首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In a recent study, ultrahigh molecular weight (Mw ) glutaraldehyde-polymerized bovine hemoglobins (PolybHbs) were synthesized with low O2 affinity and exhibited no vasoactivity and a slight degree of hypertension in a 10% top-load model.(1) In this work, we systematically investigated the effect of varying the glutaraldehyde to hemoglobin (G:Hb) molar ratio on the biophysical properties of PolybHb polymerized in either the low or high O2 affinity state. Our results showed that the Mw of the resulting PolybHbs increased with increasing G:Hb molar ratio. For low O2 affinity PolybHbs, increasing the G:Hb molar ratio reduced the O2 affinity and CO association rate constants in comparison to bovine hemoglobin (bHb). In contrast for high O2 affinity PolybHbs, increasing the G:Hb molar ratio led to increased O2 affinity and significantly increased the CO association rate constants compared to unmodified bHb and low O2 affinity PolybHbs. The methemoglobin level and NO dioxygenation rate constants were insensitive to the G:Hb molar ratio. However, all PolybHbs displayed higher viscosities compared to unmodified bHb and whole blood, which also increased with increasing G:Hb molar ratio. In contrast, the colloid osmotic pressure of PolybHbs decreased with increasing G:Hb molar ratio. To preliminarily evaluate the ability of low and high O2 affinity PolybHbs to potentially oxygenate tissues in vivo, an O2 transport model was used to simulate O2 transport in a hepatic hollow fiber (HF) bioreactor. It was observed that low O2 affinity PolybHbs oxygenated the bioreactor better than high O2 affinity PolybHbs. This result points to the suitability of low O2 affinity PolybHbs for use in tissue engineering and transfusion medicine. Taken together, our results show the quantitative effect of varying the oxygen saturation of bHb and G:Hb molar ratio on the biophysical properties of PolybHbs and their ability to oxygenate a hepatic HF bioreactor. We suggest that the information gained from this study can be used to guide the design of the next generation of hemoglobin-based oxygen carriers (HBOCs) for use in tissue engineering and transfusion medicine applications.  相似文献   

2.
Microbial flavohemoglobins (flavoHbs) and hemoglobins (Hbs) show large *NO dioxygenation rate constants ranging from 745 to 2900 microM(-1) s(-1) suggesting a primal *NO dioxygenase (NOD) (EC 1.14.12.17) function for the ancient Hb superfamily. Indeed, modern O2-transporting and storing mammalian red blood cell Hb and related muscle myoglobin (Mb) show vestigial *NO dioxygenation activity with rate constants of 34-89 microM(-1) s(-1). In support of a NOD function, microbial flavoHbs and Hbs catalyze O2-dependent cellular *NO metabolism, protect cells from *NO poisoning, and are induced by *NO exposures. Red blood cell Hb, myocyte Mb, and flavoHb-like activities metabolize *NO in the vascular lumen, muscle, and other mammalian cells, respectively, decreasing *NO signalling and toxicity. HbFe(III)-OO*, HbFe(III)-OONO and protein-caged [HbFe(III)-O**NO2] are proposed intermediates in a reaction mechanism that combines both O-atoms of O2 with *NO to form nitrate and HbFe(III). A conserved Hb heme pocket structure facilitates the dioxygenation reaction and efficient turnover is achieved through the univalent reduction of HbFe(III) by associated reductases. High affinity flavoHb and Hb heme ligands, and other inhibitors, may find application as antibiotics and antitumor agents that enhance the toxicity of immune cell-derived *NO or as vasorelaxants that increase *NO signalling.  相似文献   

3.
Widely distributed flavohemoglobins (flavoHbs) function as NO dioxygenases and confer upon cells a resistance to NO toxicity. FlavoHbs from Saccharomyces cerevisiae, Alcaligenes eutrophus, and Escherichia coli share similar spectra, O(2), NO, and CO binding kinetics, and steady-state NO dioxygenation kinetics. Turnover numbers (V(max)) for S. cerevisiae, A. eutrophus, and E. coli flavoHbs are 112, 290, and 365 NO heme(-1) s(-1), respectively, at 37 degrees C with 200 microm O(2). The K(M) values for NO are low and range from 0.1 to 0.25 microm. V(max)/K(M)(NO) ratios of 900-2900 microm(-1) s(-1) indicate an extremely efficient dioxygenation mechanism. Approximate K(M) values for O(2) range from 60 to 90 microm. NO inhibits the dioxygenases at NO:O(2) ratios of > or =1:100 and makes true K(M)(O(2)) values difficult to determine. High and roughly equal second order rate constants for O(2) and NO association with the reduced flavoHbs (17-50 microm(-1) s(-1)) and small NO dissociation rate constants suggest that NO inhibits the dioxygenase reaction by forming inactive flavoHbNO complexes. Carbon monoxide also binds reduced flavoHbs with high affinity and competitively inhibits NO dioxygenases with respect to O(2) (K(I)(CO) = approximately 1 microm). These results suggest that flavoHbs and related hemoglobins evolved as NO detoxifying components of nitrogen metabolism capable of discriminating O(2) from inhibitory NO and CO.  相似文献   

