首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Resveratrol and piceatannol are plant-derived polyphenols possessing extremely wide range of biological activities such as cancer chemopreventive, cardio- and neuroprotective, antioxidant, anti-inflammatory, anticancer and lifespan extending properties. Despite great interest in these stilbenes, their interactions with lipid bilayers have not been extensively studied. In the present work, the interaction of both resveratrol and piceatannol with model membranes composed of phosphatidylcholine (DMPC and DPPC) was investigated by means of fluorescence spectroscopy, differential scanning calorimetry (DSC) and electron spin resonance spectroscopy (ESR). Generalized polarization of two fluorescent probes Laurdan and Prodan measured in pure lipid and lipid:stilbene mixtures revealed that resveratrol and piceatannol changed bilayer properties in both gel-like and liquid crystalline phase and interacted with lipid headgroup region of the membrane. These findings were corroborated by DSC experiments in which the stilbene-induced decrease of lipid melting temperature and transition cooperativity were recorded. Resveratrol and piceatannol restricted also the ESR-measured mobility of spin probes GluSIN18, 5DSA and 16DSA with nitroxide group localized at different depths. Since the most pronounced effect was exerted on the spin probe located near membrane surface, we concluded that also ESR results pointed to the preferential interaction of resveratrol and piceatannol with headgroup region of lipid bilayer.  相似文献   

2.
Two spin-labelled derivatives of the 5-(2-indolyl)-2,4-pentadienoyl class of inhibitors of the vacuolar ATPase have been synthesised and their EPR properties characterised in phospholipid membranes. One spin-labelled inhibitor is the amide derivative of pentadienic acid and 4-amino-TEMPO (INDOL6), and the other is the 3-hydroxymethyl-PROXYL ester (INDOL5). The response of the EPR spectra to the chain-melting transition of dimyristoyl phosphatidylcholine (DMPC) bilayers demonstrates that both derivatives incorporate in phospholipid membranes. The axially anisotropic EPR spectra of INDOL6 in fluid DMPC membranes indicate that the indolyl-pentadienoyl inhibitors intercalate between the lipid chains, in the membrane. INDOL5, designed to possess additional internal segmental mobility, exhibits more nearly isotropic motion of the spin-label moiety in fluid membranes than does INDOL6. The EPR characteristics of INDOL5 are therefore well suited to detecting specific ligand-protein interactions. Progressive saturation EPR experiments with polar and hydrophobic relaxation agents (aqueous Ni2+ and oxygen) show that the nitroxide group is buried in the membrane, with the indole moiety providing the anchor at the membrane polar-apolar interface. Rates of spin-label reduction by externally added ascorbate confirm this assignment. These two spin-labelled derivatives provide complementary EPR probes of the lipid environment (INDOL6), and of ligand-protein interactions (INDOL5), for this class of V-ATPase inhibitor.  相似文献   

3.
Many cell membranes of living organisms can be represented as phospholipid bilayers immersed into a water environment. The physical-chemical interactions at the membranes/water interface are responsible for the stabilization of the membranes. In addition, the drug efficiency, the pharmaceutical mechanism and the improvement of the drug design can be addressed to the interactions between the membranes-water interface with the drug and to the membrane-drug interface. In this framework, it is important to find membranes models able to simulate and simultaneously simplify the biological systems to better understand both physical and chemical interactions at the interface level. Dimyristoylphosphatidylcholine (DMPC) is a synthetic phospholipid used in order to make Multilamellar Vesicle (MLV), Large Unilamellar Vesicle (LUV) and Giant Unilamellar Vesicle (GUV). In order to understand the mechanisms of vesicle formation, we have analyzed mixtures of DMPC and water by micro-Raman spectroscopy at different temperatures in the range between 10 and 35 °C. Particularly, we analyzed the temperature dependence of the CN vibrational frequency, which appears well correlated to the order degree of the various phases. These investigations, beyond the determination of phospholipid hydrocarbon chains order, provide information about the conformation of the lipid membranes.We have identified the mixture of DMPC/water that is best suited for Raman studies and can be used as an in-vitro model for biological systems.A peculiar frequency shift across the transition gel-ripple-liquid crystalline phases has been proposed as a useful diagnostic marker to detect the “order degree” and subsequently the phases of biomimetic membranes made by DMPC.  相似文献   

