首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Imaging mass spectrometry (IMS) of neuropeptides in crustacean neuronal tissues was performed on a MALDI-TOF/TOF instrument. Sample preparation protocols were developed for the sensitive detection of these highly complex endogenous signaling molecules. The neuromodulatory complements of the pericardial organ (PO) and brain of the Jonah crab, Cancer borealis, were mapped. Distributions of peptide isoforms belonging to 10 neuropeptide families were investigated using the IMS technique. Often, neuropeptides of high sequence homology were similarly located. However, two RFamide-family peptides and a truncated orcokinin peptide were mapped to locations distinct from other members of their respective families. Over 30 previously sequenced neuropeptides were identified based on mass measurement. For increased confidence of identification, select peptides were fragmented by post-source decay (PSD) and collisional-induced dissociation (CID). Collectively, this organ-level IMS study elucidates the spatial relationships between multiple neuropeptide isoforms of the same family as well as the relative distributions of neuropeptide families.  相似文献   

2.
MALDI imaging mass spectrometry (IMS) is a powerful approach that facilitates the spatial analysis of molecular species in biological tissue samples2 (Fig.1). A 12 μm thin tissue section is covered with a MALDI matrix, which facilitates desorption and ionization of intact peptides and proteins that can be detected with a mass analyzer, typically using a MALDI TOF/TOF mass spectrometer. Generally hundreds of peaks can be assessed in a single rat brain tissue section. In contrast to commonly used imaging techniques, this approach does not require prior knowledge of the molecules of interest and allows for unsupervised and comprehensive analysis of multiple molecular species while maintaining high molecular specificity and sensitivity2. Here we describe a MALDI IMS based approach for elucidating region-specific distribution profiles of neuropeptides in the rat brain of an animal model Parkinson''s disease (PD). PD is a common neurodegenerative disease with a prevalence of 1% for people over 65 of age3,4. The most common symptomatic treatment is based on dopamine replacement using L-DOPA5. However this is accompanied by severe side effects including involuntary abnormal movements, termed L-DOPA-induced dyskinesias (LID)1,3,6. One of the most prominent molecular change in LID is an upregulation of the opioid precursor prodynorphin mRNA7. The dynorphin peptides modulate neurotransmission in brain areas that are essentially involved in movement control7,8. However, to date the exact opioid peptides that originate from processing of the neuropeptide precursor have not been characterized. Therefore, we utilized MALDI IMS in an animal model of experimental Parkinson''s disease and L-DOPA induced dyskinesia. MALDI imaging mass spectrometry proved to be particularly advantageous with respect to neuropeptide characterization, since commonly used antibody based approaches targets known peptide sequences and previously observed post-translational modifications. By contrast MALDI IMS can unravel novel peptide processing products and thus reveal new molecular mechanisms of neuropeptide modulation of neuronal transmission. While the absolute amount of neuropeptides cannot be determined by MALDI IMS, the relative abundance of peptide ions can be delineated from the mass spectra, giving insights about changing levels in health and disease. In the examples presented here, the peak intensities of dynorphin B, alpha-neoendorphin and substance P were found to be significantly increased in the dorsolateral, but not the dorsomedial, striatum of animals with severe dyskinesia involving facial, trunk and orolingual muscles (Fig. 5). Furthermore, MALDI IMS revealed a correlation between dyskinesia severity and levels of des-tyrosine alpha-neoendorphin, representing a previously unknown mechanism of functional inactivation of dynorphins in the striatum as the removal of N-terminal tyrosine reduces the dynorphin''s opioid-receptor binding capacity9. This is the first study on neuropeptide characterization in LID using MALDI IMS and the results highlight the potential of the technique for application in all fields of biomedical research.  相似文献   

3.
After partial hepatectomy (PH), regenerating liver accumulates unknown lipid species. Here, we analyzed lipids in murine liver and adipose tissues following PH by thin-layer chromatography (TLC), imaging mass spectrometry (IMS), and real-time RT-PCR. In liver, IMS revealed that a single TLC band comprised major 19 TG species. Similarly, IMS showed a single phospholipid TLC band to be major 13 species. In adipose tissues, PH induced changes to expression of genes regulating lipid metabolism. Finally, IMS of phosphatidylcholine species demonstrated distribution gradients in lobules that resembled hepatic zonation. IMS is thus a novel and power tool for analyzing lipid species with high resolution.  相似文献   

