首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The marked enhancement of the activity of ornithine decarboxylase (EC 4.1.1.17) in rat liver at 4 h following partial hepatectomy or the treatment with growth hormone could be almost completely prevented by intraperitoneal administration of putrescine. A single injection of putrescine to partially hepatectomized rats caused a remarkably rapid decline in the activity of liver ornithine decarboxylase with an apparent half-life of only 30 min, which is almost as rapid as the decay of the enzyme activity after the administration of inhibitors of protein synthesis. Under similar conditions putrescine did not have any inhibitory effect on the activity of adenosylmethionine decarboxylase (EC 4.1.1.50) or tyrosine aminotransferase (EC 2.6.1.5). Spermidine given at the time of partial hepatectomy or 2 h later also markedly inhibited ornithine decarboxylase activity at 4 h after the operation and, in addition, also caused a slight inhibition of the activity of adenosylmethionine decarboxylase.  相似文献   

2.
1-Aminooxy-3-aminopropane was shown to be a potent competitive inhibitor (Ki = 3.2 nM) of homogenous mouse kidney ornithine decarboxylase, a potent irreversible inhibitor (Ki = 50 microM) of homogeneous liver adenosylmethionine decarboxylase and a potent competitive (Ki = 2.3 microM) of homogeneous bovine brain spermidine synthase. It did not inhibit homogeneous bovine brain spermine synthase and it did not serve as a substrate for spermidine synthase. The compound did not inhibit tyrosine aminotransferase, alanine aminotransferase or aspartate aminotransferase, which are pyridoxal phosphate-containing enzymes like ornithine decarboxylase. The inactivation of adenosylmethionine decarboxylase was partially prevented by pyruvate, which is the coenzyme of adenosylmethionine decarboxylase, and by the substrate, adenosylmethionine. 1-Aminooxy-3-aminopropane at 0.5 mM concentration inhibited the growth of HL-60 promyelocytic leukemia cells and this inhibition was prevented by spermidine but not by putrescine.  相似文献   

3.
Chronic administration of 1,3-diaminopropane, a compound inhibiting mammalian ornithine decarboxylase (EC 4.1.1.17) in vivo, effectively prevented the large increases in the concentration of putrescine that normally occur during rat liver regeneration. Furthermore, repeated injections of diaminopropane depressed by more than 85% ornithine decarboxylase activity in rat kidney. Administration of diaminopropane 60 min before partial hepatectomy only marginally inhibited ornithine decarboxylase activity at 4 h after the operation. However, when the compound was given at the time of the operation (4 h before death), or any time thereafter, it virtually abolished the enhancement in ornithine decarboxylase activity in regenerating rat liver remnant. An injection of diaminopropane given 30 to 60 min after operation, but not earlier or later, depressed S-adenosyl-L-methionine decarboxylase activity (EC 4.1.1.50) 4 h after partial hepatectomy. Diaminopropane likewise inhibited ornithine decarboxylase activity during later periods of liver regeneration. In contrast to early regeneration, a total inhibition of the enzyme activity was only achieved when the injection was given not earlier than 2 to 3 h before the death of the animals. Diaminopropane also exerted an acute inhibitory effect on adenosylmethionine decarboxylase activity in 28-h regenerating liver whereas it invariably enhanced the activity of tyrosine aminotransferase (EC 2.6.1.5), used as a standard enzyme of short half-life. Treatment of the rats with diaminopropane entirely abolished the stimulation of spermidien synthesis in vivo from [14C]methionine 4 h after partial hepatectomy or after administration of porcine growth hormone. Both partial hepatectomy and the treatment with growth hormone produced a clear stimulation of hepatic RNA synthesis, the extent of which was not altered by injections of diaminopropane in doses sufficient to prevent any enhancement of ornithine decarboxylase activity and spermidine synthesis.  相似文献   

