首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transplanted Spemann's organizer induces dorsal embryonic cell fates such as the nervous system and somites, but in normal development, elimination of individual organizer signals (such as the bone morphogenetic protein [BMP] antagonists) has surprisingly modest effects on these tissues. Thus, the role of BMP antagonists may be limited to fine tuning the size of the dorsal domain. However, at least five BMP antagonists are specifically expressed in the organizer, and all can mimic aspects of organizer function, suggesting overlapping functions. Here, we deplete the function of three BMP antagonists, chordin, noggin, and follistatin, in Xenopus tropicalis. We demonstrate that this results in catastrophic failure of dorsal development and expansion of ventral and posterior fates. We conclude that BMP antagonists are required for formation of the neural plate and dorsal mesoderm. In addition, our results show that neural specification requires the continuous activity of BMP antagonists from blastula through gastrula stages.  相似文献   

2.
The development of the vertebrate nervous system is initiated in amphibia by inductive interactions between ectoderm and a region of the embryo called the organizer. The organizer tissue in the dorsal lip of the blastopore of Xenopus and Hensen's node in chick embryos have similar neural inducing properties when transplanted into ectopic sites in their respective embryos. To begin to determine the nature of the inducing signals of the organizer and whether they are conserved across species we have examined the ability of Hensen's node to induce neural tissue in Xenopus ectoderm. We show that Hensen's node induces large amounts of neural tissue in Xenopus ectoderm. Neural induction proceeds in the absence of mesodermal differentiation and is accompanied by tissue movements which may reflect notoplate induction. The competence of the ectoderm to respond to Hensen's node extends much later in development than that to activin-A or to induction by vegetal cells, and parallels the extended competence to neural induction by axial mesoderm. The actions of activin-A and Hensen's node are further distinguished by their effects on lithium-treated ectoderm. These results suggest that neural induction can occur efficiently in response to inducing signals from organizer tissue arrested at a stage prior to gastrulation, and that such early interactions in the blastula may be an important component of neural induction in vertebrate embryos.  相似文献   

3.
In Xenopus, one of the properties defining Spemann's organizer is its ability to dorsalise the mesoderm. When placed ajacent to prospective lateral/ventral mesoderm (blood, mesenchyme), the organizer causes these cells to adopt a more axial/dorsal fate (muscle). It seems likely that a similar property patterns the primitive streak of higher vertebrate embryos, but this has not yet been demonstrated clearly. Using quail/chick chimaeras and a panel of molecular markers, we show that Hensen's node (the amniote organizer) can induce posterior primitive streak (prospective lateral plate) to form somites (but not notochord) at the early neurula stage. We tested two BMP antagonists, noggin and chordin (both of which are expressed in the organizer), for their ability to generate somites and intermediate mesoderm from posterior streak, and find that noggin, but not chordin, can do this. Conversely, earlier in development, chordin can induce an ectopic primitive streak much more effectively than noggin, while neither BMP antagonist can induce neural tissue from extraembryonic epiblast. Neurulation is accompanied by regression of the node, which brings the prospective somite territory into a region expressing BMP-2, -4 and -7. One function of noggin at this stage may be to protect the prospective somite cells from the inhibitory action of BMPs. Our results suggest that the two BMP antagonists, noggin and chordin, may serve different functions during early stages of amniote development.  相似文献   

