首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Mixed-Lineage Leukemia (MLL) protein is a histone methyltransferase that is mutated in clinically and biologically distinctive subsets of acute leukemia. MLL normally associates with a cohort of highly conserved cofactors to form a macromolecular complex that includes menin, a product of the MEN1 tumor suppressor gene, which is mutated in heritable and sporadic endocrine tumors. We demonstrate here that oncogenic MLL fusion proteins retain an ability to stably associate with menin through a high-affinity, amino-terminal, conserved binding motif and that this interaction is required for the initiation of MLL-mediated leukemogenesis. Furthermore, menin is essential for maintenance of MLL-associated but not other oncogene induced myeloid transformation. Acute genetic ablation of menin reverses aberrant Hox gene expression mediated by MLL-menin promoter-associated complexes, and specifically abrogates the differentiation arrest and oncogenic properties of MLL-transformed leukemic blasts. These results demonstrate that a human oncoprotein is critically dependent on direct physical interaction with a tumor suppressor protein for its oncogenic activity, validate a potential target for molecular therapy, and suggest central roles for menin in altered epigenetic functions underlying the pathogenesis of hematopoietic cancers.  相似文献   

2.
3.
4.
MLL targets SET domain methyltransferase activity to Hox gene promoters   总被引:11,自引:0,他引:11  
MLL, the human homolog of Drosophila trithorax, maintains Hox gene expression in mammalian embryos and is rearranged in human leukemias resulting in Hox gene deregulation. How MLL or MLL fusion proteins regulate gene expression remains obscure. We show that MLL regulates target Hox gene expression through direct binding to promoter sequences. We further show that the MLL SET domain is a histone H3 lysine 4-specific methyltransferase whose activity is stimulated with acetylated H3 peptides. This methylase activity is associated with Hox gene activation and H3 (Lys4) methylation at cis-regulatory sequences in vivo. A leukemogenic MLL fusion protein that activates Hox expression had no effect on histone methylation, suggesting a distinct mechanism for gene regulation by MLL and MLL fusion proteins.  相似文献   

5.
6.
Menin is a tumor suppressor protein that is encoded by the MEN1 (multiple endocrine neoplasia 1) gene and controls cell growth in endocrine tissues. Importantly, menin also serves as a critical oncogenic cofactor of MLL (mixed lineage leukemia) fusion proteins in acute leukemias. Direct association of menin with MLL fusion proteins is required for MLL fusion protein-mediated leukemogenesis in vivo, and this interaction has been validated as a new potential therapeutic target for development of novel anti-leukemia agents. Here, we report the first crystal structure of menin homolog from Nematostella vectensis. Due to a very high sequence similarity, the Nematostella menin is a close homolog of human menin, and these two proteins likely have very similar structures. Menin is predominantly an α-helical protein with the protein core comprising three tetratricopeptide motifs that are flanked by two α-helical bundles and covered by a β-sheet motif. A very interesting feature of menin structure is the presence of a large central cavity that is highly conserved between Nematostella and human menin. By employing site-directed mutagenesis, we have demonstrated that this cavity constitutes the binding site for MLL. Our data provide a structural basis for understanding the role of menin as a tumor suppressor protein and as an oncogenic co-factor of MLL fusion proteins. It also provides essential structural information for development of inhibitors targeting the menin-MLL interaction as a novel therapeutic strategy in MLL-related leukemias.  相似文献   

7.
8.
9.
Rearrangements of the MLL gene, which is located at chromosome 11q23, are associated with aggressive acute leukemias in both children and adults. MLL regulates Hox gene expression through direct promoter binding and histone modification. MLL rearrangements occurring in leukemia include MLL fusion genes, partial tandem duplications of MLL and MLL amplification. MLL fusions and amplification upregulate Hox expression, apparently resulting in a block of hematopoietic differentiation. Future therapies for MLL-associated leukemia might involve blocking Hox gene upregulation by using fusion proteins or inhibiting the activity of Hox proteins themselves.  相似文献   