4.
Chronic administration of 1,3-diaminopropane, a compound inhibiting mammalian ornithine decarboxylase (EC 4.1.1.17) in vivo, effectively prevented the large increases in the concentration of putrescine that normally occur during rat liver regeneration. Furthermore, repeated injections of diaminopropane depressed by more than 85% ornithine decarboxylase activtivity in rat kidney.Adminsitration of diaminopropane 60 min before partial hepatectomy only marginally inhibited orthine decarboxylase activity at 4 h after the operation. However, when the compound was given at the time of the operation (4 h before death), or any time thereafter, it virtually abolished the enhancement in ornithine decarboxylase activity in regenerating rat liver remnant.An injection of diaminopropane given 30 to 60 min after operation, but not earlier or later, depressed S-adenosyl-l-methionine decarboxylase activity (EC 4.1.1.50) 4 h after partial hepatectomy.Diaminopropane likewise inhibited ornithine decarboxylase activity during later periods of liver regeneration. In contrast to early regeneration, a total inhibition of the enzyme activity was only achieved when the injection was given not earlier than 2 to 3 h before the death of the animals.Diaminopropane also exerted an acute inhibitory effect on adenosylmethionine decarboxylase activity in 28-h regenerating liver whereas it invariably enhanced the activity of tyrosine aminotransferase (EC 2.6.1.5), used as a standard enzyme of short half-life.Treatment of the rats with diaminopropane entirely abolished the stimulation of spermidien synthesis in vivo from [14C] methionine 4 h after hepatectomy or after administration of porcine growth hormone.Both partial hepatectomy and the treatment with growth hormone produced a clear stimulation of hepatic RNA synthesis, the extent of which was not altered by injections of diaminopropane in doses sufficient to prevent any enhancement of ornitine decarboxylase activity and spemedicine synthesis.  相似文献   

5.
The periodate-oxidized analog of ATP, 2',3'-dialATP, competitively inhibited bovine brain and rat liver adenylate cyclase. The apparent Ki for inhibition of brain adenylate cyclase by 2',3'-dialATP was 196 microM in the presence of Mg2+ and 37 microM in the presence of Mn2+. The Ki values for inhibition of rat liver adenylate cyclase by 2',3'-dialATP were 48 and 30 microM in the presence of Mg2+; and Mn2+, respectively. Adenylate cyclase activity was irreversibly inactivated by 2'3'-dialATP in the presence of NaCNBH3 and the kinetics for loss in enzyme activity were pseudo-first order. Both ATP and Tris protected adenylate cyclase from irreversible inhibition by 2',3'-dialATP and NaCNBH3. It is proposed that 2',3'-dialATP forms a Schiff's base with an amino group at the active site of the enzyme and that Na-CNBH3 reduction of this Schiff's base causes irreversible modification of the catalytic subunit. The Km for 2',3'-dialATP inactivation, the maximal rate constant of inactivation, and protection of the enzyme by ATP were not affected by the presence or absence of free Mg2+. These data indicate that a divalent cation is not required for binding of 2',3'-dialATP to the active site of adenylate cyclase.  相似文献   

6.
Putrescine-dependent S-adenosyl-L-methionine decarboxylase has been detected in the malaria parasite Plasmodium falciparum. Mg2+ did not affect the enzyme activity. The apparent Km value of the plasmodial enzyme for adenosyl-methionine was found to be 33 microM. Methylglyoxal bis(guanylhydrazone) competitively inhibited the enzyme activity with respect to adenosylmethionine. The inhibition constant for methylglyoxal bis(guanylhydrazone) was determined to be 0.46 microM. Spermidine was the main polyamine detected in the parasite. There was significant decrease in the S-adenosyl-L-methionine decarboxylase activity when the infected erythrocytes were incubated with chloroquine and mefloquine for 2 hr at 1 and 10 microM, respectively. Since at similar concentrations these drugs did not directly affect the plasmodial enzyme activity, the interaction of these drugs with the polyamine biosynthesis remains unclear.  相似文献   

7.
A topoisomerase (nicking-closing enzyme) has been isolated from rat liver mitochondria. It has purified by double-stranded DNA-cellulose chromatography approximately 50,000-fold, based on the crude mitochondrial extract. It possesses a minimum specific activity of 1.9 x 10(5) units/mg. The enzyme has been shown to be distinctly mitochondrial, differentiated from the nuclear topoisomerase by its sensitivity to the intercalating drug, ethidium bromide, and to the non-intercalating trypanocidal drug, Berenil.  相似文献   