4.
We have investigated axis-inducing activities and cellular fates of the zebrafish organizer using a new method of transplantation that allows the transfer of both deep and superficial organizer tissues. Previous studies have demonstrated that the zebrafish embryonic shield possesses classically defined dorsal organizer activity. When we remove the morphologically defined embryonic shield, embryos recover and are completely normal by 24 hours post-fertilization. We find that removal of the morphological shield does not remove all goosecoid- and floating head-expressing cells, suggesting that the morphological shield does not comprise the entire organizer region. Complete removal of the embryonic shield and adjacent marginal tissue, however, leads to a loss of both prechordal plate and notochord. In addition, these embryos are cyclopean, show a significant loss of floor plate and primary motorneurons and display disrupted somite patterning. Motivated by apparent discrepancies in the literature we sought to test the axis-inducing activity of the embryonic shield. A previous study suggested that the shield is capable of only partial axis induction, specifically being unable to induce the most anterior neural tissues. Contrary to this study, we find shields can induce complete secondary axes when transplanted into host ventral germ-ring. In induced secondary axes donor tissue contributes to notochord, prechordal plate and floor plate. When explanted shields are divided into deep and superficial fragments and separately transplanted we find that deep tissue is able to induce the formation of ectopic axes with heads but lacking posterior tissues. We conclude that the deep tissue included in our transplants is important for proper head formation.  相似文献   

5.
In this review I summarize recent findings on the contributions of different cell groups to the formation of the basic plan of the nervous system of vertebrate embryos. Midline cells of the mesoderm—the organizer, notochord, and prechordal plate—and midline cells of the neural ectoderm—the notoplate and floor plate—appear to have a fundamental role in the induction and patterning of the neural plate. Vertical signals acting across tissue layers and planar signals acting through the neural epithelium have distinct roles and cooperate in induction and pattern formation. Whereas the prechordal plate and notochord have distinct vertical signaling properties, the initial anteroposterior (A-P) pattern of the neural plate may be induced by planar signals originating from the organizer region. Planar signals from the notoplate may also contribute to the mediolateral (M-L) patterning of the neural plate. These and other findings suggest a general view of neural induction and axial patterning. © 1993 John Wiley & Sons, Inc.  相似文献   

6.
7.
We have investigated the cell interactions and signalling molecules involved in setting up and maintaining the border between the neural plate and the adjacent non-neural ectoderm in the chick embryo at primitive streak stages. msx-1, a target of BMP signalling, is expressed in this border at a very early stage. It is induced by FGF and by signals from the organizer, Hensen's node. The node also induces a ring of BMP-4, some distance away. By the early neurula stage, the edge of the neural plate is the only major site of BMP-4 and msx-1 expression, and is also the only site that responds to BMP inhibition or overexpression. At this time, the neural plate appears to have a low level of BMP antagonist activity. Using in vivo grafts and in vitro assays, we show that the position of the border is further maintained by interactions between non-neural and neural ectoderm. We conclude that the border develops by integration of signals from the organizer, the developing neural plate, the paraxial mesoderm and the non-neural epiblast, involving FGFs, BMPs and their inhibitors. We suggest that BMPs act in an autocrine way to maintain the border state.  相似文献   

8.
The mesodermal tissue of some amphibian gastrula develops into a dorsal-to-ventral sequence of notochord, somite, pronephros, and lateral plate cell types. The cellular proportions regulate with respect to embryo size. The dorsal blastoporal lip appears to function as an organizer for the embryo. The transplantation of a donor lip to the ventral side of a host causes a second, opposed embryo to form and the system commits similar total proportions of cells as do normally developing embryos. Transplantation of donor somite to the ventral side of a host causes a reduction in the proportion of host somite developed. A modified reaction-diffusion system governing embryo development is proposed. Developmental simulations consistent with experimental observations are presented and analyzed. The results suggest that the degree of somite inhibition is positively correlated with the size of the somite transplant. Further predictions are that sufficiently large somite transplants would induce ectopic, ventral pronephros to form and ventral pronephros transplants would inhibit host pronephros development. This paper has been reproduced directly from disc using a LA-TEX system.  相似文献   

