首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The main objective of this study was to determine whether uncontrolled hyperglycemia, as a consequence of diabetes, altered the metabolism of acetylcholine (ACh) in rat brain. To accomplish this, rats received injections of streptozotocin (STZ, 60 mg/kg, i.v.) or vehicle, and were maintained for up to 7 weeks after the injections. Various indices of ACh metabolism were determined in striatum and hippocampus, two brain regions densely innervated by cholinergic neurons. STZ induced diabetes in 96% of the rats injected, as evidenced by glucose spillage into the urine within 48 hours. Serum glucose levels increased to 326% of control values by 1 week and remained at this level for the duration of the study. The steady-state concentrations of ACh and choline, determined in brain tissue from animals killed by head-focused microwave irradiation, did not differ between the control and STZ-injected groups. However, the synthesis and release of neurotransmitter by striatal slices, measured in vitro, decreased in a time-dependent manner. Although the basal release of ACh was unaltered at 1 week, neurotransmitter release decreased significantly by 21% at 5 weeks and by 26% at 7 weeks. The release of ACh evoked by incubation with 35 mM KCl was inhibited significantly by 20% at all time points studied. ACh synthesis by slices incubated under basal conditions decreased by 13% and 27% at 5- and 7-weeks, respectively, the latter significantly less than controls. Synthesis by striatal slices incubated with 35 mM KCl was inhibited by 17% at 7 weeks. Although the synthesis and release of ACh by hippocampal slices from diabetic animals tended to be less than controls, these alterations were not statistically significant. Investigations into the mechanism(s) mediating the deficit in ACh synthesis exhibited by striatal slices indicated that it did not involve alterations in precursor choline availability, nor could it be attributed to alterations in the activities of the synthetic or hydrolytic enzymes choline acetyltransferase or acetylcholinesterase; rather, the decreased turnover of ACh may be secondary to other STZ-induced, hyperglycemia-mediated neurochemical alterations.  相似文献   

2.
The neuropeptide galanin is an inhibitory modulator of hippocampal acetylcholine (ACh) release and cognitive functions. Anatomical evidence demonstrated some differences between the dorsal and ventral hippocampi notably in the expression of galanin receptor subtypes, and the neuronal population on which galanin-like immunoreactivity is expressed. This is suggestive of a differential role for this peptide in these two areas of the hippocampal formation. Using in vivo microdialysis, we investigated the role of galanin on ACh release in the dorsal and ventral hippocampi. Two models were studied: galanin-administered rats and transgenic mice over-expressing galanin (GAL-tg). In rats, galanin (2.0 and 10.0 microM) infused locally through the dialysis probe induced a significant decrease in ACh release in the ventral hippocampus, confirming previous findings, while no effect was seen in the dorsal hippocampus. Using the no net flux method, a significant reduction in ACh levels was noted only in the ventral hippocampus of GAL-tg compared to wild-type littermates. These results suggest that excess endogenous galanin can suppress basal ACh release, with anatomical specificity, to the ventral hippocampus. These results are of interest in the context of galanin receptor subtypes in the dorsal and ventral hippocampus, and the differential alterations of hippocampal subregions in neurological diseases such as Alzheimer's dementia.  相似文献   

3.
Hypoxia and seizures early in life can cause multiple neurological deficits and even chronic epilepsy. Here, we report the data obtained in rats exposed to hypoxia and seizures at age 10-12 postnatal days and taken in experiments 8-9 weeks after hypoxia treatment. A level of the extracellular GABA and the initial velocity of GABA uptake were measured in the brain cortex, hippocampus and thalamus using isolated nerve terminals (synaptosomes). It has been revealed that the extracellular [(3)H]GABA level maintained by cortical and hippocampal synaptosomes in standard conditions (with glucose as an energy substrate) was significantly higher in adult rats exposed to hypoxia/seizures at P10-12 than in the control ones, and, moreover, became unstable with tendency to increase. Pyruvate as a single energy substrate was shown to be a highly effective for lowering and stabilizing the extracellular [(3)H]GABA level. This effect of pyruvate was tightly correlated with increase in GABA uptake and GATs affinity to GABA. Thalamus was insensible to the action of perinatal hypoxia/seizures, and thalamic GATs, in contrast to cortical and hippocampal ones, had a lower affinity to GABA (the apparent Km is 39.2±3.1 μM GABA vs 8.9±1.8 μM GABA in the hippocampus). A selective vulnerability of brain regions to hypoxia is suggested to be attributed to distinct terms of their maturation at the postnatal period. Thus, perinatal hypoxia/seizures evoke a long-lasting increase in the extracellular GABA level that could be attenuated by pyruvate treatment. This effect of pyruvate is likely due to a significant increase in GATs-mediated GABA uptake and modulation of GATs kinetic properties.  相似文献   