4.
The interaction of two helical antimicrobial peptides, HPA3 and HPA3P with planar supported lipid membranes was quantitatively analysed using two complementary optical biosensors. The peptides are analogues of Hp(2-20) derived from the N-terminus of Helicobacter pylori ribosomal protein L1 (RpL1). The binding of these two peptide analogues to zwitterionic dimyristoyl-phosphatidylcholine (DMPC) and negatively charged membranes composed of DMPC/dimyristoylphosphatidylglycerol (DMPG) (4:1) was determined using surface plasmon resonance (SPR) and dual polarisation interferometry (DPI). Using SPR analysis, it was shown that the proline substitution in HPA3P resulted in much lower binding for both zwitterionic and anionic membranes than HPA3. Structural changes in the planar DMPC and DMPC/DMPG (4:1) bilayers induced by the binding of both Hp(2-20) analogues were then resolved in real-time with DPI. The overall process of peptide-induced changes in membrane structure was analysed by the real-time changes in bound peptide mass as a function of bilayer birefringence. The insertion of both HPA3 and HPA3P into the supported lipid bilayers resulted in a decrease in birefringence with increasing amounts of bound peptide which reflects a decrease in the order of the bilayer. The binding of HPA3 to each membrane was associated with a higher level of bound peptide and greater membrane lipid disordering and a faster and higher degree of insertion into the membrane than HPA3P. Furthermore, the binding of both HPA3 and HPA3P to negatively charged DMPC/DMPG bilayers also leads to a greater disruption of the lipid ordering. These results demonstrate the geometrical changes in the membrane upon peptide insertion and the extent of membrane structural changes can be obtained quantitatively. Moreover, monitoring the effect of peptides on a structurally characterised bilayer has provided further insight into the role of membrane structure changes in the molecular basis of peptide selectivity and activity and may assist in defining the mode of antimicrobial action.  相似文献   

5.
We have utilized both fluorescent and nitroxide derivatives of stearic acid as probes of membrane structural heterogeneity in phospholipid vesicles under physiological conditions, as well as conditions of varying ionic strengths and temperatures where spectral heterogeneity has been previously observed and attributed to multiple ionization states of the probes. To identify the source of this spectral heterogeneity, we have utilized complimentary measurements of the relaxation properties (lifetimes) and motion of both (a) spin labeled and anthroyloxy derivatives of stearic acid (i.e., SASL and AS) and (b) a diphenylhexatriene derivative of phosphatidylcholine (DPH-PC) in single component membranes containing dimyristoylphosphatidylcholine (DMPC). We use an 15N stearic-acid spin label for optimal sensitivity to membrane heterogeneity. The lifetime and dynamics of the fluorescent phospholipid analogue DPH-PC (with no ionizable groups over this pH range) were compared with those of AS, allowing us to discriminate between changes in membrane structure and the ionization of the label. The quantum yield and rotational dynamics of DPH-PC are independent of pH, indicating that changes in pH do not affect the conformation of the host phospholipids. However, both EPR spectra of SASL and the lifetime or dynamics of AS are affected profoundly by changes in solution pH. The apparent pKa's of these two probes in DMPC membranes were determined to be near pH 6.3, implying that at physiological pH and ionic strength these stearic-acid labels exist predominantly as a single ionized population in membranes. Therefore, the observed temperature- and ionic-strength-dependent alterations in the spectra of SASL as well as the lifetime or dynamics of AS in DMPC membranes at neutral pH are due to changes in membrane structure rather than the ionization of the probes. The possibility that ionic gradients across biological membranes induce alterations in phospholipid structures, thereby modulating lipid-protein interactions is discussed.  相似文献   