4.
Hemoglobins dioxygenate nitric oxide with high fidelity   总被引:2,自引:0,他引:2  
Distantly related members of the hemoglobin (Hb) superfamily including red blood cell Hb, muscle myoglobin (Mb) and the microbial flavohemoglobin (flavoHb) dioxygenate nitric oxide (.NO). The reaction serves important roles in .NO metabolism and detoxification throughout the aerobic biosphere. Analysis of the stoichiometric product nitrate shows greater than 99% double O-atom incorporation from Hb(18)O(2), Mb(18)O(2) and flavoHb(18)O(2) demonstrating a conserved high fidelity .NO dioxygenation mechanism. Whereas, reactions of .NO with the structurally unrelated Turbo cornutus MbO(2) or free superoxide radical (-O.(2)) yield sub-stoichiometric nitrate showing low fidelity O-atom incorporation. These and other results support a .NO dioxygenation mechanism involving (1) rapid reaction of .NO with a Fe(III-)O.(2) intermediate to form Fe(III-)OONO and (2) rapid isomerization of the Fe(III-)OONO intermediate to form nitrate. A sub-microsecond isomerization event is hypothesized in which the O-O bond homolyzes to form a protein caged [Fe(IV)O .NO(2)] intermediate and ferryl oxygen attacks .NO(2) to form nitrate. Hb functions as a .NO dioxygenase by controlling O(2) binding and electrochemistry, guiding .NO diffusion and reaction, and shielding highly reactive intermediates from solvent water and biomolecules.  相似文献   

5.
The reaction between carboxyhemoglobin and reduced microperoxidase (MP): Hb4(CO)4 + 4MP=Hb4 + 4MPCO, recently reported by us, has been further studied. By generating species Hb4(CO), Hb4(CO)2, and Hb(CO)3 in the stopped flow cuvette by the reaction of dithionite with the species of the general formula Hb4(O2)x(CO)y(x + y=4) in the presence of microperoxidase it has been possible to determine the stepwise CO dissociation rate constants l4, l3, l2, and l1. The overall CO dissociation rate constant l, which is the same in this system as l4, is not affected by 2,3-diphosphoglyceric acid. The activation energy of the reaction is 21,400 cal in 15-25 degrees range. The ratio deltal/deltapH is approximately 3 in 6.5 to 7.5 pH range. The kinetic data indicate that, compared to HbO2, the contribution to the cooperativity of the dissociation rate constants of carboxyhemoglobin is greatly reduced. The ligand-dependent differences in the reactions of Hb with CO, O2, and NO suggest that in the combination reactions the ligand plays an active role in the rate-limiting step.  相似文献   