8.
Studies on mitochondrial type I topoisomerase and on its function   总被引:4,自引:0,他引:4  
We have reported previously that rat liver mitochondria contain a topoisomerase and have shown it to be distinct from the nuclear enzyme by its sensitivity to Berenil and ethidium bromide. We report here some additional characterization. The enzyme differs further from its nuclear counterpart in its failure to bind to ssDNA cellulose and its chromatographic behavior on Sephadex; the latter procedure yields an Mr of 44 000 for the mitochondrial and 70 000 for the nuclear enzyme. The topoisomerase is strongly associated with mitochondrial membranes; only 10% of the activity could be extracted. The pH optimum of the enzyme falls between 6.0 and 8.5, with an NaCl optimum of 0.13 M in 0.1 M Tris (pH 8.3). Dithiothreitol is required, while N-ethylmaleimide is inhibitory. Tosylphenylalanine chloromethyl ketone, a serine proteinase inhibitor, abolishes activity; another, phenylmethanesulfonyl fluoride, has no effect. Berenil, a non-intercalating drug, and four of its analogues all inhibit with up to 100-fold differences in potency. No dependence on ATP, Mg2+, or both together could be shown. Neither novobiocin nor oxolinic acid shows any inhibitory effect. Nicked circles are generated in the presence of DMSO. These three observations are consistent with the topoisomerase being of the Type I class. Positively supercoiled pBR322 DNA, whose 6-8 positive turns were generated by altering solution conditions, is relaxed by the enzyme, indicating a lack of requirement for a negatively supercoiled substrate. We have also examined a partially purified preparation of the corresponding mitochondrial enzyme from mouse L cells. This enzyme is largely similar in properties to the rat liver enzyme. In isolated mitochondria, Berenil causes biphasic alterations in [3H]dATP incorporation into DNA, 10(-4) mM stimulating 2-fold, while higher concentrations inhibit. [3H]UTP incorporation into mitochondrial RNA also follows this pattern.  相似文献   

9.
Injections of 1,3-diaminopropane, a close structural analogue of putrescine (1,4-diaminobutane), into partially hepatectomized rats powerfully inhibited ornithine decarboxylase (EC 4.1.1.17) activity in the regenerating liver in vivo. The compound did not have any effect on the enzyme activity in vitro (under assay conditions employed) but appeared to exert an inhibitory influence on the synthesis of ornithine decarboxylase itself.Repeated injections of diaminopropane into rats after partial hepatectomy, starting at the time of the operation and continued until 33 h postoperatively, markedly diminished the stimulation of ornithine decarboxylase activity in the regenerating liver remnant, and completely prevented the increases in hepatic spermidine concentration normally occurring in response to partial hepatectomy.Treatment of the rats with diaminopropane did not depress the activity of adenosylmethionine decarboxylase (EC 4.1.1.50) in the regenerating liver. Nor did the compound have any effect, whatsoever, on the activity of spermidine synthase (EC 2.5.1.16) in vitro, thus obiviously proving that the increased accumulation of liver spermidine after partial hepatectomy primarily depends upon a stimulation of ornithine decarboxylase activity and a concomitant accumulation of putrescine. The results also showed that 1,3-diamino-propane could not replace putrescine in the synthesis of higher polyamines in rat liver. The inhibition of ornithine decarboxylase by diaminopropane thus appears to represent “gratuitous” repression of polyamine biosynthesis and might conceivably be used for studies devoted to the elucidation of the physiological functions of natural polyamines.  相似文献   