6.
The present work demonstrates the interaction of promising cancer cell photosensitizer, harmane (HM), with liposome membranes of varying surface charges, dimyristoyl-l-α-phosphatidylcholine (DMPC) and dimyristoyl-l-α-phosphatidylglycerol (DMPG). Electrostatic interaction of the cationic probe (HM) with the surface charges of the lipids is responsible for differential modulation of the spectral properties of the drug in different lipid environments. Estimation of partition coefficient (K(p) (±10%) = 5.58 × 10(4) in DMPC and 3.28 × 10(5) in DMPG) of HM between aqueous buffer and lipid phases reflect strong binding interaction of the drug with both the lipids. Evidence for greater degree of partitioning of HM into DMPG membrane compared to DMPC membrane has been deduced and further substantiated from experimental studies such as steady-state fluorescence anisotropy, micropolarity determination. The molecular modeling investigation by docking simulation coupled with fluorescence quenching experiment has been exploited to substantiate the location of drug at the lipid head-group region. Modulation of the dynamical properties of the drug within the lipid environments has also been addressed. Rotational relaxation dynamics studies unravel the impartation of a significant degree of motional restriction on the probe molecule within the lipids and reinforce the differential interactions of HM with the two lipid systems along the lines of other findings. Fluorescence kinetics studies reveal a faster association (in terms of apparent rate constants describing the process of interaction) of the drug with DMPG membrane compared to DMPC. This result is argued in connection with the electrostatic interaction between the drug and the liposome surface charges.  相似文献   

7.
The interactions of the antimicrobial peptide maculatin 1.1 (GLFGVLAKVAAHVVPAIAEHF-NH2) with model phospholipid membranes were studied by use of dual polarisation interferometry and neutron reflectometry and dimyristoylphosphatidylcholine (DMPC) and mixed DMPC–dimyristoylphosphatidylglycerol (DMPG)-supported lipid bilayers chosen to mimic eukaryotic and prokaryotic membranes, respectively. In DMPC bilayers concentration-dependent binding and increasing perturbation of bilayer order by maculatin were observed. By contrast, in mixed DMPC–DMPG bilayers, maculatin interacted more strongly and in a concentration-dependent manner with retention of bilayer lipid order and structure, consistent with pore formation. These results emphasise the importance of membrane charge in mediating antimicrobial peptide activity and emphasise the importance of using complementary methods of analysis in probing the mode of action of antimicrobial peptides.  相似文献   

8.
Solid-state 19F NMR spectroscopy is a method of choice to study the interactions between lipid membranes and other molecules such as peptides, proteins or drugs. Numerous fluorine-labeled NMR probes have been developed over the last few years, especially fluorine-labeled peptides. In order to develop a new kind of NMR reporter molecule and a complementary approach to fluorine-labeling of peptides, we synthesized six monofluorinated derivatives of the lipid dimyristoylphosphatidylcholine (F-DMPC), with the fluorine atom located along the acyl chain linked to the central glycerol position. To better understand the behavior of these fluorine-labeled lipids, we report here the investigation of F-DMPC membrane properties using solid-state 2H, 15N, 19F‐ and 31P‐NMR spectroscopy. This study was carried out on pure F-DMPC bilayers as well as F-DMPC/DMPC mixtures at various ratios. Slight perturbations were observed for pure F-DMPC multilamellar vesicles (MLVs), most noticeable for lipids with the fluorine atom located at the extremities of the acyl chain. On the other hand, no significant perturbations were observed for F-DMPC/DMPC MLVs containing up to 25% F-DMPC, nor for any fluorine-labeled bilayers that were prepared as macroscopically oriented samples. To test the interaction with some representative peptides, 15N-labeled α-helical antimicrobial peptides (AMPs) were incorporated into F-DMPC/DMPC (1/3) bilayers. 15N SS-NMR analyses confirmed that the known orientation of each AMP in pure DMPC was preserved in the presence of 25% monofluorinated DMPC, irrespective of the position of the 19F-label. In summary, F-DMPC/DMPC (1/3) model membranes can be used as NMR reporter to study membrane interactions with other molecules.  相似文献   

9.
This paper demonstrates by means of FTIR/ATR analysis that water molecules intercalate at different extents in the acyl chain region of lipid membranes in correlation with the hydration of the phosphate groups.This correlation is sensible to the chain length, the presence of double bonds and the phase state of the lipid membrane.The presence of carbonyl groups CO modifies the profile of hydration of the two regions as observed from the comparison of DMPC and 14:0 Diether PC.The different water populations in lipid interphases would give arrangements with different free energy states that could drive the interaction of biological effectors with membranes.  相似文献   