6.
Hemopure (Biopure; Cambridge, MA) and PolyHeme (Northfield Laboratories; Evanston, IL) are two acellular hemoglobin-based O2 carriers (HBOCs) currently in phase III clinical trials for use as red blood cell substitutes. The most common adverse side effect that these HBOCs exhibit is increased vasoconstriction. Autoregulatory theory has been presented as a possible explanation for this physiological effect, where it is hypothesized that low-affinity HBOCs over-deliver O2 to tissues surrounding arterioles, thereby eliciting vasoconstriction. In this paper, we wanted to investigate HBOC oxygenation of tissue surrounding a capillary, which is the smallest element of the circulatory system. An a priori model has been developed in which the performance of mixtures of acellular HBOCs (synthesized by our group and others) and human red blood cells (hRBCs) has been simulated using a Krogh tissue cylinder model (KTCM) comprising a capillary surrounded by a capillary membrane and skeletal muscle tissue in cylindrical coordinates with specified tissue O2 consumption rates and Michaelis-Menten kinetics. In this study, the total hemoglobin (hRBCs and HBOCs) concentration was kept constant. The HBOCs studied possessed O2 affinities that were higher and lower compared to hRBCs (P50's spanned 5-55 mmHg), and the equilibrium binding/release of oxygen to/from the HBOCs was modeled using the Adair equation. At normoxic inlet pO2's, there was no correlation between O2 flux out of the capillary and the O2 affinity of the HBOC. However, a correlation was found between the average pO2 tension in the capillary and the O2 affinity of the HBOC. Additionally, we studied the change in the O2 equilibrium curve of HBOCs with different O2 affinities over a wide range of inlet pO2's and found that changing the inlet pO2 greatly affected which HBOC, having a unique O2 affinity, best delivered O2 to the surrounding tissue. The analysis of oxygen transport presented could lead to a better prediction of which acellular HBOC is best suited for a specific transfusion application that many times depends on the capillary inlet pO2 tension.  相似文献   

7.
A phospholipid vesicle that encapsulates a concentrated hemoglobin (Hb) solution and pyridoxal 5'-phosphate as an allosteric effector [Hb vesicle (HbV) diameter, 250 nm] has been developed to provide an O2 carrying ability to plasma expanders. The O2 release from flowing HbVs was examined using an O2-permeable, fluorinated ethylenepropylene copolymer tube (inner diameter, 28 microm) exposed to a deoxygenated environment. Measurement of O2 release was performed using an apparatus that consisted of an inverted microscope and a scanning-grating spectrophotometer with a photon-count detector, and the rate of O2 release was determined based on the visible absorption spectrum in the Q band of Hb. HbVs and fresh human red blood cells (RBCs) were mixed in various volume ratios at a Hb concentration of 10 g/dl in isotonic saline that contained 5 g/dl albumin, and the suspension was perfused at the centerline flow velocity of 1 mm/s through the narrow tube. The mixtures of acellular Hb solution and RBCs were also tested. Because HbVs were homogeneously dispersed in the albumin solution, increasing the volume of the HbV suspension resulted in a thicker marginal RBC-free layer. Irrespective of the mixing ratio, the rate of O2 release from the HbV/RBC mixtures was similar to that of RBCs alone. On the other hand, the addition of 50 vol% of acellular Hb solution to RBCs significantly enhanced the rate of deoxygenation. This outstanding difference in the rate of O2 release between the HbV suspension and the acellular Hb solution should mainly be due to the difference in the particle size (250 vs. 7 nm) that affects their diffusion for the facilitated O2 transport.  相似文献   

8.
NO-donating ability of nitrosyl [Fe-S] complexes, namely, mononuclear dinitrosyl complexes of anionic type [Fe(S2O3)2(NO)2]-(I) and neutral [Fe2(SL1)2(NO)2] with L1=1H-1,2,4-triazole-3-yl (II); tetranitrosyl binuclear neutral complexes [Fe2(SL2)2(NO)4] with L2=5-amino-1,2,4-triazole-3-yl (III); 1-methyl-1H-tetrazole-5-yl (IV); imidazole-2-yl (V) and 1-methyl-imidazole-2-yl (VI) has been studied. In addition, Roussin's "red salt" Na2[Fe2S2(NO)4] x 8H2O (VII) and Na2[Fe(CN)5NO] x H2O (VIII) have been investigated. The method for research has been based on the formation of Hb-NO adduct upon the interaction of hemoglobin with NO generated by complexes I-VIII in aqueous solutions. Kinetics of NO formation was studied by registration of absorption spectra of the reaction systems containing Hb and the complex under study. For determination of HbNO concentration, the experimental absorption spectra were processed during the reaction using standard program MATHCAD to determine the contribution of individual Hb and HbNO spectra in each spectrum. The reaction rate constants were obtained by analyzing kinetic dependence of Hb interaction with NO donors under study. All kinetic dependences for complexes I-VI were shown to be described well in the frame of formalism of pseudo first-order reactions. The effective first-order rate constants for the studied reactions have been determined. As follows from the values of rate constants, the rate of interaction of sulfur-nitrosyl iron complexes (I-VI) with Hb is limited by the stage of NO release in the solution.  相似文献   