4.
The relationship of cerebral neurotransmitters acetylcholine (ACh), noradrenaline (NA), dopamine (DA), 5-hydroxytryptamine (5HT) to the energy state of the brain was examined in mice at various times following complete ischemia produced by decapitation, in gerbils submitted to transient global ischemia (10 min bilateral carotid artery occlusion, 5 or 30 min recirculation), and in rats 24 hr after irreversible microembolism. Ischemia caused significant reductions in brain monoamine concentrations. The alterations in NA, DA, and 5HT levels persisted during recirculation and were unrelated to energy restoration. They were accompanied by an increase in the concentrations of related metabolites, suggesting that synthesis was unable to compensate for the release of the transmitters at early post-ischemic time periods. As described for the catecholamines and 5HT, ischemia resulted in a significant decrease in ACh level, but recirculation was associated with a rapid increase in ACh concentration. Impaired synthesis and/or increased release of ACh can be responsible for the decrease in ACh concentration during ischemia. Early post-ischemic elevation of ACh may be related to the large increase in brain choline brought about by ischemia.  相似文献   

5.
Acetylcholine Releases Prostaglandins from Brain Slices Incubated In Vitro   总被引:5,自引:3,他引:2  
A variety of neurotransmitters elicit a phosphoinositide response in the CNS; however, their effects on prostaglandin (PG) formation in the brain are not well characterized. In the present study, we investigated the effect of acetylcholine (ACh) on the synthesis of PGs E and F in slices from various regions of guinea pig brain incubated in glucose-fortified Krebs-Henseleit bicarbonate saline. Slices were prewashed in the presence of 1% albumin to reduce basal PG levels followed by incubation for 30 min at 37 degrees C in the presence or absence of ACh. Under these conditions, 5 mM ACh significantly increased the efflux of PGE and PGF from brain regions enriched in muscarinic cholinergic receptors, i.e., cerebral cortex, temporal cortex, corpus striatum, and hippocampus. Depolarization by 45 mM KCl also significantly enhanced PG synthesis, and the relative magnitude of the effect was similar to that of ACh. The stimulation of PG synthesis by ACh was inhibited by 20 microM atropine, whereas the K+-induced stimulation was not. The effects of potassium and ACh were additive at maximally effective ACh concentrations, an observation that suggests that ACh and K+ increase PG efflux through independent mechanisms. Norepinephrine, histamine, and serotonin, three other neurotransmitters that evoke a phosphoinositide response in the brain, were ineffective in stimulating PG release from brain cortex slices.  相似文献   

6.
The aim was to study the mechanism of the previously established decrease in acetylcholine (ACh) concentration in the rat hippocampus under cold stress. Male rats were exposed for 14 days to cold (5 degrees C) or kept (controls) at room temperature (24 degrees C). Acetylcholine content, release and muscarinic receptor binding were investigated in the hippocampus. Cold exposure resulted in a decrease of ACh concentration in the dorsal hippocampus. Moreover, the potassium-evoked release of ACh from hippocampal slices was increased and an increase of maximal binding capacity of [3H] (-) quinuclidinyl benzilate in the dorsal hippocampus of cold exposed animals was also observed. Thus the decrease of hippocampal ACh concentration under cold exposure is probably due to its increased release. On balance then, our results demonstrate that cold stress in the rat induces significant activation of the hippocampal cholinergic system.  相似文献   

7.
Because brain extracellular acetylcholine (ACh) levels are near detection limits in microdialysis samples, an acetylcholinesterase (AChE) inhibitor such as neostigmine is often added to microdialysis perfusates to increase ACh levels in the dialysate, a practice that raises concerns that the inhibitor might alter the results. Two experiments compared functional differences in ACh release with and without neostigmine. In the first experiment, 30-60% increases in extracellular ACh concentrations in the hippocampus were evident during food-rewarded T-maze training with 20-500 nm neostigmine in the perfusate but no increases were seen without neostigmine. In the second experiment, 78% increases in ACh release in the hippocampus were seen after injections of the GABA(A) receptor antagonist, bicuculline, into medial septum only if neostigmine (50 nm) was included in the perfusate. These findings suggest that, in the hippocampus, endogenous brain AChEs are very efficient at removing extracellular ACh, obscuring differences in ACh release in these experiments. Therefore, inclusion of AChE inhibitors in the microdialysis perfusate may be necessary under some conditions for observations of functional changes in release of ACh in the hippocampus.  相似文献   