10.
Cyclodextrins are hydrophilic molecular cages with a hydrophobic interior allowing the inclusion of water-insoluble drugs. Amphiphilic cyclodextrins obtained by appending a hydrophobic anchor were designed to improve the cell targeting of the drug-containing cavities through their liposome transportation in the organism. After insertion in model membranes, they were found to induce a lateral phase separation into a pure lipid phase and a fluid cyclodextrin-rich phase (L(CD)) with reduced acyl chain order parameters, as observed with a derivative containing a cholesterol anchor (M. Roux, R. Auzely-Velty, F. Djeda?ni-Pilard, and B. Perly. 2002. Biophysical Journal, 8:813-822). We present another class of amphiphilic cyclodextrins obtained by grafting aspartic acid esterified by two lauryl chains on the oligosaccharide core via a succinyl spacer. The obtained dilauryl-beta-cyclodextrin (betaDLC) was inserted in chain perdeuterated dimyristoylphosphatidylcholine (DMPC-d54) membranes and studied by deuterium NMR ((2)H-NMR). A laterally segregated mixed phase was found to sequester three times more lipids than the cholesteryl derivative (approximately 4-5 lipids per monomer of betaDLC), and a quasipure L(CD) phase could be obtained with a 20% molar concentration of betaDLC. When cooled below the main fluid-to-gel transition of DMPC-d54 the betaDLC-rich phase stays fluid, coexisting with pure lipid in the gel state, and exhibits a sharp transition to a gel phase with frozen DMPC acyl chains at 12.5 degrees C. No lateral phase separation was observed with partially or fully methylated betaDLC, confirming that the stability of the segregated L(CD) phase was governed through hydrogen-bond-mediated intermolecular interactions between cyclodextrin headgroups at the membrane surface. As opposed to native betaDLC, the methylated derivatives were found to strongly increase the orientational order of DMPC acyl chains as the temperature reaches the membrane fluid-to-gel transition. The results are discussed in relation to the "anomalous swelling" of saturated phosphatidylcholine multilamellar membranes known to occur in the vicinity of the main fluid-to-gel transition.  相似文献   

11.
The present study investigates the relationships between structural polymorphism, adsorption onto membrane mimetic support, lipid disturbance, and biological activity of bactericidal 23-residue, glycine-leucine-rich dermaseptin orthologues from the Phyllomedusinae frog skin, the "plasticins". Biological activities were evaluated using the membrane models DMPG (1,2-dimyristoyl-sn-glycero-3-phosphatidylglycerol) for prokaryotic membranes and DMPC (1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine) for eukaryotic membranes. We performed a conformational analysis of plasticins by molecular simulations and spectroscopic methods and analyzed phospholipid perturbations by infrared spectroscopy. Adsorption onto synthetic model membranes was quantified by surface plasmon resonance. Biological assays including antimicrobial and membrane potential-dissipating activities, together with hemolytic tests and imaging analysis of cytotoxicity, were carried out to clarify the peptide-membrane interactions. Two major groups were distinguished: (i) Neutral plasticins revealed the presence of strong beta-structures with the zwitterionic or anionic phospholipid vesicles. They were weakly adsorbed in the range of antibacterial activity concentrations (micromolar). Nevertheless, for millimolar concentrations, they caused perturbations at the interface peptide-DMPG vesicles and in the bilayer alkyl chains, suggesting insertion into bacterial membranes. (ii) Cationic plasticins revealed multiple conformational transitions, including destabilized helix states, beta-structures, and disordered states. Peptide-lipid complex densities depended on hydrophobic bond strengths. The most soluble cationic plasticins were strongly adsorbed, with stable peptide-lipid interactions inducing noticeable perturbations of bilayer alkyl chains, pointing out possible insertion into bacterial membranes. In contrast, cytotoxic plasticins were less adsorbed, with less stable peptide-lipid interactions causing membrane dehydration, formation of peptide-membrane hydrogen bonds, and little disturbances of lipid alkyl chains. These characteristics could be compatible with their putative action on intracellular targets leading to apoptosis.  相似文献   

