce biobutanol is poised for re-commercialization. Today, biobutanol can compete with synthetic butanol in the chemical market. Biobutanol is also a superior biofuel and, in longer term, can make an important contribution towards the demand for next generation biofuels. There is scope to improve the conventional fermentation process with solventogenic clostridia and drive down the production cost of 1-butanol by deploying recent advances in biotechnology and engineering. This review describes re-commercialization efforts and highlights developments in feedstock utilization, microbial strain development and fermentation process development, all of which significantly impact production costs.  相似文献   

9.
Propionic acid is presently mainly produced by chemical synthesis. For many applications, especially in feed and food industries, a fermentative production of propionic acid from cheap and renewable resources is of large interest. In this work, we investigated the use of a co-culture to convert household flour to propionic acid. Batch and fed-batch fermentations of hydrolyzed flour and a process of simultaneous saccharification and fermentation were examined and compared. Fed-batch culture with substrate limitation was found to be the most efficient process, reaching a propionic acid concentration of 30 g/L and a productivity of 0.33 g/L*h. This is the highest productivity so far achieved with free cells on media containing flour hydrolysate or glucose as carbon source. Batch culture and culture with controlled saccharification and fermentation delivered significantly lower propionic acid production (17–20 g/L) due to inhibition by the intermediate product lactate. It is concluded that co-culture fermentation of flour hydrolysate can be considered as an appealing bioprocess for the production of propionic acid.  相似文献   

10.
响应曲面法优化灵芝廉价型深层发酵培养基的研究   总被引:2,自引:0,他引:2  
为了获得生产用廉价型灵芝发酵培养基,采用中心组合旋转设计法和响应曲面法对低成本培养基组分进行了优化。优化的四个组分为玉米粉(x1)、麸皮粉(x2)、豆饼粉(x3)和蔗糖(x4)。结果表明,灵芝菌体发酵和多糖发酵的培养基预测模型分别为:Y1=15.1–0.31x1–0.34x2+0.36x3–0.44x4–1.26x12–1.98x22–0.85x32–1.15x42–0.59x2x3和Y2=2.0–0.08x1–0.08x2+0.04x3–0.09x4–1.13x12–0.33x22–0.08x32–0.16x42–0.16x2x3–0.10x1x4。从中获得菌体发酵的最优配方为:玉米粉19.7g/L,麸皮粉11.3g/L,豆饼粉6.3g/L,蔗糖19.5g/L;多糖发酵的最优配方为:玉米粉19.6g/L,麸皮粉11.0g/L,豆饼粉6.7g/L,蔗糖19.1g/L。150L发酵罐中试放大结果表明,灵芝菌体的产量为16.92g/L,多糖产量为1.86g/L。所得培养基为灵芝产品的高效低成本生产提供了基础。  相似文献   

11.
生物农药由于具有良好的生态效应和安全性,因此比化学农药更受到人们的青睐,生物农药的发展契合低碳、循环、清洁绿色经济发展理念。因此,寻求利于食品安全和环境保护,同时高效控制植物病害的新型生物农药成为时下及未来研究的热点。链霉菌以产生纳他霉素等抗生素起到生防作用。链霉菌株A01-chit33CT既可以产生纳他霉素又可以高表达几丁质酶活,生防效果大大增加。为确定链霉菌A01-chit33CT产纳他霉素和几丁质酶协同表达的发酵条件,初步探索了碳氮源和发酵条件对菌株产生纳他霉素和几丁质酶的影响。结果表明,葡萄糖促进纳他霉素的产生而抑制几丁质酶的表达,因此分两阶段添加葡萄糖和几丁质粉来达到二者协同表达。研究确定最佳发酵培养基为:葡萄糖40 g/L,几丁质粉10 g/L(发酵4 d添加),黄豆粉30 g/L,大豆蛋白胨10 g/L,CaCO35 g/L,MgSO4.7H2O 0.5 g/L,K2HPO40.5 g/L。最优发酵条件为:初始pH 6.0,温度28℃,转速180 r/min。在此条件下,链霉菌A01-chit33CT产纳他霉素达1.52 g/L,同时几丁质酶活达990 U/ml,二者比优化前的水平分别提高了1.95倍和2.27倍。  相似文献   

12.
A laboratory-scale study was conducted to evaluate the feasibility of using palm oil mill effluent (POME) as a major substrate and other nutrients for maximum production of citric acid using the potential fungal strain Aspergillus niger (A103). Statistical optimization of medium composition (substrate–POME, co-substrates–wheat flour and glucose, and nitrogen source–ammonium nitrate) and fermentation time was carried out by central composite design (CCD) to develop a polynomial regression model through the effects of linear, quadratic, and interaction of the factors. The statistical analysis of the results showed that, in the range studied, ammonium nitrate had no significant effect whereas substrate, co-substrates and fermentation time had significant effects on citric acid production. The optimized medium containing 2% (w/w) of substrate concentration (POME), 4% (w/w) of wheat flour concentration, 4% (w/w) of glucose concentration, 0% (w/v) of ammonium nitrate and 5 days fermentation time gave the maximum predicted citric acid of 5.37 g/l which was found to be 1.5 g/l in the experimental run. The determination of coefficient (R 2) from the analysis observed was 0.964, indicating a satisfactory adjustment of the model with the response. The analysis showed that the major substrate POME (P < 0.05), glucose (P < 0.01), nutrient (P < 0.05), and fermentation time (P < 0.01) was more significant for citric acid production. The bioconversion of POME for citric acid production using optimal conditions showed the higher removal of chemical oxygen demand (82%) with the production of citric acid (5.2 g/l) on the final day of fermentation process (7 days). The pH and biosolids accumulation were observed during the bioconversion process.  相似文献   