9.
Hemoglobin vesicles (HbVs) are artificial oxygen carriers encapsulating purified and concentrated Hb solution in phospholipid vesicles (liposomes). We examined in-vitro reaction profiles of a formulation of HbV with NO and CO in anaerobic and aerobic conditions using stopped-flow spectrophotometry and a NO electrode. Reaction rate constants of NO to deoxygenated and oxygenated HbV were considerably smaller than those of cell-free Hb because of the intracellular NO-diffusion barrier. The reaction of CO with deoxygenated HbV was slightly slower than that of cell-free Hb solely because of the co-encapsulated allosteric effector, pyridoxal 5'-phosphate. The NO depletion in an aerobic condition in the presence of empty vesicles was monitored using a NO electrode, showing that the hydrophobic bilayer membrane of HbV, which might have higher gas solubility, does not markedly facilitate the O(2) and NO reaction, and that the intracellular Hb is the major component of NO depletion. In conclusion, HbV shows retarded gas reactions, providing some useful information to explain the absence of vasoconstriction and hypertension when they are intravenously injected.  相似文献   

10.
Increasing the molecular size of acellular hemoglobin (Hb) has been proposed as an approach to reduce its undesirable vasoactive properties. The finding that bovine Hb surface decorated with about 10 copies of PEG5K per tetramer is vasoactive provides support for this concept. The PEGylated bovine Hb has a strikingly larger molecular radius than HbA (1). The colligative properties of the PEGylated bovine Hb are distinct from those of HbA and even polymerized Hb, suggesting a role for the colligative properties of PEGylated Hb in neutralizing the vasoactivity of acellular Hb. To correlate the colligative properties of surface-decorated Hb with the mass of the PEG attached and also its vasoactivity, we have developed a new maleimide-based protocol for the site-specific conjugation of PEG to Hb, taking advantage of the unusually high reactivity of Cys-93(beta) of oxy HbA and the high reactivity of the maleimide to protein thiols. PEG chains of 5, 10, and 20 kDa have been functionalized at one of their hydroxyl groups with a maleidophenyl moiety through a carbamate linkage and used to conjugate the PEG chains at the beta-93 Cys of HbA to generate PEGylated Hbs carrying two copies of PEG (of varying chain length) per tetramer. Homogeneous preparations of (SP-PEG5K)(2)-HbA, (SP-PEG10K)(2)-HbA, and (SP-PEG20K)(2)-HbA have been isolated by ion exchange chromatography. The oxygen affinity of Hb is increased slightly on PEGylation, but the length of the PEG-chain had very little additional influence on the O(2) affinity. Both the hydrodynamic volume and the molecular radius of the Hb increased on surface decoration with PEG and exhibited a linear correlation with the mass of the PEG chain attached. On the other hand, both the viscosity and the colloidal osmotic pressure (COP) of the PEGylated Hbs exhibited an exponential increase with the increase in PEG chain length. In contrast to the molecular volume, viscosity, and COP, the vasoactivity of the PEGylated Hbs was not a direct correlate of the PEG chain length. There appeared to be a threshold for the PEG chain length beyond which the protection against vasoactivity is decreased. These results suggest that the modulation of the vasoactivity of Hb by PEG could be a function of the surface shielding afforded by the PEG, the latter being a function of the disposition of the PEG chain on the protein surface, which in turn is a function of the length of the PEG chain. Thus, the biochemically homogeneous PEGylated Hbs described in the present study, surface-decorated with PEG chains of appropriate size, could serve as potential candidates for Hb-based oxygen carriers.  相似文献   