4.
Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) is a powerful technology used to investigate the spatio-temporal distribution of a huge number of molecules throughout a body/tissue section. In this paper, we report the use of MALDI IMS to follow the molecular impact of an experimental infection of Apis mellifera with the microsporidia Nosema ceranae. We performed representative molecular mass fingerprints of selected tissues obtained by dissection. This was followed by MALDI IMS workflows optimization including specimen embedding and positioning as well as washing and matrix application. We recorded the local distribution of peptides/proteins within different tissues from experimentally infected versus non infected honeybees. As expected, a distinction in these molecular profiles between the two conditions was recorded from different anatomical sections of the gut tissue. More importantly, we observed differences in the molecular profiles in the brain, thoracic ganglia, hypopharyngeal glands, and hemolymph. We introduced MALDI IMS as an effective approach to monitor the impact of N. ceranae infection on A. mellifera. This opens perspectives for the discovery of molecular changes in peptides/proteins markers that could contribute to a better understanding of the impact of stressors and toxicity on different tissues of a bee in a single experiment.  相似文献   

5.
The distributions of neuropeptides in paraffin-embedded tissue sections (PETS) of the eyestalk, brain, and thoracic ganglia of the shrimp Penaeus monodon were visualized by imaging mass spectrometry (IMS). Peptide signals were obtained from PETS without affecting morphological features. Twenty-nine neuropeptides comprising members of FMRFamide, SIFamides, crustacean hyperglycaemic hormone, orcokinin-related peptides, tachykinin-related peptides, and allatostatin A were detected and visualized. Among these findings we first identified tachykinin-related peptide as a novel neuropeptide in this shrimp species. We found that these neuropeptides were distributed at specific areas in the three neural organs. In addition, 28 peptide sequences derived from 4 types of constitutive proteins, including actin, histones, arginine kinase, and cyclophilin A were also detected. All peptide sequences were verified by liquid chromatography-tandem mass spectrometry. The use of IMS on acetic acid-treated PETS enabled us to identify peptides and obtain their specific localizations in correlation with the undisturbed histological structure of the tissue samples.  相似文献   

6.
Imaging mass spectrometry (IMS) is a useful cutting edge technology used to investigate the distribution of biomolecules such as drugs and metabolites, as well as to identify molecular species in tissues and cells without labeling. To protect against excess water loss that is essential for survival in a terrestrial environment, mammalian skin possesses a competent permeability barrier in the stratum corneum (SC), the outermost layer of the epidermis. The key lipids constituting this barrier in the SC are the ceramides (Cers) comprising of a heterogeneous molecular species. Alterations in Cer composition have been reported in several skin diseases that display abnormalities in the epidermal permeability barrier function. Not only the amounts of different Cers, but also their localizations are critical for the barrier function. We have employed our new imaging system, capable of high-lateral-resolution IMS with an atmospheric-pressure ionization source, to directly visualize the distribution of Cers. Moreover, we show an ichthyotic disease pathogenesis due to abnormal Cer metabolism in Dorfman–Chanarin syndrome, a neutral lipid storage disorder with ichthyosis in human skin, demonstrating that IMS is a novel diagnostic approach for assessing lipid abnormalities in clinical setting, as well as for investigating physiological roles of lipids in cells/tissues.  相似文献   

7.
A radiochemical synthesis is described for [14C]indole-3-methanesulfonic acid (IMS), a strongly acidic auxin analog. Techniques were developed for fractionation and purification of IMS using normal and reverse phase chromatography. In addition, the utility of both Fourier transform infrared spectrometry and fast atom bombardment mass spectrometry for analysis of IMS has been demonstrated. IMS was shown to be an active auxin, stimulating soybean hypocotyl elongation, bean first internode curvature, and ethylene production. IMS uptake by thin sections of soybean hypocotyl was essentially independent of solution pH and, when applied at a 100 micromolar concentration, IMS exhibited a basipetal polarity in its transport in both corn coleoptile and soybean hypocotyl sections. [14C]IMS should, therefore, be a useful compound to study fundamental processes related to the movement of auxins in plant tissues and organelles.  相似文献   