13.
Chemical 2,3-butanediol is an important platform compound possessing diverse industrial applications. So far, it is mainly produced by using petrochemical feedstock which is associated with high cost and adverse environmental impacts. Hence, finding alternative routes (e.g., via fermentation using renewable carbon sources) to produce 2,3-butanediol are urgently needed. In this study, we report a wild-type Klebsiella sp. strain XRM21, which is capable of producing 2,3-butanediol from a wide variety of carbon sources including glucose, sucrose, xylose, and glycerol. Among them, fermentation of sucrose leads to the highest production of 2,3-butanediol. To maximize the production of 2,3-butanediol, fermentation conditions were first optimized for strain XMR21 by using response surface methodology (RSM) in batch reactors. Subsequently, a fed-batch fermentation strategy was designed based on the optimized parameters, where 91.2 g/L of 2,3-butanediol could be produced from substrate sucrose dosing in 100 g/L for three times. Moreover, random mutagenesis of stain XMR21 resulted in a highly productive mutant strain, capable of producing 119.4 and 22.5 g/L of 2,3-butanediol and ethanol under optimized fed-batch fermentation process within 65 h with a total productivity of 2.18 g/L/h, which is comparable to the reported highest 2,3-butanediol concentration produced by previous strains. This study provides a potential strategy to produce industrially important 2,3-butanediol from low-cost sucrose.  相似文献   

14.
响应面法优化多杀菌素发酵培养基的研究   总被引:2,自引:0,他引:2  
采用响应面分析方法,对刺糖多孢茵(Saccharopolyspora spinosa)H-2产多杀菌素的发酵培养基进行优化研究。运用单因子试验筛选出葡萄糖和棉籽粉为最适碳源和氮源,通过Plack—ett—Burman设计试验,对影响发酵培养基的8个相关因子进行评估并筛选出具有显著效应的4个因子:葡萄糖、棉籽粉、黄豆饼粉及玉米浆。通过最陡爬坡实验逼近以上4个因子的最大响应区域后,采用Box-Behnken响应面分析法,确定发酵产多杀菌素最佳培养基为葡萄糖64.5g,麦芽糖20g,玉米浆2g,大豆油40g,棉籽粉25g,黄豆饼粉2.4g,蛋白胨25g,CaCO35g,定容至1L,pH7.0。培养基优化后多杀菌素产量由278.1mg/L提高到508.7mg/L,比初始多杀茵素产量提高了1.83倍。  相似文献   

15.
Starch/cellulose has become the major feedstock for manufacturing biofuels and biochemicals because of their abundance and sustainability. In this study, we presented an artificially designed “starch-mannose-fermentation” biotransformation process through coupling the advantages of in vivo and in vitro metabolic engineering strategies together. Starch was initially converted into mannose via an in vitro metabolic engineering biosystem, and then mannose was fermented by engineered microorganisms for biomanufacturing valuable mannosyl compounds. The in vitro metabolic engineering biosystem based on phosphorylation/dephosphorylation reactions was thermodynamically favorable and the conversion rate reached 81%. The mannose production using whole-cell biocatalysts reached 75.4 g/L in a 30-L reactor, indicating the potential industrial application. Furthermore, the produced mannose in the reactor was directly served as feedstock for the fermentation process to bottom-up produced 19.2 g/L mannosyl-oligosaccharides (MOS) and 7.2 g/L mannosylglycerate (MG) using recombinant Corynebacterium glutamicum strains. Notably, such a mannose fermentation process facilitated the synthesis of MOS, which has not been achieved under glucose fermentation and improved MG production by 2.6-fold than that using the same C-mole of glucose. This approach also allowed access to produce other kinds of mannosyl derivatives from starch.  相似文献   