8.
目的:通过高频电刺激海人酸癫痫模型大鼠海马,观察海马细胞外谷氨酸(Glu)和γ-氨基丁酸(GABA)的动态变化。方法:将SD大鼠分成4大组(n=10):①空白组;②海人酸组;③假刺激组:植入刺激电极未予电刺激;④电刺激组:海人酸注射后予130 Hz电刺激。利用微透析技术收集不同时段海马细胞外液,应用高效液相-荧光检测法测定收集液Glu、GABA的浓度。结果:注射海人酸后Glu明显升高,并持续至第14天,电刺激使Glu明显下降;而注射海人酸后GABA呈短暂性升高,后逐渐下降于第4天后保持稍高于正常水平,电刺激并无明显改变GABA的水平。结论:海马细胞外Glu下降在海马电刺激治疗癫痫中起到重要作用;高频电刺激海马选择性地减少谷氨酸能神经元活动,但不影响GABA的释放。  相似文献   

9.
The effects of the non-N-methyl-D-aspartate (NMDA) agonist quisqualate (QUIS) and selective AMPA/kainate receptor antagonist 1-(aminophenyl)-methyl-7, 8-methyilendioxy-5H-2,3-benzodiazepine (GYKI 52466) on the release of acetylcholine (ACh) from the hippocampus and striatum of freely moving rats were studied by transversal microdialysis. Acetylcholine level in the dialisate was measured by the high performance liquid chromatography (HPLC) method with an electrochemical detector. The QUIS (100 microM) perfused through the striatum induced an increase of extracellular ACh level (250%) which lasted for over 1h and gradually returned to basal values. Local perfusion of GYKI 52466 (10-100 microM) to the striatum did not change the basal release of ACh. GYKI 52466 (10 microM) administered together with QUIS (100 microM) in he striatum antagonized the stimulant effect of QUIS on the ACh release.Local administration of the QUIS (100 microM) through the microdialysis fiber implanted in the hippocampus, caused a long lasting increase of extracellular hippocampal ACh level (360%) which was reversed when the drug was withdrawn from the perfusion solution. The stimulant effect of QUIS was antagonized by concomitant perfusion of GYKI (10 microM). No effect was seen on the basal ACh release when GYKI (10-100 microM) was perfused through the hippocampus.Local perfusion with tetrodotoxin (1 microM) decrease the basal release of ACh and prevented the QUIS-induced increase of ACh both in the hippocampus and striatum.Our in vivo neurochemical results indicate that hippocampal and striatal cholinergic systems are regulated by non-NMDA (probably AMPA) glutamatergic receptors located in the hippocampus and striatum.  相似文献   

10.
Susceptibility to kainate-induced seizures under dietary zinc deficiency   总被引:11,自引:0,他引:11  
Zinc homeostasis in the brain is altered by dietary zinc deficiency, and its alteration may be associated with the etiology and manifestation of epileptic seizures. In the present study, susceptibility to kainate-induced seizures was enhanced in mice fed a zinc-deficient diet for 4 weeks. When Timm's stain was performed to estimate zinc concentrations in synaptic vesicles, Timm's stain in the brain was attenuated in the zinc-deficient mice. In rats fed the zinc-deficient diet for 4 weeks, susceptibility to kainate-induced seizures was also enhanced. When the release of zinc and neurotransmitters in the hippocampal extracellular fluid of the zinc-deficient rats was studied using in vivo microdialysis, the zinc concentration in the perfusate was less than 50% of that of the control rats and the increased levels of zinc by treatment with kainate were lower than the basal level in control rats, suggesting that vesicular zinc is responsive to dietary zinc deficiency. The levels of glutamate in the perfusate of the zinc-deficient rats were more increased than in the control rats, whereas the levels of GABA in the perfusate were not at all increased in the zinc-deficient rats, unlike in the control rats. The present results demonstrate an enhanced release of glutamate associated with a decrease in GABA concentrations as a possible mechanism for the increased seizure susceptibility under zinc deficiency.  相似文献   

