首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pseudomonas syringae pv. tagetis, a plant pathogen being considered as a biological control agent of Canada thistle (Cirsium arvense), produces tagetitoxin, an inhibitor of RNA polymerase which results in chlorosis of developing shoot tissues. Although the bacterium is known to affect several plant species in the Asteraceae and has been reported in several countries, little is known of its genetic diversity. The genetic relatedness of 24 strains of P. syringae pv. tagetis with respect to each other and to other P. syringae and Pseudomonas savastanoi pathovars was examined using 16S–23S rDNA intergenic spacer (ITS) sequence analysis. The size of the 16S–23S rDNA ITS regions ranged from 508 to 548 bp in length for all 17 P. syringae and P. savastanoi pathovars examined. The size of the 16S–23S rDNA ITS regions for all the P. syringae pv. helianthi and all the P. syringae pv. tagetis strains examined were 526 bp in length. Furthermore, the 16S–23S rDNA ITS regions of both P. syringae pv. tagetis and P. syringae pv. helianthi had DNA signatures at specific nucleotides that distinguished them from the 15 other P. syringae and P. savastanoi pathovars examined. These results provide strong evidence that P. syringae pv. helianthi is a nontoxigenic form of P. syringae pv. tagetis. The results also demonstrated that there is little genetic diversity among the known strains of P. syringae pv. tagetis. The genetic differences that do exist were not correlated with differences in host plant, geographical origin, or the ability to produce toxin.  相似文献   

2.
A bacteriocin produced by Pseudomonas syringae pv. ciccaronei, used at different purification levels and concentrations in culture and in planta, inhibited the multiplication of P. syringae subsp. savastanoi, the causal agent of olive knot disease, and affected the epiphytic survival of the pathogen on the leaves and twigs of treated olive plants. Treatments with bacteriocin from P. syringae pv. ciccaronei inhibited the formation of overgrowths on olive plants caused by P. syringae subsp. savastanoi strains PVBa229 and PVBa304 inoculated on V-shaped slits and on leaf scars at concentrations of 105 and 108 CFU ml−1, respectively. In particular, the application of 6,000 arbitrary units (AU) of crude bacteriocin (dialyzed ammonium sulfate precipitate of culture supernatant) ml−1 at the inoculated V-shaped slits and leaf scars resulted in the formation of knots with weight values reduced by 81 and 51%, respectively, compared to the control, depending on the strains and inoculation method used. Crude bacteriocin (6,000 AU ml−1) was also effective in controlling the multiplication of epiphytic populations of the pathogen. In particular, the bacterial populations recovered after 30 days were at least 350 and 20 times lower than the control populations on twigs and on leaves, respectively. These results suggest that bacteriocin from P. syringae pv. ciccaronei can be used effectively to control the survival of the causal agent of olive knot disease and to prevent its multiplication at inoculation sites.  相似文献   

3.
In a recent screen for novel virulence factors involved in the interaction between Pseudomonas savastanoi pv. savastanoi and the olive tree, a mutant was selected that contained a transposon insertion in a putative cyclic diguanylate (c‐di‐GMP) phosphodiesterase‐encoding gene. This gene displayed high similarity to bifA of Pseudomonas aeruginosa and Pseudomonas putida. Here, we examined the role of BifA in free‐living and virulence‐related phenotypes of two bacterial plant pathogens in the Pseudomonas syringae complex, the tumour‐inducing pathogen of woody hosts, P. savastanoi pv. savastanoi NCPPB 3335, and the pathogen of tomato and Arabidopsis, P. syringae pv. tomato DC3000. We showed that deletion of the bifA gene resulted in decreased swimming motility of both bacteria and inhibited swarming motility of DC3000. In contrast, overexpression of BifA in P. savastanoi pv. savastanoi had a positive impact on swimming motility and negatively affected biofilm formation. Deletion of bifA in NCPPB 3335 and DC3000 resulted in reduced fitness and virulence of the microbes in olive (NCPPB 3335) and tomato (DC3000) plants. In addition, real‐time monitoring of olive plants infected with green fluorescent protein (GFP)‐tagged P. savastanoi cells displayed an altered spatial distribution of mutant ΔbifA cells inside olive knots compared with the wild‐type strain. All free‐living phenotypes that were altered in both ΔbifA mutants, as well as the virulence of the NCPPB 3335 ΔbifA mutant in olive plants, were fully rescued by complementation with P. aeruginosa BifA, whose phosphodiesterase activity has been demonstrated. Thus, these results suggest that P. syringae and P. savastanoi BifA are also active phosphodiesterases. This first demonstration of the involvement of a putative phosphodiesterase in the virulence of the P. syringae complex provides confirmation of the role of c‐di‐GMP signalling in the virulence of this group of plant pathogens.  相似文献   