11.
Second generation hemoglobin-based O(2) carriers (HBOCs) are being developed with high O(2) affinity (low P(50)) in order to suppress vasoconstriction elicited by over-oxygenating tissues, a problem associated with low O(2) affinity first generation HBOCs. Our group has previously investigated the polymerization of hemoglobin (Hb) with dialdehydes as a strategy for engineering high O(2) affinity HBOCs. In this study, two novel reactive dialdehydes were synthesized by ring-opening 2-chloroethyl-beta-D-fructopyranoside (2-CEFP) and 1-o-octyl-beta-D-glucopyranoside (1-OGP) at the 1,2-diol position, respectively, to yield novel Hb polymerizing reagents. High-affinity polymerized HBOCs were synthesized by reacting R-state bovine hemoglobin (bHb) with ring-opened 2-CEFP and 1-OGP at cross-linker to bHb molar ratios ranging from 10:1 to 30:1. The resulting polymerized bovine HBOCs (bHBOCs) displayed P(50)s ranging from 7 to 18 mmHg, cooperativities ranging from 0.8 to 1.4, and methemoglobin (metHb) levels ranging from 3% to 10%. The cross-linking reaction also stabilized the third stepwise Adair coefficient for bHbs reacted with ring-opened 1-OGP at cross-linker to bHb molar ratios of 20:1 and 30:1 and for bHbs reacted with ring-opened 2-CEFP at molar ratios of 30:1. Additionally, the number-averaged molecular weight, M(n), of each polymerized bHBOC was larger compared to bHb. Molecular weight distributions leaning towards larger molecular weight bHBOCs were obtained by increasing the cross-linker to bHb molar ratio. Taken together, the results of this study have identified novel Hb polymerization reagents that are easy to synthesize, and that are capable of yielding bHBOCs with higher O(2) affinities and weight-averaged molecular weights compared to bHb.  相似文献   

12.
The major pathway for nitric oxide scavenging in red cells involves the direct reaction of the gas with HbO2 to form nitrate and the ferric form of the protein, metHb. Because both atoms of O2 are incorporated into nitrate, this process is called NO dioxygenation (NOD). The NOD reaction involves an initial, very rapid bimolecular addition of NO to bound O2 to form a transient Fe(III)-peroxynitrite complex, which can be observed spectrally at alkaline pH. This intermediate rapidly isomerizes at pH 7 (t1/2 <== 1 ms) to metHb and NO3-, which is nontoxic and readily transported out of red cells and excreted. The rate of NO consumption by intracellular HbO2 during normal blood flow is limited by diffusion up to and into the red cells and is too slow to interfere significantly with vasoregulation. In contrast, extracellular HbO2 is highly vasoconstrictive, and the resultant hypertension is a significant side effect of most hemoglobin-based blood substitutes. The major cause of this blood pressure effect seems to be the high rate of NO dioxygenation by cell-free HbO2, which can extravasate into the vessel walls and interfere directly with NO signaling between endothelial and smooth muscle cells. This interpretation is supported by a strong linear correlation between the magnitude of the blood pressure effect caused by infusion of cross-linked recombinant hemoglobin tetramers in vivo and the rate of NO dioxygenation by these proteins measured in vitro.  相似文献   

13.
Bovine hemoglobin was cross-linked with glutaraldehyde, resulting in high oxygen affinity polymeric hemoglobin dispersions of varying molecular weight distributions. High oxygen affinity acellular oxygen carriers were designed in order to exhibit oxygen release profiles closer to that of human red blood cells (RBCs), without exhibiting the inherent increased vasoactivity that occurs with low oxygen affinity acellular oxygen carriers (1, 2). Oxygen dissociation curves were measured for polymerized hemoglobin dispersions at various pH values (7.0, 7.4, and 8.0) and chloride ion concentrations. Unmodified hemoglobin showed an increase in oxygen affinity with increased chloride ion concentration and a decrease in oxygen affinity with increased pH, as was previously demonstrated in the literature (3). For glutaraldehyde-polymerized hemoglobin dispersions, the ability of the oxygen affinity to respond to changes in Bohr H+ and Cl- concentration was weakened. However, at acidic physiological pH (pH = 7), the Bohr effect was still present at high Cl- concentrations. Thus, the Bohr effect maintained some dependency on the Cl- concentration.  相似文献   

14.
Using the double mixing method we have studied the reactions of the partially liganded species (Hb4, Hb4L1, Hb4L2, Hb4L3) of normal human hemoglobin with carbon monoxide. In the first mixing, oxygen is removed from the species Hb4(O2) chi (CO) gamma and at the second mixing the species Hb4(CO) gamma reacts with CO. At 90% saturation of oxyHb with CO the main intermediate species are Hb4(CO)3 and Hb4(CO)2, and at 10% saturation Hb4 and Hb4(CO). The four CO-combination rate constants determined are: l'1 = 1 X 10(5) M-1 S-1, l'2 = 7 X 10(5) M-1 S-1, l'3 = 2 X 10(5) M-1 S-1 and l'4 = 4.8 X 10(6) M-1 S-1. The results indicate that there is no monotonic increase in the successive CO-combination rate constants. It is difficult to explain these results on the basis of the two-state model (Monod et al., 1965) or the stereochemical model of Perutz (1970).  相似文献   

15.

