首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Caveolin-3 (Cav-3) is the main scaffolding protein present in myofiber caveolae. We transfected C2C12 myoblasts with dominant negative forms of Cav-3, P104L or DeltaTFT, respectively, which cause the limb-girdle muscular dystrophy 1-C. Both these forms triggered Cav-3 loss during C2C12 cell differentiation. The P104L mutation reduced myofiber formation by impaired AKT signalling, accompanied by dramatic expression of the E3 ubiquitin ligase Atrogin. On the other hand, the DeltaTFT mutation triggered hypertrophic myotubes sustained by prolonged AKT activation, but independent of increased levels of follistatin and interleukin 4 expression. These data suggest that separated mutations within the same dystrophy-related gene may cause muscle degeneration through different mechanisms.  相似文献   

2.
Wang G  Qi C  Fan GH  Zhou HY  Chen SD 《FEBS letters》2005,579(18):4005-4011
In vivo and in vitro studies have suggested a neuroprotective role for Pituitary adenylate cyclase activating polypeptide (PACAP) against neuronal insults. Here, we showed that PACAP27 protects against neurotoxicity induced by rotenone, a mitochondrial complex I inhibitor that has been implicated in the pathogenesis of Parkinson's disease (PD). The neuroprotective effect of PACAP27 was dose-dependent and blocked by its specific receptor antagonist, PACAP6-27. The effects of PACAP27 on rotenone-induced cell death were mimicked by dibutyryl-cAMP (db-cAMP), forskolin and prevented by the PKA inhibitor H89, the ERK inhibitor PD98059 and the p38 inhibitor SB203580. PACAP27 administration blocked rotenone-induced increases in the level of caspase-3-like activity, whereas could not restore mitochondrial activity damaged by rotenone. Thus, our results demonstrate that PACAP27 has a neuroprotective role against rotenone-induced neurotoxicity in neuronal differentiated PC12 cells and the neuroprotective effects of PACAP are associated with activation of MAP kinase pathways by PKA and with inhibition of caspase-3 activity; the signaling mechanism appears to be mediated through mitochondrial-independent pathways.  相似文献   

3.
4.
Fatty acids induced an increase in reactive oxygen species (ROS) and enhanced NF-kappaB activation in L6 myotubes differentiated in culture. Palmitate proved more effective than oleate in eliciting these effects. The induction of uncoupling protein-3 (UCP3) at levels similar to those occurring in vivo, attained through the use of an adenoviral vector, led to a reduction of mitochondrial membrane potential in L6 myotubes. However, the capacity of palmitate to increase ROS was not reduced but, quite the opposite, it was moderately enhanced due to the presence of UCP3. The presence of UCP3 in mitochondria did not modify the expression of genes encoding ROS-related enzymes, either in basal conditions or in the presence of palmitate. However, in the presence of UCP3, UCP2 mRNA expression was down-regulated in response to palmitate. We conclude that UCP3 does not act as a protective agent against palmitate-dependent induction of ROS production in differentiated skeletal muscle cells.  相似文献   

5.
The presence of cancer stem cells, in both hematopoietic and solid malignancies, has been recently linked to their pathogenesis. We aimed to identify the characteristics and stem-like properties of sphere-colony forming cells in rat osteosarcoma and malignant fibrous histiocytoma cell lines. The results showed that both cell lines possessed an ability to form spherical, clonally expanding colonies in anchorage-independent, serum-starved conditions in N2/1% methylcellulose medium. The sphere cells showed stem-like properties with the ability to self-renew, and expressed the stem cell-related STAT3 and Bmi1 genes. Interestingly, spheres from both sarcomas remarkably decreased the expression of INK4a/ARF locus genes, p16(INK4a) and p19(ARF), which could be related to the resistance against cell senescence and apoptosis. Spheres showed strong tumorigenicity with metastatic potential in vivo via the inoculation into syngeneic rats, suggesting the presence of these populations might contribute to the tumor development such as metastasis via the resistance to apoptotic stimuli.  相似文献   