8.
Imaging mass spectrometry (IMS) has developed into a powerful tool allowing label-free detection of numerous biomolecules in situ. In contrast to shotgun proteomics, proteins/peptides can be detected directly from biological tissues and correlated to its morphology leading to a gain of crucial clinical information. However, direct identification of the detected molecules is currently challenging for MALDI–IMS, thereby compelling researchers to use complementary techniques and resource intensive experimental setups. Despite these strategies, sufficient information could not be extracted because of lack of an optimum data combination strategy/software. Here, we introduce a new open-source software ImShot that aims at identifying peptides obtained in MALDI–IMS. This is achieved by combining information from IMS and shotgun proteomics (LC–MS) measurements of serial sections of the same tissue. The software takes advantage of a two-group comparison to determine the search space of IMS masses after deisotoping the corresponding spectra. Ambiguity in annotations of IMS peptides is eliminated by introduction of a novel scoring system that identifies the most likely parent protein of a detected peptide in the corresponding IMS dataset. Thanks to its modular structure, the software can also handle LC–MS data separately and display interactive enrichment plots and enriched Gene Ontology terms or cellular pathways. The software has been built as a desktop application with a conveniently designed graphic user interface to provide users with a seamless experience in data analysis. ImShot can run on all the three major desktop operating systems and is freely available under Massachusetts Institute of Technology license.  相似文献   

9.
A good prognosis can be expected for most, but not all, cases of thyroid papillary cancer. Numerous molecular studies have demonstrated beneficial treatment and prognostic factors in various molecular markers. Whereas most previous reports have focused on genomics and proteomics, few have focused on lipidomics. With the advent of mass spectrometry (MS), it has become possible to identify many types of molecules, and this analytical tool has become critical in the field of omics. Recently, imaging mass spectrometry (IMS) was developed. After a simple pretreatment process, IMS can be used to examine tissue sections on glass slides with location information.Here, we conducted an IMS analysis of seven cases of thyroid papillary cancer by comparison of cancerous with normal tissues, focusing on the distribution of phospholipids. We identified that phosphatidylcholine (16:0/18:1) and (16:0/18:2) and sphingomyelin (d18:0/16:1) are significantly higher in thyroid papillary cancer than in normal thyroid tissue as determined by tandem mass (MS/MS) analysis. These distributional differences may be associated with the biological behavior of thyroid papillary cancer.  相似文献   

10.
Many proteins located in the intermembrane space (IMS) of mitochondria are characterized by a low molecular mass, contain highly conserved cysteine residues and coordinate metal ions. Studies on one of these proteins, Tim13, revealed that net translocation across the outer membrane is driven by metal-dependent folding in the IMS . We have identified an essential component, Mia40/Tim40/Ykl195w, with a highly conserved domain in the IMS that is able to bind zinc and copper ions. In cells lacking Mia40, the endogenous levels of Tim13 and other metal-binding IMS proteins are strongly reduced due to the impaired import of these proteins. Furthermore, Mia40 directly interacts with newly imported Tim13 protein. We conclude that Mia40 is the first essential component of a specific translocation pathway of metal-binding IMS proteins.  相似文献   

11.
Imaging mass spectrometry (IMS) is two-dimensional mass spectrometry to visualize the spatial distribution of biomolecules, which does not need either separation or purification of target molecules, and enables us to monitor not only the identification of unknown molecules but also the localization of numerous molecules simultaneously. Among the ionization techniques, matrix assisted laser desorption/ionization (MALDI) is one of the most generally used for IMS, which allows the analysis of numerous biomolecules ranging over wide molecular weights. Proper selection and preparation of matrix is essential for successful imaging using IMS. Tandem mass spectrometry, which is referred to MSn, enables the structural analysis of a molecule detected by the first step of IMS. Applications of IMS were initially developed for studying proteins or peptides. At present, however, targets of IMS research have expanded to the imaging of small endogenous metabolites such as lipids, exogenous drug pharmacokinetics, exploring new disease markers, and other new scientific fields. We hope that this new technology will open a new era for biophysics.  相似文献   

12.
Microarrays of peptide and recombinant protein libraries are routinely used for high-throughput studies of protein–protein interactions and enzymatic activities. Imaging mass spectrometry (IMS) is currently applied as a method to localize analytes on thin tissue sections and other surfaces. Here, we have applied IMS as a label-free means to analyze protein–peptide interactions in a microarray-based phosphatase assay. This IMS strategy visualizes the entire microarray in one composite image by collecting a predefined raster of matrix-assisted laser desorption/ionization time-of-flight (MALDI–TOF) mass spectrometry spectra over the surface of the chip. Examining the bacterial tyrosine phosphatase YopH, we used IMS as a label-free means to visualize enzyme binding and activity with a microarrayed phosphopeptide library printed on chips coated with either gold or indium–tin oxide. Furthermore, we demonstrate that microarray-based IMS can be coupled with surface plasmon resonance imaging to add kinetic analyses to measured binding interactions. The method described here is within the capabilities of many modern MALDI–TOF instruments and has general utility for the label-free analysis of microarray assays.  相似文献   