10.
1. The effect of oxalomalate on the oxidation of citrate and cis-aconitate in rat liver mitochondria, and on the activity of mitochondrial and cytoplasmic aconitate hydratase, has been investigated. 2. Oxalomalate that was added to intact rat liver mitochondria at high concentrations (2mm) produced complete inhibition of citrate and cis-aconitate oxidation, but lower concentrations (0.1-0.25mm) inhibited oxidation of citrate more than that of cis-aconitate. 3. Aconitate hydratase that was either extracted from mitochondria or soluble in the cytoplasm, was strongly inhibited by low concentrations of oxalomalate (0.01-0.2mm), the mitochondrial enzyme being more sensitive than the soluble one. 4. Oxalomalate, when added together with citrate, produced competitive inhibition; the K(i) values calculated were 1x10(-6)m for the mitochondrial and 2.5x10(-6)m for the cytoplasmic enzyme. 5. With both the enzymic preparations oxalomalate added together with the substrates inhibited the initial rate of the reaction citrate-->cis-aconitate more than that of the reaction isocitrate-->cis-aconitate. 6. After 2min of preincubation of the inhibitor with either of the enzymic preparations the inhibition increased tenfold and became irreversible; under these conditions both the reactions were inhibited to the same extent. 7. The inhibition by oxalomalate of aconitate hydratase appeared to be similar in many respects to that produced by fluorocitrate on the same enzyme.  相似文献   

11.
Guanosine 5'-triphosphate (GTP) was found to inhibit guinea pig liver transglutaminase activity as measured by [3H]putrescine incorporation into casein. GDP and GTP-gamma-S also inhibited enzyme activity (GTP-gamma-S greater than GTP greater than GDP). Kinetic studies showed that GTP acted as a reversible, noncompetitive inhibitor and that CaCl2 partially reversed GTP inhibition. GTP also inhibited rat liver and adult bovine aortic endothelial cell transglutaminase, but did not inhibit Factor XIIIa activity. Guanosine monophosphate (GMP), cyclic GMP, and polyguanylic acid did not inhibit enzyme activity. Guinea pig liver transglutaminase adsorbed well to GTP-agarose affinity columns, but not to CTP-agarose columns, and the binding was inhibited by the presence of calcium ions. Specific binding of GTP to transglutaminase was demonstrated by photoaffinity labeling with 8-azidoguanosine 5'-[gamma-32P] triphosphate, which was inhibited by the presence of GTP or CaCl2. GTP inhibited trypsin proteolysis of guinea pig liver transglutaminase without affecting the trypsin proteolysis of chromogenic substrates. Proteolytic protection was reversed by the addition of calcium. This study demonstrates that GTP binds to transglutaminase and that both GTP and calcium ions function in concert to regulate transglutaminase structure and function.  相似文献   

12.
The effects of chlorpromazine, imipramine, thioridazine, chlorprothixene, amitriptyline, desipramine and triflupromazine on adenosylmethionine decarboxylase purified from rat liver have been studied. The compounds caused competitive inhibition of the enzyme at 10(-5) - 10(-3) M concentrations. For chlorprothixene and triflupromazine the inhibition was linear, while the other drugs showed increasing, nonlinear inhibition at higher concentrations. Apparent Ki's for the compounds were between 6.8 X 10(-5) M (for chlorprothixene) and 6.4 X 10(-4) M (for desipramine). Inhibition of 50% under optimal assay conditions was achieved between drug concentrations of 1.3 X 10(-4) M (thioridazine) and 1.3 X 10(-3) M (imipramine).  相似文献   

13.
Chlorpromazine (25 microM) and trifluoperazine (25 microM) inhibited by 5-fold the activity of CTP:phosphocholine cytidylyltransferase, the rate-limiting enzyme for phosphatidylcholine biosynthesis, in rat liver cytosol. Addition of saturating amounts of rat liver phospholipid to the enzyme assay rapidly reversed the drug-mediated inhibition. Three-fold or greater concentrations of these drugs were required to produce a 50% inhibition of the microsomal cytidylyltransferase. Incubation of rat hepatocytes with 20 microM trifluoperazine or chlorpromazine did not inhibit phosphatidylcholine biosynthesis. These results provide additional evidence for the hypothesis that the active form of cytidylyltransferase is on the endoplasmic reticulum and the enzyme in cytosol appears to be latent.  相似文献   