Background

Hemoglobin (Hb)-based oxygen carriers (HBOCs) are potential pharmaceutical agents that can be used in surgery or emergency medicine. PEGylation can modulate the vasoactivity of Hb and is a widely used approach to develop HBOCs. However, PEGylation can significantly enhance the tetramer–dimer dissociation of Hb, which may perturb the structure of Hb and increase its observed adverse effect. Thus, it is necessary to increase the tetramer stability of the PEGylated Hb.

Methods

Propylbenzmethylation at Val-1(α) of HbA was carried out to stabilize the Hb tetramer. The propylbenzmethylated Hb at Val-1(α) (PrB-Hb) was used as the starting material for site-specific PEGylation at Cys-93(β) of Hb using maleimide PEG. Structural and functional properties, autoxidation rate and thermal stability of the resultant product (PEG-PrB-Hb) were measured.

Results

Propylbenzmethylation at Val-1(α) led to 25-fold and 24-fold decreases in the tetramer–dimer dissociation constant of HbA and PEG-Hb, respectively. The increased tetramer stability is due to the enhanced hydrophobicity of the area around Val-1(α) and the increased polar interaction of Hb upon propylbenzmethylation. Thus, the structural and functional properties of PEG-Hb were improved, and its autoxidation rate and thermal denaturation were decreased.

Conclusion

Propylbenzmethylation at Val-1(α) showed higher ability than propylation at Val-1(α) to improve the structural and functional properties and decrease the side effect of PEG-Hb.

General significance

Our study can facilitate the biotechnological development of stable PEGylated Hb as more advanced HBOC. Our study is also expected to improve the stability of the tetrameric or dimeric proteins (e.g., uric oxidase) by propylbenzmethylation at their N-terminus.  相似文献   

16.
One physiological significance of the red blood cell (RBC) structure is that NO binding of Hb is retarded by encapsulation with the cell membrane. To clarify the mechanism, we analyzed Hb-vesicles (HbVs) with different intracellular Hb concentrations, [Hb](in), and different particle sizes using stopped-flow spectrophotometry. The apparent NO binding rate constant, k(on)('(NO)), of HbV at [Hb](in) = 1 g/dl was 2.6 x 10(7) m(-1) s(-1), which was almost equal to k(on)((NO)) of molecular Hb, indicating that the lipid membrane presents no obstacle for NO binding. With increasing [Hb](in) to 35 g/dl, k(on)('(NO)) decreased to 0.9 x 10(7) m(-1) s(-1), which was further decreased to 0.5 x 10(7) m(-1) s(-1) with enlarging particle diameter from 265 to 452 nm. For CO binding, which is intrinsically much slower than NO binding, k(on)('(CO)) did not change greatly with [Hb](in) and the particle diameter. Results obtained using diffusion simulations coupled with elementary binding reactions concur with these tendencies and clarify that NO is trapped rapidly by Hb from the interior surface region to the core of HbV at a high [Hb](in), retarding NO diffusion toward the core of HbV. In contrast, slow CO binding allows time for further CO-diffusion to the core. Simulations extrapolated to larger particles (8 mum) showing retardation even for CO binding. The obtained k(on)('(NO)) and k(on)('(NO)) yield values similar to those reported for RBCs. In summary, the intracellular, not extracellular, diffusion barrier is predominant due to the rapid NO binding that induces a rapid sink of NO from the interior surface to the core, retarding further NO diffusion and binding.  相似文献   

17.
The free volume in the active site of human HbA plays a crucial role in governing the bimolecular rates of O(2), CO, and NO binding, the fraction of geminate ligand recombination, and the rate of NO dioxygenation by the oxygenated complex. We have decreased the size of the distal pocket by mutating Leu(B10), Val(E11), and Leu(G8) to Phe and Trp and that of other more internal cavities by filling them with Xe at high gas pressures. Increasing the size of the B10 side chain reduces bimolecular rates of ligand binding nearly 5000-fold and inhibits CO geminate recombination due to both reduction of the capture volume in the distal pocket and direct steric hindrance of Fe-ligand bond formation. Phe and Trp(E11) mutations also cause a decrease in distal pocket volume but, at the same time, increase access to the Fe atom because of the loss of the γ2 CH(3) group of the native Val(E11) side chain. The net result of these E11 substitutions is a dramatic increase in the rate of geminate recombination because dissociated CO is sequestered close to the Fe atom and can rapidly rebind without steric resistance. However, the bimolecular rate constants for binding of ligand to the Phe and Trp(E11) mutants are decreased 5-30-fold, because of a smaller capture volume. Geminate and bimolecular kinetic parameters for Phe and Trp(G8) mutants are similar to those for the native HbA subunits because the aromatic rings at this position cause little change in distal pocket volume and because ligands do not move past this position into the globin interior of wild-type HbA subunits. The latter conclusion is verified by the observation that Xe binding to the α and β Hb subunits has little effect on either geminate or bimolecular ligand rebinding. All of these experimental results argue strongly against alternative ligand migration pathways that involve movements through the protein interior in HbA. Instead, ligands appear to enter through the His(E7) gate and are captured directly in the distal cavity.  相似文献   