13.
Spatial metabolomics uses imaging mass spectrometry (IMS) to localize metabolites within tissue section. Here, we performed matrix-assisted laser desorption/ionization-Fourier transform ion cyclotron resonance-IMS (MALDI-FTICR-IMS) to identify the localization of asparaptine A, a naturally occurring inhibitor of angiotensin-converting enzyme, in green spears of asparagus (Asparagus officinalis). Spatial metabolome data were acquired in an untargeted manner. Segmentation analysis using the data characterized tissue-type-dependent and independent distribution patterns in cross-sections of asparagus spears. Moreover, asparaptine A accumulated at high levels in developing lateral shoot tissues. Quantification of asparaptine A in lateral shoots using liquid chromatography-tandem mass spectrometry (LC-MS/MS) validated the IMS analysis. These results provide valuable information for understanding the function of asparaptine A in asparagus, and identify the lateral shoot as a potential region of interest for multiomics studies to examine gene-to-metabolite associations in the asparaptine A biosynthesis.  相似文献   

14.
Previous studies have shown that MALDI-imaging mass spectrometry (IMS) can be used to visualize the distribution of various biomolecules, especially lipids, in the cells and tissues. In this study, we report the cell-selective distribution of PUFA-containing glycerophospholipids (GPLs) in the mouse brain. We established a practical experimental procedure for the IMS of GPLs. We demonstrated that optimization of the composition of the matrix solution and spectrum normalization to the total ion current (TIC) is critical. Using our procedure, we simultaneously differentiated and visualized the localizations of specific molecular species of GPLs in mouse brain sections. The results showed that PUFA-containing phosphatidylcholines (PCs) were distributed in a cell-selective manner: arachidonic acid- and docosahexaenoic acid-containing PCs were seen in the hippocampal neurons and cerebellar Purkinje cells, respectively. Furthermore, these characteristic localizations of PUFA-PCs were formed during neuronal maturation. The phenomenon of brain cell-selective production of specific PUFA-GPLs will help elucidate the potential physiological functions of PUFAs in specific brain regions.  相似文献   

15.
16.
MALDI mass spectrometry can simultaneously measure hundreds of biomolecules directly from tissue. Using essentially the same technique but different sample preparation strategies, metabolites, lipids, peptides and proteins can be analyzed. Spatially correlated analysis, imaging MS, enables the distributions of these biomolecular ions to be simultaneously measured in tissues. A key advantage of imaging MS is that it can annotate tissues based on their MS profiles and thereby distinguish biomolecularly distinct regions even if they were unexpected or are not distinct using established histological and histochemical methods e.g. neuropeptide and metabolite changes following transient electrophysiological events such as cortical spreading depression (CSD), which are spreading events of massive neuronal and glial depolarisations that occur in one hemisphere of the brain and do not pass to the other hemisphere , enabling the contralateral hemisphere to act as an internal control. A proof-of-principle imaging MS study, including 2D and 3D datasets, revealed substantial metabolite and neuropeptide changes immediately following CSD events which were absent in the protein imaging datasets. The large high dimensionality 3D datasets make even rudimentary contralateral comparisons difficult to visualize. Instead non-negative matrix factorization (NNMF), a multivariate factorization tool that is adept at highlighting latent features, such as MS signatures associated with CSD events, was applied to the 3D datasets. NNMF confirmed that the protein dataset did not contain substantial contralateral differences, while these were present in the neuropeptide dataset.  相似文献   