4.
Total cellular fatty acids for 20 strains of Erwinia amylovora grown on trypticase soy agar (TSA) for 3 days at 27°C, and for 3 strains grown on nutrient agar (NA), King's B (KB), glucoseyeast extract carbonate (GYCA) and TSA for 1, 3 and 6 days were analyzed by gas-liquid chromatography. Forty one percent of total fatty acids were saturated even-carbon straight chains, 6 % were saturated odd-carbon chains, 34 % unsaturated acids, 6 % hydroxy-substituted acids, 1 % branched chains, 7 % cyclic acids, and 4 % unidentified components. Composition was affected by growth medium, physiological age of cells, and chromatograph sensitivity. On TSA and NA saturated odd-carbon and cyclic acids of the 3 strains (combining 1, 3 and 6-day data) were higher than on KB and GYCA. Cyclic acids increased with physiological age on GYCA and KB medium. Even-carbon straight chain and unsaturated fatty acids (major components) constituted a significantly lower percentage of total fatty acids in chromatograms of high sensitivity (30–50 components) than of low instrument sensitivity (15–20 components).  相似文献   

5.
Pseudomonas savastanoi pv. savastanoi strains harbor native plasmids belonging to the pPT23A plasmid family (PFPs) which are detected in all pathovars of the related species Pseudomonas syringae examined and contribute to the ecological and pathogenic fitness of their host. However, there is a general lack of information about the gene content of P. savastanoi pv. savastanoi plasmids and their role in the interaction of this pathogen with olive plants. We designed a DNA macroarray containing 135 plasmid-borne P. syringae genes to conduct a global genetic analysis of 32 plasmids obtained from 10 P. savastanoi pv. savastanoi strains. Hybridization results revealed that the number of PFPs per strain varied from one to four. Additionally, most strains contained at least one plasmid (designated non-PFP) that did not hybridize to the repA gene of pPT23A. Only three PFPs contained genes involved in the biosynthesis of the virulence factor indole-3-acetic acid (iaaM, iaaH, and iaaL). In contrast, ptz, a gene involved in the biosynthesis of cytokinins, was found in five PFPs and one non-PFP. Genes encoding a type IV secretion system (T4SS), type IVA, were found in both PFPs and non-PFPs; however, type IVB genes were found only on PFPs. Nine plasmids encoded both T4SSs, whereas seven other plasmids carried none of these genes. Most PFPs and non-PFPs hybridized to at least one putative type III secretion system effector gene and to a variety of additional genes encoding known P. syringae virulence factors and one or more insertion sequence transposase genes. These results indicate that non-PFPs may contribute to the virulence and fitness of the P. savastanoi pv. savastanoi host. The overall gene content of P. savastanoi pv. savastanoi plasmids, with their repeated information, mosaic arrangement, and insertion sequences, suggests a possible role in adaptation to a changing environment.  相似文献   

6.
In this study, Pseudomonas syringe pathovars isolated from olive, tomato and bean were identified by species-specific PCR and their genetic diversity was assessed by repetitive extragenic palindromic (REP)-PCR. Reverse universal primers for REP-PCR were designed by using the bases of A, T, G or C at the positions of 1, 4 and 11 to identify additional polymorphism in the banding patterns. Binding of the primers to different annealing sites in the genome revealed additional fingerprint patterns in eight isolates of P. savastanoi pv. savastanoi and two isolates of P. syringae pv. tomato. The use of four different bases in the primer sequences did not affect the PCR reproducibility and was very efficient in revealing intra-pathovar diversity, particularly in P. savastanoi pv. savastanoi. At the pathovar level, the primer BOX1AR yielded shared fragments, in addition to five bands that discriminated among the pathovars P. syringae pv. phaseolicola, P. savastanoi pv. savastanoi and P. syringae pv. tomato. REP-PCR with a modified primer containing C produced identical bands among the isolates in a pathovar but separated three pathovars more distinctly than four other primers. Although REP- and BOX-PCRs have been successfully used in the molecular identification of Pseudomonas isolates from Turkish flora, a PCR based on inter-enterobacterial repetitive intergenic concensus (ERIC) sequences failed to produce clear banding patterns in this study.  相似文献   