14.
6-Phosphofructo-2-kinase was purified from rat liver and hepatoma (HTC) cells. The HTC cell enzyme had kinetic properties different from those of the liver enzyme (more sensitive to inhibition by citrate and not inhibited by sn-glycerol 3-phosphate) and was not a substrate of the cyclic-AMP-dependent protein kinase. Unlike the liver enzyme, which is bifunctional and phosphorylated by fructose 2,6-[2-32P]bisphosphate, the HTC cell enzyme contained no detectable fructose-2,6-bisphosphatase activity and phosphorylation by fructose 2,6-[2-32P]-bisphosphate could not be detected. HTC cell fructose-2,6-bisphosphatase could be separated from 6-phosphofructo-2-kinase activity by purification. Antibodies raised against liver 6-phosphofructo-2-kinase did not precipitate HTC cell fructose-2,6-bisphosphatase whose kinetic properties were completely different from those of the liver enzyme.  相似文献   

15.
Eleven hybridoma clones which secrete monoclonal antibodies against purified rat liver alcohol dehydrogenase (EC 1.1.1.1) were isolated. Antibodies (R-1-R-11) were identified by their ability to bind to immobilized pure alcohol dehydrogenase in an enzyme-linked immunoadsorbent assay, in which antibody R-9 showed the highest binding capacity. Except for R-1 and R-7, all antibodies inhibited catalytic activity of the enzyme isolated from inbred (Fischer-344) or outbred (Sprague-Dawley) strains (R-11 greater than R-9 greater than R-4 greater than R-6 greater than R-10 greater than R-8 greater than R-2 = R-3 = R-5). The inhibition of enzyme activity by antibodies was noncompetitive for ethanol and NAD+, and was dependent on antibody concentration and incubation time. Antibodies R-4, R-9, and R-11 were most effective when enzyme activity was assayed below pH 7.7-7.8, a condition thought to protonate the enzyme's active center. These three antibodies did not inhibit horse liver alcohol dehydrogenase activity, indicating their species specificity. Such antibodies will be useful to delineate structural and functional roles of rat liver alcohol dehydrogenase.  相似文献   

16.
Methyl-2-tetradecylglycidic acid (MeTDGA) has been hypothesized to inhibit fatty acid oxidation by irreversible, active site-directed inactivation of carnitine palmitoyltransferase A after being converted to TDGA-CoA. Using synthetic TDGA-CoA, this hypothesis has been confirmed. Assessing enzyme inhibition in an isolated rat liver mitochondrial system, TDGA-CoA (synthetic or enzyme prepared) was more potent than TDGA or MeTDGA and retained activity in the absence of CoA or Mg2+-ATP. It inhibited palmitoyl-CoA but not palmitoyl carnitine oxidation. Enzyme inactivation was exponential, stereospecific, and fast (t0.5 = 38.5 s with 100 nM (R)-TDGA-CoA). TDGA-CoA was identified as a complexing type irreversible inhibitor (Ki approximately 0.27 microM) by the double reciprocal relationship between the pseudo-first order inactivation rate and its concentration, by the inverse dependence of the second order rate constant on its concentration, and by the independence of the first order rate from the enzyme concentration. Palmitoyl-CoA, CoA, and malonyl-CoA protected the enzyme, while L-carnitine and palmitoyl-L-carnitine were without effect. [3-14C] TDGA-CoA labeled a protein, Mr = 90,000, with a time course which paralleled that of enzyme inhibition; maximum specific binding was 16 pmol/mg of mitochondrial protein.  相似文献   

17.
PROPERTIES OF RAT BRAIN NAD-KINASE   总被引:1,自引:1,他引:0  
Abstract— NAD-kinase was purified from rat brain acetone powder according to the method of W ang and K aplan (1954). The acetate buffer supernatant showed only very low specific activity but was largely free of the factors that interfere with the enzyme assay. The Michaelis constants for both substrates were determined, the values were 0·5 m m for NAD and 4·0 m m for ATP. The optimal pH was 7·4 in tris-HCl buffer and the highest NAD-kinase activity was observed in the hyaloplasm fraction. NADH2 inhibited the enzyme whereas NADPH2 did not. Finally, the reversible inhibition of SH-binding compounds is described and the observed properties of rat brain NAD-kinase compared with the properties of NADP synthesizing enzymes from pigeon liver and rat liver.  相似文献   