6.
peg10, an imprinted gene, plays a crucial role in adipocyte differentiation   总被引:1,自引:0,他引:1  
Hishida T  Naito K  Osada S  Nishizuka M  Imagawa M 《FEBS letters》2007,581(22):4272-4278
An imprinted gene, paternally expressed gene (peg) 10, was isolated as one of the genes expressed early in adipogenesis. The expression of peg10 was elevated after the addition of inducers, and was detected in adipocyte differentiable 3T3-L1 cells, but not observed in the non-adipogenic cell line NIH-3T3. Moreover, the knockdown of peg10 by RNA interference (RNAi) inhibited the differentiation of 3T3-L1 cells into lipid-laden adipocytes. Interestingly, peg10 RNAi-treatment reduced the expressions of C/EBPbeta and C/EBPdelta, and inhibited mitotic clonal expansion. These findings strongly indicate that peg10 plays a crucial role at the immediate early stage of adipocyte differentiation.  相似文献   

7.
8.
Cholesterol metabolism in the brain is distinct from that in other tissues due to the fact that cholesterol itself is unable to pass across the blood-brain barrier. Elimination of brain cholesterol is mainly dependent on a neuronal-specific cytochrome P450, CYP46A1, catalyzing the conversion of cholesterol into 24(S)-hydroxycholesterol (24OHC), which is able to pass the blood-brain barrier. A suitable model for studying this elimination from human neuronal cells has not been described previously. It is shown here that differentiated Ntera2/clone D1 (NT2) cells express the key genes involved in brain cholesterol homeostasis including CYP46A1, and that the expression profiles of the genes observed during neuronal differentiation are those expected to occur in vivo. Thus there was a decrease in the mRNA levels corresponding to cholesterol synthesis enzymes and a marked increase in the mRNA level of CYP46A1. The latter increase was associated with increased levels of CYP46A1 protein and increased production of 24OHC. The magnitude of the secretion of 24OHC from the differentiated NT2 cells into the medium was similar to that expected to occur under in vivo conditions. An alternative to elimination of cholesterol by the CYP46A1 mechanism is elimination by CYP27A1, and the product of this enzyme, 27-hydroxycholesterol (27OHC), is also known to pass the blood-brain barrier. The CYP27A1 protein level decreased during the differentiation of the NT2 cells in parallel with decreased production of 27OHC. The ratio between 24OHC and 27OHC in the medium from the cultured cells increased, by a factor of 13, during the differentiation process. The results suggest that progenitor cells eliminate cholesterol in the form of 27OHC while neurogenesis induces a change to the CYP46A1 dependent pathway. Furthermore this study demonstrates that differentiated NT2 cells are suitable for studies of cholesterol homeostasis in human neurons.  相似文献   

9.
10.
Abnormal protein aggregates have been suggested as a common pathogenesis of many neurodegenerative diseases. Two well-known protein degradation pathways are responsible for protein homeostasis by balancing protein biosynthesis and degradative processes: the ubiquitin–proteasome system (UPS) and autophagy-lysosomal system. UPS serves as the primary route for degradation of short-lived proteins, but large-size protein aggregates cannot be degraded by UPS. Autophagy is a unique cellular process that facilitates degradation of bulky protein aggregates by lysosome. Recent studies have demonstrated that autophagy plays a crucial role in the pathogenesis of neurodegenerative diseases characterized by abnormal protein accumulation, suggesting that regulation of autophagy may be a valuable therapeutic strategy for the treatment of various neurodegenerative diseases. Sirtuin-2 (SIRT2) is a class III histone deacetylase that is expressed abundantly in aging brain tissue. Here, we report that SIRT2 increases protein accumulation in murine cholinergic SN56 cells and human neuroblastoma SH-SY5Y cells under proteasome inhibition. Overexpression of SIRT2 inhibits lysosome-mediated autophagic turnover by interfering with aggresome formation and also makes cells more vulnerable to accumulated protein-mediated cytotoxicity by MG132 and amyloid beta. Moreover, MG132-induced accumulation of ubiquitinated proteins and p62 as well as cytotoxicity are attenuated in siRNA-mediated SIRT2-silencing cells. Taken together, these results suggest that regulation of SIRT2 could be a good therapeutic target for a range of neurodegenerative diseases by regulating autophagic flux.  相似文献   

11.
12.
13.
Yang JH  Amoui M  Lau KH 《FEBS letters》2007,581(13):2503-2508
An osteoclastic protein-tyrosine phosphatase, PTP-oc, shares the same gene with a renal PTP, Glepp1. This study demonstrated that targeted deletion of PTP-oc promoter by homologous recombination in RAW264.7 cells completely abolished PTP-oc expression without affecting Glepp1 expression. This strategy to inhibit PTP-oc function has three advantages over commonly used gene knock down strategies (e.g., small interference RNA). This strategy: (1) yielded cells completely devoid of PTP-oc, (2) had no off-target gene silencing effects, and (3) did not affect Glepp1 expression. The inability of PTP-oc-deficient RAW264.7 cells to undergo RANKL-mediated osteoclastic differentiation confirmed a regulatory role for PTP-oc in RANKL-mediated osteoclast differentiation.  相似文献   