11.
Central cholinergic systems are involved in a plethora of brain functions and are severely and selectively damaged in neurodegenerative diseases such as Alzheimer's disease and dementia with Lewy bodies. Cholinergic dysfunction is treated with inhibitors of acetylcholinesterase (AChE) while the role of butyrylcholinesterase (BChE) for brain cholinergic function is unclear. We have used in vivo microdialysis to investigate the regulation of hippocampal acetylcholine (ACh) levels in mice that are devoid of AChE (AChE-/- mice). Extracellular ACh levels in the hippocampus were 60-fold elevated in AChE-/- mice compared with wild-type (AChE+/+) animals. In AChE-/- mice, calcium-free conditions reduced hippocampal ACh levels by 50%, and infusion of tetrodotoxin by more than 90%, indicating continuous ACh release. Infusion of a selective AChE inhibitor (BW284c51) caused a dose-dependent, up to 16-fold increase of extracellular ACh levels in AChE+/+ mice but did not change ACh levels in AChE-/- mice. In contrast, infusion of a selective inhibitor of BChE (bambuterol) caused up to fivefold elevation of ACh levels in AChE-/- mice, but was without effect in AChE+/+ animals. These results were corroborated with two other specific inhibitors of AChE and BChE, tolserine and bis-norcymserine, respectively. We conclude that lack of AChE causes dramatically increased levels of extracellular ACh in the brain. Importantly, in the absence of AChE, the levels of extracellular ACh in the brain are controlled by the activity of BChE. These results point to a potential usefulness of BChE inhibitors in the treatment of central cholinergic dysfunction in which brain AChE activity is typically reduced.  相似文献   

12.
G Damsma  H C Fibiger 《Life sciences》1991,48(25):2469-2474
The effects of the general anaesthetics pentobarbital, chloral hydrate, and halothane on interstitial concentrations of acetylcholine (ACh) in rat striatum were determined using in vivo microdialysis. All 3 anaesthetics decreased ACh. Emergence from anaesthesia coincided with a recovery of ACh to about 80% of basal values. Pentobarbital increased choline in a profile that was the mirror image of ACh. Chloral hydrate had a biphasic effect on choline, consisting of a shortlasting (20 min) initial decrease followed by an increase. When halothane anaesthetized rats were subjected to forced hypothermia by placing them on ice for 30 min, ACh release was further depressed whereas choline was greatly increased. These finding demonstrate that general anaesthetics decrease extracellular concentrations of ACh in the rat striatum and that this effect can be exacerbated by hypothermia.  相似文献   

13.

Background

One of the most important manifestations of perinatal asphyxia is the occurrence of seizures, which are treated with antiepileptic drugs, such as carbamazepine. These early seizures, combined with pharmacological treatments, may influence the development of dopaminergic neurotransmission in the frontal cortex. This study aimed to determine the extracellular levels of dopamine and its main metabolite DOPAC in 30-day-old rats that had been asphyxiated for 45 min in a low (8%) oxygen chamber at a perinatal age and treated with daily doses of carbamazepine. Quantifications were performed using microdialysis coupled to a high-performance liquid chromatography (HPLC) system in basal conditions and following the use of the chemical stimulus.

Results

Significant decreases in basal and stimulated extracellular dopamine and DOPAC content were observed in the frontal cortex of the asphyxiated group, and these decreases were partially recovered in the animals administered daily doses of carbamazepine. Greater basal dopamine concentrations were also observed as an independent effect of carbamazepine.

Conclusions

Perinatal asphyxia plus carbamazepine affects extracellular levels of dopamine and DOPAC in the frontal cortex and stimulated the release of dopamine, which provides evidence for the altered availability of dopamine in cortical brain areas during brain development.  相似文献   

14.
The release of endogenous aspartic, glutamic, and gamma-aminobutyric acids (Asp, Glu, GABA, respectively) was measured in the effluent from superfused hippocampal slices using a new and sensitive mass spectrometric method. The stimulation of the stratum radiatum of the rat dorsal hippocampus caused a Ca2+-dependent increase in the release of these amino acids. This release was accompanied by an increase in the incorporation of [13C2] from [13C]glucose into Asp, Glu, and GABA, suggesting an increase in their neosynthesis. The removal of Ca2+ from the superfusion fluid brought about a marked decrease in Asp and Glu release at rest, and prevented their stimulation-evoked release and the appearance of population spikes. The results support the hypothesis that Asp and Glu are excitatory neurotransmitters in intrinsic hippocampal circuits and are possibly released from the Schaffer collaterals and commissural fibres. The increase in GABA release and neosynthesis during stimulation of the stratum radiatum could be related to recurrent inhibition evoked by transsynaptic stimulation of the pyramidal cells.  相似文献   