7.
About 90 % of total cellular fatty acids in E. carotovora, grown on KB medium for 1 day at 28°C, were the saturated, even-carbon straight chains 12 : 0 (5.9%), 14 : 0 (1.7%) and 16 : 0 (30.1 %), and the unsaturated 16 : 1 (36.6%) and 18 : 1 (15.0%) fatty acids. Other components were the hydroxy-substituted 3-OH 14 : 0 (5.3%) and 21 minor fatty acids each occurring less than 0.1 % of the total — 14 of them reported herein for the first time in Erwinia. The ratio of 16 : 1/18 : 1 in KB-grown cells was as useful in differentiating subspecies of E. carotovora as previously reported by other workers for TSA-grown cells. A comparison of fatty acid profiles of E. carotovora on 4 different media, KB, TSA, NA and PDA, indicated that on KB there was the greatest proportion of Class A and C fatty acids, and the highest number of detectable components. Significant differences were noted in the 5 major fatty acids and in cyclic fatty acids among the 4 species of the carotovora group –E. carotovora, E. chrysanthemi, E. rhapontici and E. cypripedii. These differences could be expressed as algorithms that, when used in sequential dichotomous steps, could differentiate the 4 species.  相似文献   

8.
Abstract

Fifty-six strains of Pseudomonas syringae pv. tomato (P.s. pv. tomato) were collected from tomato-producing areas in Tanzania and assessed for resistance to copper and antibiotics. The collection was done from three tomato-producing regions (Morogoro, Arusha and Iringa), representing three different ecological conditions in the country. After isolation and identification, the P. s. pv. tomato strains were grown on King's medium B (KB) amended with 20% copper sulphate (w/v). The strains were also assessed for resistance to antibiotics. Results indicated that there was widespread resistance of the P. s. pv. tomato strains to copper sulphate. The highest level of resistance was recorded from the Arusha region (Northern Tanzania), 83.3% of the P. s. pv. tomato strains from that region showed resistance to copper sulphate. This was followed by Iringa region (Southern Tanzania), from where strains of the pathogen were moderately resistant to copper sulphate, such that 54.0% of them were able to grow on the KB medium amended with 20% (w/v) of the copper compound.

Out of seven strains of P. s. pv. tomato from Morogoro region (Central Tanzania) included in the study, five (71.5%) were resistant to copper sulphate. The only strain of P. s. pv. tomato from the Dodoma region (Central Tanzania, but with a different ecological condition from the Morogoro region) included in the study was unable to grow on the medium containing 20% copper sulphate. None of the P. s. pv. tomato strains in the four regions included in the study were resistant to streptomycin sulphate. These results suggest that in the Arusha and Iringa regions of Tanzania, there might be possibilities of excessive use of copper compounds in tomato production, such that strains of P. s. pv. tomato strains in the areas have become resistant to the compounds.  相似文献   

9.
A survey of fluorescent pseudomonads associated with diseased wheat was conducted in South Africa during 1987 and 1988. Phenotypic features of 87 local strains were compared with those of 10 reference strains. Five groups were distinguished. Group 1 (nine reference and 16 local strains) was classified as Pseudomonas syringae pv. syringae. Group 2 (four local strains) was similar to group 1 but did not produce levan on nutrient sucrose agar. Group 3 (one reference and 33 local strains) also resembled P. s. pv. syringae, but did not elicit a hypersensitive reaction on tobacco. Group 4 (20 local strains) was mostly isolated from plants with atypical symptoms (total melanism) found in a single geographical region (Villiers) within South Africa. These strains had uniform characteristics, but failed to induce melanism on inoculated test plants. Group 5 (14 local strains) was not uniform. Twenty-eight representative local strains, selected from each of the five groups, and the 10 reference strains were used in pathogenicity and virulence tests. The four most virulent local strains were used to screen 14 wheat cultivars grown commercially in South Africa. Five of the cultivars were susceptible to these strains. Symptoms on leaves of naturally-infected plants corresponded with those already described, but the typical ear symptom (basal glume rot) was absent.  相似文献   