9.
10.
During vertebrate development, an organizing signaling center, the isthmic organizer, forms at the boundary between the midbrain and hindbrain. This organizer locally controls growth and patterning along the anteroposterior axis of the neural tube. On the basis of transplantation and ablation experiments in avian embryos, we show here that, in the caudal midbrain, a restricted dorsal domain of the isthmic organizer, that we call the isthmic node, is both necessary and sufficient for the formation and positioning of the roof plate, a signaling structure that marks the dorsal midline of the neural tube and that is involved in its dorsoventral patterning. This is unexpected because in other regions of the neural tube, the roof plate has been shown to form at the site of neural fold fusion, which is under the influence of epidermal ectoderm derived signals. In addition, the isthmic node contributes cells to both the midbrain and hindbrain roof plates, which are separated by a boundary that limits cell movements. We also provide evidence that mid/hindbrain roof plate formation involves homeogenetic mechanisms. Our observations indicate that the isthmic organizer orchestrates patterning along the anteroposterior and the dorsoventral axis.  相似文献   

11.
We have examined whether the development of embryonic muscle fiber type is regulated by competing influences between Hedgehog and TGF-β signals, as previously shown for development of neuronal cell identity in the neural tube. We found that ectopic expression of Hedgehogs or inhibition of protein kinase A in zebrafish embryos induces slow muscle precursors throughout the somite but muscle pioneer cells only in the middle of the somite. Ectopic expression in the notochord of Dorsalin-1, a member of the TGF-β superfamily, inhibits the formation of muscle pioneer cells, demonstrating that TGF-β signals can antagonize the induction of muscle pioneer cells by Hedgehog. We propose that a Hedgehog signal first induces the formation of slow muscle precursor cells, and subsequent Hedgehog and TGF-β signals exert competing positive and negative influences on the development of muscle pioneer cells.  相似文献   

12.
13.
The signals which induce vertebrate neural tissue and pattern it along the anterior-posterior (A-P) axis have been proposed to emanate from Spemann's organizer, which in mammals is a structure termed the node. However, mouse embryos mutant for HNF3 beta lack a morphological node and node derivatives yet undergo neural induction. Gene expression domains occur at their normal A-P axial positions along the mutant neural tubes in an apparently normal temporal manner, including the most anterior and posterior markers. This neural patterning occurs in the absence of expression of known organizer genes, including the neural inducers chordin and noggin. Other potential signaling centers in gastrulating mutant embryos appear to express their normal constellation of putative secreted factors, consistent with the possibility that neural-inducing and -patterning signals emanate from elsewhere or at an earlier time. Nevertheless, we find that the node and the anterior primitive streak, from which the node derives, are direct sources of neural-inducing signals, as judged by expression of the early midbrain marker Engrailed, in explant-recombination experiments. Similar experiments showed the neural-inducing activity in HNF3 beta mutants to be diffusely distributed. Our results indicate that the mammalian organizer is capable of neural induction and patterning of the neural plate, but that maintenance of an organizer-like signaling center is not necessary for either process.  相似文献   

14.
15.
In higher vertebrates, the paraxial mesoderm undergoes a mesenchymal to epithelial transformation to form segmentally organised structures called somites. Experiments have shown that signals originating from the ectoderm overlying the somites or from midline structures are required for the formation of the somites, but their identity has yet to be determined. Wnt6 is a good candidate as a somite epithelialisation factor from the ectoderm since it is expressed in this tissue. In this study, we show that injection of Wnt6-producing cells beneath the ectoderm at the level of the segmental plate or lateral to the segmental plate leads to the formation of numerous small epithelial somites. Ectopic expression of Wnt6 leads to sustained expression of markers associated with the epithelial somites and reduced or delayed expression of markers associated with mesenchymally organised somitic tissue. More importantly, we show that Wnt6-producing cells are able to rescue somite formation after ectoderm ablation. Furthermore, injection of Wnt6-producing cells following the isolation of the neural tube/notochord from the segmental plate was able to rescue somite formation at both the structural (epithelialisation) and molecular level, as determined by the expression of marker genes like Paraxis or Pax-3. We show that Wnts are indeed responsible for the epithelialisation of somites by applying Wnt antagonists, which result in the segmental plate being unable to form somites. These results show that Wnt6, the only known member of this family to be localised to the chick paraxial ectoderm, is able to regulate the development of epithelial somites and that cellular organisation is pivotal in the execution of the differentiation programmes. We propose a model in which the localisation of Wnt6 and its antagonists regulates the process of epithelialisation in the paraxial mesoderm.  相似文献   