17.
Mitochondria consist of four compartments, the outer membrane, intermembrane space (IMS), inner membrane and the matrix. Most mitochondrial proteins are synthesized as precursors in the cytosol and have to be imported into these compartments. While the protein import machineries of the outer membrane, inner membrane and matrix have been investigated in detail, a specific mitochondrial machinery for import and assembly of IMS proteins, termed MIA, was identified only recently. To date, only a very small number of substrate proteins of the MIA pathway have been identified. The substrates contain characteristic cysteine motifs, either a twin Cx(3)C or a twin Cx(9)C motif. The largest MIA substrates known possess a molecular mass of 11 kDa, implying that this new import pathway has a very small size limit. Here, we have compiled a list of Saccharomyces cerevisiae proteins with a twin Cx(9)C motif and identified three IMS proteins that were previously localized to incorrect cellular compartments by tagging approaches. Mdm35, Mic14 (YDR031w) and Mic17 (YMR002w) require the two essential subunits, Mia40 and Erv1, of the MIA machinery for their localization in the mitochondrial IMS. With a molecular mass of 14 kDa and 17 kDa, respectively, Mic14 and Mic17 are larger than the known MIA substrates. Remarkably, the precursor of Erv1 itself is imported via the MIA pathway. As Erv1 has a molecular mass of 22 kDa and a twin Cx(2)C motif, this study demonstrates that the MIA pathway can transport substrates that are twice as large as the substrates known to date and is not limited to proteins with twin Cx(3)C or Cx(9)C motifs. However, tagging of MIA substrates can interfere with their subcellular localization, indicating that the proper localization of mitochondrial IMS proteins requires the characterization of the authentic untagged proteins.  相似文献   

18.
The development of a multidimensional approach involving high-performance liquid chromatography (LC), ion mobility spectrometry (IMS) and tandem mass spectrometry is described for the analysis of complex peptide mixtures. In this approach, peptides are separated based on differences in their LC retention times and mobilities (as ions drift through He) prior to being introduced into a quadrupole/octopole/time-of-flight mass spectrometer. The initial LC separation and IMS dispersion of ions is used to label ions for subsequent fragmentation studies that are carried out for mixtures of ions. The approach is demonstrated by examining a mixture of peptides generated from tryptic digestion of 18 commercially available proteins. Current limitations of this initial study and potential advantages of the experimental approach are discussed.  相似文献   

19.
While the molecular mechanisms underlying Alzheimer's disease (AD) remain largely unknown, abnormal accumulation and deposition of beta amyloid (Aβ) peptides into plaques has been proposed as a critical pathological process driving disease progression. Over the last years, neuronal lipid species have been implicated in biological mechanisms underlying amyloid plaque pathology. While these processes comprise genetic features along with lipid signaling as well as direct chemical interaction of lipid species with Aβ mono- and oligomers, more efforts are needed to spatially delineate the exact lipid-Aβ plaque interactions in the brain. Chemical imaging using mass spectrometry (MS) allows to probe the spatial distribution of lipids and peptides in complex biological tissues comprehensively and at high molecular specificity. As different imaging mass spectrometry (IMS) modalities provide comprehensive molecular and spatial information, we here describe a multimodal ToF-SIMS- and MALDI-based IMS strategy for probing lipid and Aβ peptide changes in a transgenic mouse model of AD (tgAPPArcSwe). Both techniques identified a general AD-associated depletion of cortical sulfatides, while multimodal MALDI IMS revealed plaque specific lipid as well as Aβ peptide isoforms. In addition, MALDI IMS analysis revealed chemical features associated with morphological heterogeneity of individual Aβ deposits. Here, an altered GM1 to GM2/GM3 ganglioside metabolism was observed in the diffuse periphery of plaques but not in the core region. This was accompanied by an enrichment of Aβ1–40arc peptide at the core of these deposits. Finally, a localization of arachidonic acid (AA) conjugated phosphatidylinositols (PI) and their corresponding degradation product, lyso-phosphatidylinositols (LPI) to the periphery of Aβ plaques was observed, indicating site specific macrophage activation and ganglioside processing.  相似文献   

20.
A technique that combines ion mobility spectrometry (IMS) with reversed-phase liquid chromatography (LC), collision-induced dissociation (CID) and mass spectrometry (MS) has been developed. The approach is described as a high throughput means of analysing complex mixtures of peptides that arise from enzymatic digestion of protein mixtures. In this approach, peptides are separated by LC and, as they elute from the column, they are introduced into the gas phase and ionised by electrospray ionisation. The beam of ions is accumulated in an ion trap and then the concentrated ion packet is injected into a drift tube where the ions are separated again in the gas phase by IMS, a technique that differentiates ions based on their mobilities through a buffer gas. As ions exit the drift tube, they can be subjected to collisional activation to produce fragments prior to being introduced into a mass spectrometer for detection. The IMS separation can be carried out in only a few milliseconds and offers a number of advantages compared with LC-MS alone. An example of a single 21-minute LC-IMS-(CID)-MS analysis of the human plasma proteome reveals approximately 20,000 parent ions and approximately 600,000 fragment ions and evidence for 227 unique protein assignments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号