18.
An insoluble preparation of rat liver cathepsin D was obtained by coupling the enzyme to Enzacryl Polyacetal (EPA-cathepsin) and to CNBr-activated Sepharose 4B. EPA-cathepsin was active toward the synthetic hexapeptides (Gly-Phe-Leu)2 and did not split hemoglobin. The optimum pH of splitting was displaced upward by 1.5 units to pH 5.0. The enzyme exhibited maximum activity at 60 degrees C. No appreciable loss of activity was seen on storage of the enzyme for 4 months or after repeated use of the preparations. Coupling of rat liver cathepsin D to activated Sepharose gave preparations active towards both protein and synthetic substrates. The preparations were totally inactive in acid media and exhibited maximum activity at pH 7.0, that is, under physiological conditions. Optimum temperature was 65 degrees. The specific activity of the preparations (pH 7.0, 65 degrees) was 60-110 percent that of the free enzyme in acid media. Proteolytic activity of the Sepharose-coupled cathepsin D was not inhibited by pepstatin, whereas that of the free enzyme was fully inhibited by this reagent. A sarcoma cathepsin, similar in some of its properties to the rat liver enzyme, was also coupled to CNBr-activated Sepharose 4B. The preparation split protein substrates at pH 7.0 and possessed enhanced thermostability. The enzymes fixed on Sepharose showed increased stability.  相似文献   

19.
The present study was undertaken to examine the liver, spleen and kidney heme oxygenase activity in the rat, and also to investigate the response of the enzyme to a variety of metalloporphyrin complexes. The enzyme activity in the liver and the kidney of 3--4 day-old rats was several-fold greater than the corresponding values in the adult animals; however, the splenic enzyme activity was markedly depressed in comparison to that of adult rats. During the first 2--3 weeks post-parturation period, the activity of heme oxygenase in the spleen progressively increased, and in 4 weeks approached the adult values. The treatment of the newborn animals with the metalloporphyrin complex. Zn . protoporphyrin-IX, inhibited heme oxygenase activity in the spleen, liver and the kidney. Sn . protoporphyrin treatment also inhibited the activity of the enzyme in the liver and the spleen. The mechanism of the inhibition appeared to be competitive in nature. In contrast, the treatment of the newborn animals with Co . protoporphyrin increased the activity of the enzyme in the tested organs. The treatment of newborn animals with Fe . protoporphyrin (heme) also increased heme oxygenase activity in the spleen and the kidney. In addition, Co . and Fe . protoporphyrin complexes inhibited the activity of delta-aminolevulinate synthetase in the spleen; Sn . protoporphyrin and Zn . protoporphyrin, however, did not alter the activity of this enzyme. The effects of Co . protoporphyrin and Zn. protoporphyrin on the microsomal contents of cytochromes P-450, b5, the total heme, and the microsomal drug metabolism activity in the liver were compared. Zn . protoporphyrin was ineffective in altering the indicated cellular variables. According to these findings Zn . protoporphyrin may be useful as an experimental tool for the selective suppression of heme degradation activity.  相似文献   

20.
We investigated the effect of thyroid hormone on phosphatidylinositol-specific phospholipase C activity in rat liver. Thyroidectomy increased the activity of the enzyme. Thyroid hormone (T4, 40 micrograms) administration to thyroidectomized-rats decreased phospholipase C activity. The inhibition induced by thyroid hormone was of a non-competitive type. The higher concentration of Ca2+ strongly inhibited the activity of the enzyme obtained from thyroidectomized-rats' liver in vitro. The diminished activity of the enzyme obtained from thyroxine-treated-thyroidectomized-rats was recovered by pretreatment of the enzyme with EGTA. The activity of the enzyme derived from thyroidectomized-rats was not affected by EGTA treatment. These results suggest that thyroid hormone decreases the activity of phosphatidylinositol-specific phospholipase C activity through the mobilization of Ca2+ in the intracellular space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号