14.
15.
The aim of the present study is to clarify the functional expression and physiological role in brain neurons of carnitine/organic cation transporter OCTN1/SLC22A4, which accepts the naturally occurring antioxidant ergothioneine (ERGO) as a substrate in vivo. After intracerebroventricular administration, the distribution of [3H]ERGO in several brain regions of octn1−/− mice was much lower than that in wild-type mice, whereas extracellular marker [14C]mannitol exhibited similar distribution in the two strains. The [3H]ERGO distribution in wild-type mice was well correlated with the amount of ERGO derived from food intake and the OCTN1 mRNA level in each brain region. Immunohistochemical analysis revealed colocalization of OCTN1 with neuronal cell markers microtubule-associated protein 2 (MAP2) and βIII-tubulin in mouse brain and primary cultured cortical neurons, respectively. Moreover, cultured cortical neurons exhibited time-dependent and saturable uptake of [3H]ERGO. These results demonstrate that OCTN1 is functionally expressed in brain neurons. The addition of ERGO simultaneously with serum to culture medium of cortical neurons attenuated mRNA and protein expressions of MAP2, βIII-tubulin and synapse formation marker synapsin I, and induced those of sex determining region Y-box 2 (Sox2), which is required to maintain the properties of undifferentiated neural stem cells. In neuronal model Neuro2a cells, knockdown of OCTN1 by siRNA reduced the uptake of [3H]ERGO with concomitant up-regulation of oxidative stress marker HO-1 and Sox2, and down-regulation of neurite outgrowth marker GAP43. Interestingly, the siRNA knockdown decreased the number of differentiated Neuro2a cells showing long neurites, but increased the total number of cells. Thus, OCTN1 is involved in cellular differentiation, but inhibits their proliferation, possibly via the regulation of cellular oxidative stress. This is the first evidence that OCTN1 plays a role in neuronal differentiation and proliferation, which are required for brain development.  相似文献   

16.
Intact osteoactivin, a novel type I membrane glycoprotein, were shed at a dibasic motif in the juxtamembrane region in C2C12 myoblasts. Extracellular fragments were secreted into the culture media by a putative metalloprotease. Extracellular fragments of osteoactivin, but not control protein, induced matrix metalloprotease-3 (MMP-3) expression in NIH-3T3 fibroblasts. Epidermal growth factor (ERK) kinase inhibitors inhibited the osteoactivin-mediated MMP-3 expression, whereas the extracellular fragment of osteoactivin activated ERK1/2 and p38 in the mitogen-activated protein kinase pathway. Our results suggest that the extracellular fragments of osteoactivin produced by shedding act as a growth factor to induce MMP-3 expression via the ERK pathway in fibroblasts.  相似文献   

17.
18.
Le(x) glycan and E-cadherin (Ecad) are co-expressed at embryonal stem (ES) cells and embryonal carcinoma (EC) cells. While the structure and function of Ecad mediating homotypic adhesion of these cells have been well established, evidence that Le(x) glycan also mediates such adhesion is weak, despite the fact that Le(x) oligosaccharide inhibits the compaction process. To provide stronger evidence, we knocked out Ecad gene in EC and ES cells to establish F9 Ecad (-/-) and D3M Ecad (-/-) cells, which highly express Le(x) glycan but do not express Ecad at all. Both F9 Ecad (-/-) and D3M Ecad (-/-) cells displayed strong autoaggregation in the presence of Ca(2+), while PYS-2 cells, which express trace amount of Ecad and undetectable level of Le(x) glycan, did not display autoaggregation. In addition, F9 Ecad (-/-) and D3M Ecad (-/-) cells displayed strong adhesion to plates coated with Le(x) glycosphingolipid (III(3)FucnLc4Cer), in dose-dependent manner, in the presence of Ca(2+). Thus, ES or EC cells display autoaggregation and strong adhesion to Le(x)-coated plates in the absence of Ecad, further supporting the notion of Le(x) self-recognition (i.e., Le(x)-to-Le(x) interaction) in cell adhesion.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号