15.
The effects of acetylethylcholine mustard and its aziridinium derivative (AMMA) on acetylcholine (ACh) release and [3H]quinuclidinyl benzilate (QNB) binding were studied in rat cortical synaptosomes. After incubation for 5 min at 37 degrees C, AMMA reduced [3H]QNB binding with an IC50 of 9 microM. Following incubation for 5 min with 50 microM AMMA and washing, there was a 62% reduction in the [3H]QNB binding capacity with no change in the KD value for the remaining receptors, a result indicating the irreversibility of the AMMA binding. AMMA and oxotremorine both reduced the basal and 30 mM K+-induced release of newly synthesized [3H]ACh in dose-dependent manners over a 2.5-min period. At identical 50 microM concentrations, AMMA produced a much longer inhibition of basal [3H]ACh release than oxotremorine did. The inhibition of basal and 30 mM K+-induced [3H]ACh release by AMMA (10-250 microM) was blocked by 2 microM atropine during a 2.5-min release incubation, but not during a 30-min release incubation. After synaptosomes were treated with 50 microM AMMA for 5 min and the unbound drug was washed out from the tissue, [3H]ACh release (basal and K+-induced) was reduced. AMMA (50 microM) reduced high-affinity choline uptake and ACh synthesis by greater than 90% in this tissue, but these effects did not account for the [3H]ACh release inhibition, because they were not atropine sensitive and hemicholinium-3 had no effect on [3H]ACh release under the conditions used in these studies, i.e., after extracellular [3H]choline was washed out. Taken together, these results suggest that AMMA may be an irreversible agonist at presynaptic muscarinic autoreceptors.  相似文献   

16.
Abstract: The release processes of endogenous Acetylcholine (ACh), γ-aminobutyric acid (GABA), glutamate (Glu) and glutamine (GLN) were studied in superfused guinea-pig caudatal slices. Basal ACh release remained constant for up to 2 h, while the basal release of GABA, Glu and GLN declined to half or less of its initial values after 1 h of superfusion. Electrical stimulation increased the ACh release by 700–800% and that of GABA by 80% whereas it decreased the output of Glu by 50% and failed to modify the GLN efflux. KCl (25 mM) increased the output of ACh by 400%, that of GABA by approximately 500% and decreased that of Glu by 40%. Substituting of CaCl2 by MgCl2 in the superfusion medium reduced the basal ACh release by 70% whereas no differences were observed in the basal efflux of GABA, Glu and GLN. Under these conditions, no evoked release of ACh or of GABA was detected, following electrical or KCl stimulation. Tetrodotoxin 5 × 10-7 M decreased the basal ACh release by 60% and increased the GABA efflux by 40%. The toxin abolished the stimulus-evoked ACh efflux but scarcely affected that of GABA. These results are consistent with a possible neurotransmitter role of ACh and GABA in the striatum and show some differences in the ionic mechanisms underlying GABA and ACh release.  相似文献   

17.
The release processes of endogenous Acetylcholine (ACh), gamma-aminobutyric acid (GABA), glutamate (Glu) and glutamine (GLN) were studied in superfused guinea-pig caudatal slices. Basal ACh release remained constant for up to 2 h, while the basal release of GABA, Glu and GLN declined to half or less of its initial values after 1 h of superfusion. Electrical stimulation increased the ACh release by 700-800% and that of GABA by 80% whereas it decreased the output of Glu by 50% and failed to modify the GLN efflux. KCl (25 nM) increased the output of ACh by 400%, that of GABA by approximately 500% and decreased that of Glu by 40%. Substituting of CaCl(2) by MgCl(2) in the superfusion medium reduced the basal efflux of GABA, Glu and GLN. Under these conditions, no evoked release of ACh or of GABA was detected, following electrical or KCl stimulation. Tetrodotoxin 5 x 10(-7) decreased the basal ACh release by 60% and increased the GABA efflux by 40%. The toxin abolished the stimulus-evoked ACh efflux but scarcely affected that of GABA. These results are consistent with a possible neurotransmitter role of ACh and GABA in the striatum and show some differences in the ionic mechanisms underlying GABA and ACh release.  相似文献   