16.
Brain formation in variously aged presumptive ectoderms of Cynops pyrrhogaster under the influence of the head organizer was examined by the sandwich method. The head organizer was obtained from the middle portion of the archenteron roof at the slit-blastopore stage. The presumptive ectoderm was taken from 0- to 36-hr exogastrulae. Exogastrulae were prepared from the earliest gastrulae just before invagination (0-hr embryos). The presumptive neural plate overlying the archenteron roof used as organizer was cultivated in an envelope of belly ectoderm from an early neurula.
The following results were obtained: 1) Brain induction was almost entirely restricted to explants covered with 6-hr ectoderm and its frequency was low. 2) The presumptive neural plate above the head organizer was almost completely determined as neural tissues. 3) The head organizer showed a tendency to differentiate into more endodermal and less mesodermal tissues than those expected from its prospective fate.
Brain induction in normal development and the relationship between neural tissue formation in variously aged presumptive ectoderms and the time necessary for neural induction are discussed.  相似文献   

17.
The effect of aging on the neural competence of the presumptive ectoderm in gastrulae of Cynops pyrrhogaster and the effect of aged ectoderm on differentiation of the extreme posterior of the archenteric roof in the slit-blastopore stage were examined by a sandwich method in which this organizer was wrapped in the presumptive ectoderm taken from the 0- to 42-hr aged exogastrulae. Vital staining showed that this organizer becomes mainly tail notochord. Therefore it should be called tail or trunk-tail organizer. In 0- to 18-hr explants, typical trunk-tail structures were formed. With further aging of the presumptive ectoderm, a decrease of spinal cord and muscle with a concomitant increase of mesenchyme and mesothelium was observed. In 36- (corresponding to the slit-blastopore-initial neural stage) and 42-hr explants, neural competence had disappeared markedly. The notochord appeared in all explants, indicating this organizer is more firmly determined than the uninvaginated dorsal lip in small yolk-plug stage. Conclusively, this organizer does not play an important role in the induction of the neural plate, but induces the tail in normal development.  相似文献   

18.
In this issue of Developmental Cell, Richard Harland and colleagues describe evidence that an inductive interaction between the neural plate and the paraxial mesoderm regulates somite development and somite size.  相似文献   

19.
This review aims to propose an integrated model for dorsal-ventral and anterior-posterior development of Xenopus. Fertilized Xenopus eggs contain two determinants, a vegetal half endomesodermal determinant and a vegetal pole dorsal determinant (DD). The organizer forms in the specific intersection of the determinants, in a cell-autonomous manner. At late blastula, different combinations of the determinants form three embryonic domains, the competent animal domain, the organizer domain, and the entire vegetal half domain. These three domains cooperatively form dorsal-ventral and anterior-posterior axes: the organizer domain secrets dorsal inducing signals which induce or 'activate' the competent animal domain to form anterior-most neural tissues. The vegetal non-dorsal-marginal domain secrets posteriorizing signals, which 'transform' the anterior properties of the neural tissue to posterior properties.  相似文献   

20.
The development of the vertebrate brain depends on the formation of local organizing centres within the neural tube that express secreted signals that refine local neural progenitor identity. The isthmic organizer (IsO) forms at the isthmic constriction and is required for the growth and ordered development of mesencephalic and metencephalic structures. The formation of the IsO, which is characterized by the generation of a complex pattern of cells at the midbrain-hindbrain boundary, has been described in detail. However, when neural plate cells are initially instructed to form the IsO, the molecular nature of the inductive signals remain poorly defined. We now provide evidence that convergent Wnt and FGF signaling at the gastrula stage are required to generate the complex polarized pattern of cells characteristic of the IsO, and that Wnt and FGF signals in combination are sufficient to reconstruct, in na?ve forebrain cells, an IsO-like structure that exhibits an organizing activity that mimics the endogenous IsO when transplanted into the diencephalon of chick embryos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号