12.
S-nitroso-N-acetylpenicillamine (SNAP) is a pharmacological agent with diverse biological effects that are mainly attributable to its favorable characteristics as a nitric oxide (NO)-evolving agent. It is found that SNAP incorporates readily into dimyristoyl phosphatidylcholine (DMPC) bilayer membranes; and an approximate penetration profile was obtained from the depth dependence of the perturbation that it exerts on spin-labeled lipid chains. The profile of SNAP locates it deep in the hydrophobic core of both fluid- and gel-phase membranes. The spin relaxation enhancement of spin-labeled phospholipids with nitroxide group located at different depths in DMPC membranes was determined for nitric oxide (NO) and molecular oxygen (O(2)), at close to atomic spatial resolution. The relaxation enhancement, which is proportional to the corresponding vertical membrane profile of the concentration-diffusion product, was measured in the gel and fluid phases of the lipid bilayer. No significant membrane penetration was observed in the gel phase for the two water-dissolved gases. In the fluid phase, the transmembrane profiles of NO and O(2) are similar and could be well described by a sigmoidal function with a maximum in the center of the bilayer, but that of NO is less steep and is shifted toward the center of the membrane, relative to that of O(2). These differences can be attributed mainly to the difference in hydrophobicity between the two gases and the presence of the donor in the NO experiments. The biological implications of the above results are discussed.  相似文献   

13.
S-nitroso-N-acetylpenicillamine (SNAP) is a pharmacological agent with diverse biological effects that are mainly attributable to its favorable characteristics as a nitric oxide (NO)-evolving agent. It is found that SNAP incorporates readily into dimyristoyl phosphatidylcholine (DMPC) bilayer membranes; and an approximate penetration profile was obtained from the depth dependence of the perturbation that it exerts on spin-labeled lipid chains. The profile of SNAP locates it deep in the hydrophobic core of both fluid- and gel-phase membranes. The spin relaxation enhancement of spin-labeled phospholipids with nitroxide group located at different depths in DMPC membranes was determined for nitric oxide (NO) and molecular oxygen (O2), at close to atomic spatial resolution. The relaxation enhancement, which is proportional to the corresponding vertical membrane profile of the concentration-diffusion product, was measured in the gel and fluid phases of the lipid bilayer. No significant membrane penetration was observed in the gel phase for the two water-dissolved gases. In the fluid phase, the transmembrane profiles of NO and O2 are similar and could be well described by a sigmoidal function with a maximum in the center of the bilayer, but that of NO is less steep and is shifted toward the center of the membrane, relative to that of O2. These differences can be attributed mainly to the difference in hydrophobicity between the two gases and the presence of the donor in the NO experiments. The biological implications of the above results are discussed.  相似文献   

14.
Molecular behavior under bilayer membrane environments is one of the important research topics concerning how organic molecules exert their biological activities when interacting with cellular membranes. However, chemistry-based approaches to this property have not been successful when compared with the structural biological strategy on ligand-receptor interactions. Here, we investigated the molecular behavior of the lipophilic ATPase inhibitor bafilomycin A1 and its derivatives under a lipid environment from a chemical point of view. Our results revealed significant differences in membrane affinity and dynamics among ligands having different inhibitory potencies, suggesting the specific contribution of ligand-membrane interactions to their biological activity.  相似文献   

15.
To understand the initial stages of membrane destabilization induced by viral proteins, the factors important for binding of fusion peptides to cell membranes must be identified. In this study, effects of lipid composition on the mode of peptides' binding to membranes are explored via molecular dynamics (MD) simulations of the peptide E5, a water-soluble analogue of influenza hemagglutinin fusion peptide, in two full-atom hydrated lipid bilayers composed of dimyristoyl- and dipalmitoylphosphatidylcholine (DMPC and DPPC, respectively). The results show that, although the peptide has a common folding motif in both systems, it possesses different modes of binding. The peptide inserts obliquely into the DMPC membrane mainly with its N-terminal alpha helix, while in DPPC, the helix lies on the lipid/water interface, almost parallel to the membrane surface. The peptide seriously affects structural and dynamical parameters of surrounding lipids. Thus, it induces local thinning of both bilayers and disordering of acyl chains of lipids in close proximity to the binding site. The "membrane response" significantly depends upon lipid composition: distortions of DMPC bilayer are more pronounced than those in DPPC. Implications of the observed effects to molecular events on initial stages of membrane destabilization induced by fusion peptides are discussed.  相似文献   