18.
We present an overview of the long-term adaptation of hippocampal neurotransmission to cholinergic and GABAergic deafferentation caused by excitotoxic lesion of the medial septum. Two months after septal microinjection of 2.7 nmol alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA), a 220% increase of GABA(A) receptor labelling in the hippocampal CA3 and the hilus was shown, and also changes in hippocampal neurotransmission characterised by in vivo microdialysis and HPLC. Basal amino acid and purine extracellular levels were studied in control and lesioned rats. In vivo effects of 100 mm KCl perfusion and adenosine A(1) receptor blockade with 1,3-dipropyl-8-cyclopentylxanthine (DPCPX) on their release were also investigated. In lesioned animals GABA, glutamate and glutamine basal levels were decreased and taurine, adenosine and uric acid levels increased. A similar response to KCl infusion occurred in both groups except for GABA and glutamate, which release decreased in lesioned rats. Only in lesioned rats, DPCPX increased GABA basal level and KCl-induced glutamate release, and decreased glutamate turnover. Our results evidence that an excitotoxic septal lesion leads to increased hippocampal GABA(A) receptors and decreased glutamate neurotransmission. In this situation, a co-ordinated response of hippocampal retaliatory systems takes place to control neuron excitability.  相似文献   

19.
IGF-I and insulin receptors possess tyrosine-kinase enzymatic activity considered to be essential for signal transduction and thereby mediating the putative effects of these hormones on fetal growth and development. We investigated the ontogeny of IGF-I and insulin receptor tyrosine-kinase activity in at least 3 separate membrane preparations from liver of rats at 21 day of embryonic life (21ED), 1 and 5 day of postnatal life (1PD and 5PD respectively) and adult. Receptors purified by wheat germ agglutinin chromatography (WGA) were exposed to graded concentrations of IGF-I or insulin, and tyrosine-kinase activity was measured by quantifying incorporation of 32P into the exogenous substrate poly[Glu,Tyr; 4:1]. IGF-I stimulated tyrosine-kinase solely at 1 PD as documented by a maximal increase of 346 +/- 167% over basal kinase activity with 6.6 nmol/L IGF-I. While the lack of response in adult animals could be explained by a striking decrease in receptors at that age, 125I-IGF-I binding and affinity labelling of the WGA preparations indicated substantial IGF-I receptors were present in the liver at each of the perinatal ages. Furthermore, this dissociation between IGF-I binding and the tyrosine-kinase activity of these IGF-I receptors could not be attributed to the presence/absence of IGF-I binding proteins as judged by affinity labelling. In contrast, insulin-stimulated tyrosine-kinase activity was observed at all ages tested although it appeared greatest at 1PD. We conclude that (i) expression of IGF-I tyrosine-kinase activity is linked to developmental events and differs from that found for the insulin receptor tyrosine-kinase activity, (ii) during the perinatal period there is an apparent dissociation between ligand binding by the IGF-I receptor and receptor tyrosine-kinase activity. These observations suggest modulation of IGF-I receptor tyrosine-kinase activity may be an important regulator of IGF-I action during the perinatal period.  相似文献   

20.
Abstract: It has been reported that immature rats subjected to cerebral hypoxia-ischemia sustain less brain damage if they are previously exposed to systemic hypoxia compared with animals not exposed to prior hypoxia. Accordingly, neuropathologic and metabolic experiments were conducted to confirm and extend the observation that hypoxic preconditioning protects the perinatal brain from subsequent hypoxic-ischemic brain damage. Six-day postnatal rats were subjected to systemic hypoxia with 8% oxygen at 37°C for 2.5 h. Twenty-four hours later, they were exposed to unilateral cerebral hypoxia-ischemia for 2.5 h, produced by unilateral common carotid artery ligation and systemic hypoxia with 8% oxygen. Neuropathologic analysis, conducted at 30 days of postnatal age, indicated a substantial reduction in the severity of brain damage in the preconditioned rats, such that only 6 of 14 such animals exhibited cystic infarction, but all 13 animals without prior preconditioning exhibited infarction ( p < 0.001). Measurement of cerebral glycolytic and tricarboxylic acid intermediates and high-energy phosphate reserves at the terminus of and at 4 and 24 h following hypoxia-ischemia showed no differences in the extent of alterations in the preconditioned and nonpreconditioned immature rats. A difference was seen in the restitution of high-energy stores during the first 24 h of recovery from hypoxia-ischemia, with a more optimal preservation of these metabolites in the preconditioned animals, reflecting the less severe ultimate brain damage. Accordingly, the neuroprotection afforded to the preconditioned animals was not the result of any differences in the extent of anaerobic glycolysis, tissue acidosis, or depletion in high-energy reserves during hypoxia-ischemia but rather the result of other mechanisms that improved the metabolic status of the immature brain during the early hours of reperfusion following hypoxia-ischemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号