16.
AIMS: Evaluation of the influence of fermentation components on extracellular acid amylase production by an isolated fungal strain Aspergillus awamori. METHODS AND RESULTS: Eight fungal metabolic influential factors, viz. soluble starch, corn steep liquor (CSL), casein, potassium dihydrogen phosphate (KH(2)PO(4)) and magnesium sulfate (MgSO(4) x 7H(2)O), pH, temperature and inoculum level were selected to optimize amylase production by A. awamori using fractional factorial design of Taguchi methodology. Significant improvement in acid amylase enzyme production (48%) was achieved. The optimized medium composition consisted of soluble starch--3%; CSL--0.5%; KH(2)PO(4)--0.125%; MgSO(4) x 7H(2)O--0.125%; casein--1.5% at pH 4.0 and temperature at 31 degrees C. CONCLUSION: Optimization of the components of the fermentation medium was carried out using fractional factorial design of Taguchi's L-18 orthogonal array. Based on the influence of interaction components of fermentation, these could be classified as the least significant and the most significant at individual and interaction levels. Least significant factors of individual level have higher interaction severity index and vice versa at enzyme production in this fungal strain. The pH of the medium and substrate (soluble starch) showed maximum production impact (60%) at optimized environment. Temperature and CSL were the least influential factors for acid amylase production. SIGNIFICANCE AND IMPACT OF THE STUDY: Acid amylase production by isolated A. awamori is influenced by the interaction of fermentation factors with fungal metabolism at individual and interaction levels. The pH of the fermentation medium and substrate concentration regulates maximum enzyme production process in this fungal strain.  相似文献   

17.
ABSTRACT: BACKGROUND: Lipids produced from filamentous fungi show great promise for biofuel production, but a major limiting factor is the high production cost attributed to feedstock. Lignocellulosic biomass is a suitable feedstock for biofuel production due to its abundance and low value. However, very limited study has been performed on lipid production by culturing oleaginous fungi with lignocellulosic materials. Thus, identification of filamentous fungal strains capable of utilizing lignocellulosic hydrolysates for lipid accumulation is critical to improve the process and reduce the production cost. RESULTS: The growth performances of eleven filamentous fungi were investigated when cultured on glucose and xylose. Their dry cell weights, lipid contents and fatty acid profiles were determined. Six fungal strains with high lipid contents were selected to culture with the hydrolysate from dilute sulfuric acid pretreatment of wheat straw. The results showed that all the selected fungal strains were able to grow on both detoxified liquid hydrolysate (DLH) and non-detoxified liquid hydrolysate (NDLH). The highest lipid content of 39.4% was obtained by Mortierella isabellina on NDLH. In addition, NDLH with some precipitate could help M. isabellina form pellets with an average diameter of 0.11 mm. CONCLUSION: This study demonstrated the possibility of fungal lipid production from lignocellulosic biomass. M. isabellina was the best lipid producer grown on lignocellulosic hydrolysates among the tested filamentous fungi, because it could not only accumulate oils with a high content by directly utilizing NDLH to simplify the fermentation process, but also form proper pellets to benefit the downstream harvesting. Considering the yield and cost, fungal lipids from lignocellulosic biomass are promising alternative sources for biodiesel production.  相似文献   

18.
Rapeseed meal, a major byproduct of biodiesel production, has been used as a low-cost raw material for the production of a generic microbial feedstock through a consolidated bioconversion process. Various strategies were tested for the production of a novel fermentation medium, rich in free amino nitrogen (FAN): commercial enzymes (CEs) (2.7 mg g?1 dry meal), liquid state fungal pre-treatment (LSF) using Aspergillus oryzae (4.6 mg g?1), liquid state fungal pre-treatment followed by fungal autolysis (LSFA) (9.13 mg g?1), liquid state pre-treatment using fungal enzymatic broth (EB) (2.1 mg g?1), but the best strategy was a solid state fungal pre-treatment followed by fungal autolysis (34.5 mg g?1).The bioavailability of the nitrogen sources in the novel medium was confirmed in fed-batch bioreactor studies, in which 82.3 g dry cell L?1 of the oleaginous yeast Rhodosporidium toruloides Y4 was obtained with a lipid content of 48%. The dry cell weight obtained was higher than that obtained using conventional yeast extract, due to a higher total nitrogen content in the novel biomedium. The fatty acids obtained from the microbial oil were similar to those derived from rapeseed oil.  相似文献   

19.
A novel process strategy based on particulate bioprocessing has been developed for the production of value-added chemicals and biofuels. The process, which involves two main steps, fungal fermentation and discontinuous extraction, leads to the production of generic fermentation feedstocks from cereals. Partially pearled whole wheat grains were used as substrate for the growth of Aspergillus awamori in a packed bed bioreactor. Water was trickled through the bed of particles intermittently every 6 h to extract glucose and other nutrients and to maintain moisture and temperature levels. The feedstocks obtained through this system have been used for subsequent fermentations by Wautersia eutropha to produce the biodegradable plastic PHB (polyhydroxybutyrate) and by Saccharomyces cerevisiae for ethanol production. These preliminary results demonstrate the potential suitability of the novel concept of particulate bioprocessing in the development of biorefineries.  相似文献   

20.
An engineering-economic model was developed to compare the profitability of the wet fractionation process, a generic dry fractionation process, and the conventional dry grind process. Under market conditions as of January 2011, only fractionation processes generated a positive cash flow. Reduced unit manufacturing costs and increased ethanol production capacity were two major contributions. Corn and ethanol price sensitivity analysis showed that the wet fractionation process always outperformed a generic dry fractionation process at any scenario considered in this research. A generic dry fractionation process would provide better economic performance than the conventional dry grind process if corn price was low and ethanol price was high. All three processes would perform more resiliently if the DDGS price was determined by its composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号