16.
The fatty acid composition of plasma membrane phospholipids of the murine T lymphocyte tumor EL4 were systematically modified in an attempt to understand the relationship between lipid bilayer composition and plasma membrane physical and biological properties. Two plasma membrane enzyme activities, adenylate cyclase and ouabain-sensitive (Na+ + K+)-ATPase, were measured in normal and fatty acid-substituted EL4 plasma membrane fractions. The fatty acid effect on enzyme activities was similar to previously reported effects of fatty acids on cytotoxic T cell function. The activity of both enzymes was inhibited by saturated fatty acids, while unsaturated fatty acids had a moderate enhancing effect on both enzyme activities. Using two different nitroxide derivatives of stearic acid, the order parameter and approximate rotational correlation times were calculated from ESR spectra of normal and fatty acid-modified plasma membranes. No significant differences was found in either parameter in these membranes. These results, in conjunction with earlier data from our laboratory and others, suggest that caution should be exercised in inferring changes in membrane 'fluidity' based on lipid modulation of biological membranes.  相似文献   

17.
A Kintanar  A C Kunwar  E Oldfield 《Biochemistry》1986,25(21):6517-6524
We have investigated the deuterium (2H) nuclear magnetic resonance (NMR) spectra of two 2H-labeled fluorescence probes (trans,trans,trans-1,6-diphenylhexa-1,3,5-trienes, DPHs) incorporated into model lipid bilayer membrane systems at various temperatures. The membranes consisted of multilamellar bilayers of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) containing varying concentrations of cholesterol. The conventional one-order parameter approach often used in the analysis of the NMR data of lipid membranes does not explain the observed temperature variations of the spectral features. Consistent with the molecular symmetry, the results have thus been analyzed in terms of an ordering matrix with more than one independent element. The molecular order parameter (SNMR), the order along the long molecular axis, in the pure lipid system varies from 0.49 to 0.26 as the temperature is increased from 25 to 57 degrees C. These values are somewhat larger than the order parameters obtained from fluorescence depolarization (SFLU) on sonicated DMPC vesicles. Such discrepancies probably arise from the looser packing of the sonicated vesicles. Addition of cholesterol to the model membranes causes the order parameter of the probe molecules to increase. At 35 degrees C, SNMR increases from 0.38 (with no cholesterol) to 0.92 (in the presence of 50 mol % cholesterol). These values are about 10% larger than those obtained from fluorescence depolarization studies on sonicated vesicles. The SNMR for DPH are somewhat larger than those obtained in earlier NMR studies of 2H-labeled cholesterol. However, they compare well with those obtained for 2H-labeled DMPC.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Effects of lead on the human erythrocyte membrane and molecular models   总被引:1,自引:0,他引:1  
Lead has no biological function; however, low, and particularly, high levels of exposure have a number of negative consequences for human health. Despite the number of reports about lead toxicity, very little information has been obtained regarding its effects on cell membranes. For this reason, the structural effects of lead on the human erythrocyte membranes were investigated. This aim was attained by making lead ions interact with intact erythrocytes, isolated unsealed erythrocyte membranes (IUM) and molecular models. The latter consisted of bilayers of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE), representing phospholipid classes located in the outer and inner monolayers of the human erythrocyte membrane. The results, obtained by electron microscopy, fluorescence spectroscopy and X-ray diffraction, indicated that (a) lead particles adhered to the external and internal surfaces of the human erythrocyte membrane; (b) lead ions disturbed the lamellar organization of IUM and DMPC large unilamellar vesicles (LUV) and (c) induced considerable molecular disorder in both lipid multilayers, the effects being much more pronounced in DMPC.  相似文献   