10.
Agarwal SK  Jothi R 《PloS one》2012,7(5):e37952
Inactivating mutations in the MEN1 gene predisposing to the multiple endocrine neoplasia type 1 (MEN1) syndrome can also cause sporadic pancreatic endocrine tumors. MEN1 encodes menin, a subunit of MLL1/MLL2-containing histone methyltransferase complexes that trimethylate histone H3 at lysine 4 (H3K4me3). The importance of menin-dependent H3K4me3 in normal and transformed pancreatic endocrine cells is unclear. To study the role of menin-dependent H3K4me3, we performed in vitro differentiation of wild-type as well as menin-null mouse embryonic stem cells (mESCs) into pancreatic islet-like endocrine cells (PILECs). Gene expression analysis and genome-wide H3K4me3 ChIP-Seq profiling in wild-type and menin-null mESCs and PILECs revealed menin-dependent H3K4me3 at the imprinted Dlk1-Meg3 locus in mESCs, and all four Hox loci in differentiated PILECs. Specific and significant loss of H3K4me3 and gene expression was observed for genes within the imprinted Dlk1-Meg3 locus in menin-null mESCs and the Hox loci in menin-null PILECs. Given that the reduced expression of genes within the DLK1-MEG3 locus and the HOX loci is associated with MEN1-like sporadic tumors, our data suggests a possible role for menin-dependent H3K4me3 at these genes in the initiation and progression of sporadic pancreatic endocrine tumors. Furthermore, our investigation also demonstrates that menin-null mESCs can be differentiated in vitro into islet-like endocrine cells, underscoring the utility of menin-null mESC-derived specialized cell types for genome-wide high-throughput studies.  相似文献   

11.
12.
13.
Chromosomal translocations targeting the mixed lineage leukemia (MLL) gene result in MLL fusion proteins that are found in aggressive human acute leukemias. Disruption of MLL by such translocations leads to overexpression of Hox genes, resulting in a blockage of hematopoietic differentiation that ultimately leads to leukemia. Menin, which directly binds MLL, has been identified as an essential oncogenic co-factor required for the leukemogenic activity of MLL fusion proteins. Here, we characterize the molecular basis of the MLL-menin interaction. Using (13)C-detected NMR experiments, we have mapped the residues within the intrinsically unstructured fragment of MLL that are required for binding to menin. Interestingly, we found that MLL interacts with menin with a nanomolar affinity (K(d) ~ 10 nM) through two motifs, MBM1 and MBM2 (menin binding motifs 1 and 2). These motifs are located within the N-terminal 43-amino acid fragment of MLL, and the MBM1 represents a high affinity binding motif. Using alanine scanning mutagenesis of MBM1, we found that the hydrophobic residues Phe(9), Pro(10), and Pro(13) are most critical for binding. Furthermore, based on exchange-transferred nuclear Overhauser effect measurements, we established that MBM1 binds to menin in an extended conformation. In a series of competition experiments we showed that a peptide corresponding to MBM1 efficiently dissociates the menin-MLL complex. Altogether, our work establishes the molecular basis of the menin interaction with MLL and MLL fusion proteins and provides the necessary foundation for development of small molecule inhibitors targeting this interaction in leukemias with MLL translocations.  相似文献   

14.
15.
Menin is a nuclear protein encoded by a tumor suppressor gene that is mutated in humans with multiple endocrine neoplasia type 1 (MEN1). Menin functions as a component of a histone methyltransferase complex that regulates expression of target genes including the cell cycle inhibitor p27kip1. Here, we show that menin plays a previously unappreciated and critical role in cranial neural crest. Tissue-specific inactivation of menin in Pax3- or Wnt1-expressing neural crest cells leads to perinatal death, cleft palate and other cranial bone defects, which are associated with a decrease in p27kip1 expression. Deletion of menin in Pax3-expressing somite precursors also produces patterning defects of rib formation. Thus, menin functions in vivo during osteogenesis and is required for palatogenesis, skeletal rib formation and perinatal viability.  相似文献   

16.
17.
Inactivating mutations in the tumor suppressor gene MEN1 cause the inherited cancer syndrome multiple endocrine neoplasia type 1 (MEN1). The ubiquitously expressed MEN1 encoded protein, menin, interacts with MLL (mixed-lineage leukemia protein), and together they are essential components of a multiprotein complex with histone methyl transferase activity. MLL is also essential for hematopoiesis, and plays a critical role in leukemogenesis via epigenetic regulation of Hoxa9 expression that also requires menin. Therefore we chose to explore the role of menin in hematopoiesis. We generated Men1−/− embryonic stem (ES) cell lines, and induced them to differentiate in vitro. While these cells were able to form embryoid bodies (EBs) expressing the early markers Flk-1 and c-Kit, their ability to further differentiate into hematopoietic colonies was compromised. The Men1−/− ES cells show reduced expression of Hoxa9 that can be recovered by reexpression of Menin. We demonstrate that the block in differentiation of Men1−/− ES cell lines can be rescued not only by the expression of menin but also that of Hoxa9. These results suggest that, similar to MLL, menin is required for hematopoiesis, and this requirement may be mediated through regulation of Hoxa9 expression.  相似文献   

18.
19.
Wilson AC 《Molecular cell》2007,27(2):176-177
In a recent issue of Molecular Cell, Tyagi et al. (2007) show that E2F1, a positive regulator of S phase entry, recruits cofactor HCF-1 and associated hSet1/MLL histone H3 lysine 4 methyltransferase complex, facilitating the activation of genes required for proliferation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号