18.
The red blood cell (RBC) has been proposed as an O2 sensor through a direct link between the desaturation of intracellular hemoglobin (Hb) and ATP release, leading to vasodilation. We hypothesized that the addition of cell-free Hb to the extracellular space provides a supplementary O2 source that reduces RBC desaturation and, consequently, ATP release. In this study, the saturation of RBC suspensions was lowered by additions of deoxygenated hemoglobin-based oxygen carrier (HBOC) and then assayed for extracellular ATP. When an acellular human Hb intramolecularly cross-linked between α subunits (ααHb, p50 = 33 mmHg) was added to the red cell suspension, ATP production was significantly less than that in the presence of a lower p50 HBOC (Hb cross-linked between β subunits, ββHb, p50 = 8 mmHg). These results provide a potential mechanism for the O2 affinity of HBOCs to interfere with a vasodilatory signal.  相似文献   

19.
Hemoglobin (Hb) potently inactivates the nitric oxide (NO) radical via a dioxygenation reaction forming nitrate (NO(3)(-)). This inactivation produces endothelial dysfunction during hemolytic conditions and may contribute to the vascular complications of Hb-based blood substitutes. Hb also functions as a nitrite (NO(2)(-)) reductase, converting nitrite into NO as it deoxygenates. We hypothesized that during intravascular hemolysis, nitrite infusions would limit the vasoconstrictive properties of plasma Hb. In a canine model of low- and high-intensity hypotonic intravascular hemolysis, we characterized hemodynamic responses to nitrite infusions. Hemolysis increased systemic and pulmonary arterial pressures and systemic vascular resistance. Hemolysis also inhibited NO-dependent pulmonary and systemic vasodilation by the NO donor sodium nitroprusside. Compared with nitroprusside, nitrite demonstrated unique effects by not only inhibiting hemolysis-associated vasoconstriction but also by potentiating vasodilation at plasma Hb concentrations of <25 muM. We also observed an interaction between plasma Hb levels and nitrite to augment nitroprusside-induced vasodilation of the pulmonary and systemic circulation. This nitrite reductase activity of Hb in vivo was recapitulated in vitro using a mitochondrial NO sensor system. Nitrite infusions may promote NO generation from Hb while maintaining oxygen delivery; this effect could be harnessed to treat hemolytic conditions and to detoxify Hb-based blood substitutes.  相似文献   

20.
The presence of acellular hemoglobin (Hb) within the circulation is generally viewed as a pathological state that can result in toxic consequences. Haptoglobin (Hp), a globular protein found in the plasma, binds with high avidity the αβ dimers derived from the dissociation of Hb tetramer and thus helps clear free Hb. More recently there have been compelling indications that the redox properties of the Hp bound dimer (Hb-Hp) may play a more active role in controlling toxicity by limiting the potential tissue damage caused by propagation of the free-radicals generated within the heme containing globin chains. The present study further examines the potential protective effect of Hp through its impact on the production of nitric oxide (NO) from nitrite through nitrite reductase activity of the Hp bound αβ Hb dimer. The presented results show that the Hb dimer in the Hb-Hp complex has oxygen binding, CO recombination and spectroscopic properties consistent with an Hb species having properties similar to but not exactly the same as the R quaternary state of the Hb tetramer. Consistent with these observations is the finding that the initial nitrite reductase rate for Hb-Hp is approximately ten times that of HbA under the same conditions. These results in conjunction with the earlier redox properties of the Hb-Hp are discussed in terms of limiting the pathophysiological consequences of acellular Hb in the circulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号