19.
The influence of maltose-modified poly(propylene imine) (PPI) dendrimers on dimyristoylphosphatidylcholine (DMPC) or dimyristoylphosphatidylcholine/dimyristoylphosphatidylglycerol (DMPC/DMPG) (3%) liposomes was studied. Fourth generation (G4) PPI dendrimers with primary amino surface groups were partially (open shell glycodendrimers — OS) or completely (dense shell glycodendrimers — DS) modified with maltose residues. As a model membrane, two types of 100 nm diameter liposomes were used to observe differences in the interactions between neutral DMPC and negatively charged DMPC/DMPG bilayers. Interactions were studied using fluorescence spectroscopy to evaluate the membrane fluidity of both the hydrophobic and hydrophilic parts of the lipid bilayer and using differential scanning calorimetry to investigate thermodynamic parameter changes. Pulsed-filed gradient NMR experiments were carried out to evaluate common diffusion coefficient of DMPG and DS PPI in D2O when using below critical micelle concentration of DMPG. Both OS and DS PPI G4 dendrimers show interactions with liposomes. Neutral DS dendrimers exhibit stronger changes in membrane fluidity compared to OS dendrimers. The bilayer structure seems more rigid in the case of anionic DMPC/DMPG liposomes in comparison to pure and neutral DMPC liposomes. Generally, interactions of dendrimers with anionic DMPC/DMPG and neutral DMPC liposomes were at the same level. Higher concentrations of positively charged OS dendrimers induced the aggregation process with negatively charged liposomes. For all types of experiments, the presence of NaCl decreased the strength of the interactions between glycodendrimers and liposomes. Based on NMR diffusion experiments we suggest that apart from electrostatic interactions for OS PPI hydrogen bonds play a major role in maltose-modified PPI dendrimer interactions with anionic and neutral model membranes where a contact surface is needed for undergoing multiple H-bond interactions between maltose shell of glycodendrimers and surface membrane of liposome.  相似文献   

20.
The interactions of the antimicrobial peptides aurein 1.2, citropin 1.1 and maculatin 1.1 with dimyristoylphosphatidylcholine (DMPC), dimyristoylphosphatidylglycerol (DMPG) and dimyristoylphosphatidylethanolamine (DMPE) were studied by differential scanning calorimetry (DSC) and Fourier-transform infrared (FTIR) spectroscopy. The effects of these peptides on the thermotropic phase behavior of DMPC and DMPG are qualitatively similar and manifested by the suppression of the pretransition, and by peptide concentration-dependent decreases in the temperature, cooperativity and enthalpy of the gel/liquid-crystalline phase transition. However, at all peptide concentrations, anionic DMPG bilayers are more strongly perturbed than zwitterionic DMPC bilayers, consistent with membrane surface charge being an important aspect of the interactions of these peptides with phospholipids. However, at all peptide concentrations, the perturbation of the thermotropic phase behavior of zwitterionic DMPE bilayers is weak and discernable only when samples are exposed to high temperatures. FTIR spectroscopy indicates that these peptides are unstructured in aqueous solution and that they fold into alpha-helices when incorporated into lipid membranes. All three peptides undergo rapid and extensive H-D exchange when incorporated into D(2)O-hydrated phospholipid bilayers, suggesting that they are located in solvent-accessible environments, most probably in the polar/apolar interfacial regions of phospholipid bilayers. The perturbation of model lipid membranes by these peptides decreases in magnitude in the order maculatin 1.1>aurein 1.2>citropin 1.1, whereas the capacity to inhibit Acholeplasma laidlawii B growth decreases in the order maculatin 1.1>aurein 1.2 congruent with citropin 1.1. The higher efficacy of maculatin 1.1 in disrupting model and biological membranes can be rationalized by its larger size and higher net charge. However, despite its smaller size and lower net charge, aurein 1.2 is more disruptive of model lipid membranes than citropin 1.1 and exhibits comparable antimicrobial activity, probably because aurein 1.2 has a higher propensity for partitioning into phospholipid membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号