10.
The production of peptide siderophores and the variation in siderophore production among strains of Pseudomonas syringae and Pseudomonas viridiflava were investigated. An antibiose test was used to select a free amino acid-containing agar medium favorable for production of fluorescent siderophores by two P. syringae strains. A culture technique in which both liquid and solid asparagine-containing culture media were used proved to be reproducible and highly effective for inducing production of siderophores in a liquid medium by the fluorescent Pseudomonas strains investigated. Using asparagine as a carbon source appeared to favor siderophore production, and relatively high levels of siderophores were produced when certain amino acids were used as the sole carbon and energy sources. Purified chelated siderophores of strains of P. syringae pv. syringae, P. syringae pv. aptata, P. syringae pv. morsprunorum, P. syringae pv. tomato, and P. viridiflava had the same amino acid composition and spectral characteristics and were indiscriminately used by these strains. In addition, nonfluorescent strains of P. syringae pv. aptata and P. syringae pv. morsprunorum were able to use the siderophores in biological tests. Our results confirmed the proximity of P. syringae and P. viridiflava; siderotyping between pathovars of P. syringae was not possible. We found that the spectral characteristics of the chelated peptide siderophores were different from the spectral characteristics of typical pyoverdins. Our results are discussed in relation to the ecology of the organisms and the conditions encountered on plant surfaces.  相似文献   

11.
A type II restriction–modification system was found in a native plasmid of Pseudomonas savastanoi pv. savastanoi MLLI2. Functional analysis of the methyltransferase showed that the enzyme acts by protecting the DNA sequence CTGCAG from cleavage. Restriction endonuclease expression in recombinant Escherichia coli cells resulted in mutations in the REase sequence or transposition of insertion sequence 1A in the coding sequence, preventing lethal gene expression. Population screening detected homologous RM systems in other P. savastanoi strains and in the Pseudomonas syringae complex. An epidemiological survey carried out by sampling olive and oleander knots in two Italian regions showed an uneven diffusion of carrier strains, whose presence could be related to a selective advantage in maintaining the RM system in particular environments or subpopulations. Moreover, carrier strains can coexist in the same orchards, plants, and knot tissues with non-carriers, revealing unexpected genetic variability on a very small spatial scale. Phylogenetic analysis of the RM system and housekeeping gene sequences in the P. syringae complex demonstrated the ancient acquisition of the RM systems. However, the evolutionary history of the gene complex also showed the involvement of horizontal gene transfer between related strains and recombination events.  相似文献   

12.
As understanding of the evolutionary relationships between strains and species of root nodule bacteria increases the need for a rapid identification method that correlates well with phylogenetic relationships is clear. We have examined 123 strains ofRhizobium: R. fredii (19),R. galegae (20),R. leguminosarum (22),R. loti (17),R. meliloti (21), andR. tropici (18) and six unknowns. All strains were grown on modified tryptone yeast-extract (TY) agar, as log phase cultures, scraped from the agar, lysed, and the released fatty acids derivatized to their corresponding methyl esters. The methyl esters were analysed by gas-chromatography using the MIDI/Hewlett-Packard Microbial Identification System. All species studied contained 16:0, 17:0, 18:0 and 19cyclow9C fatty acids but onlyR loti andR tropici produced 12:0 3 OH,13:0 iso 3 OH,18:1w9C and 15:0 iso 3 OH,17:0 iso 3 OH and 20:2w6,9C fatty acids respectively. Principal component analysis was used to show that strains could be divided into clusters corresponding to the six species. Fatty acid profiles for each species were developed and these correctly identified at least 95% of the strains belonging to each species. A dendrogram is presented showing the relationships betweenRhizobium species based on fatty acid composition. The data base was used to identify unknown soil isolates as strains ofRhizobium lacking a symbiotic plasmid and a bacterium capable of expressing a symbiotic plasmid fromR. leguminosarum asSphingobacterium spiritovorum.  相似文献   

13.

Background  

Pseudomonas savastanoi pv. savastanoi is the causal agent of olive knot disease. The strains isolated from oleander and ash belong to the pathovars nerii and fraxini, respectively. When artificially inoculated, pv. savastanoi causes disease also on ash, and pv. nerii attacks also olive and ash. Surprisingly nothing is known yet about their distribution in nature on these hosts and if spontaneous cross-infections occur. On the other hand sanitary certification programs for olive plants, also including P. savastanoi, were launched in many countries. The aim of this work was to develop several PCR-based tools for the rapid, simultaneous, differential and quantitative detection of these P. savastanoi pathovars, in multiplex and in planta.  相似文献   

14.
The endophytic bacterium Pantoea agglomerans DAPP-PG 734 was previously isolated from olive knots caused by infection with Pseudomonas savastanoi pv. savastanoi DAPP-PG 722. Whole-genome analysis of this P. agglomerans strain revealed the presence of a Hypersensitive response and pathogenicity (Hrp) type III secretion system (T3SS). To assess the role of the P. agglomerans T3SS in the interaction with Psavastanoi pv. savastanoi, we generated independent knockout mutants in three Hrp genes of the P. agglomerans DAPP-PG 734 T3SS (hrpJ, hrpN, and hrpY). In contrast to the wildtype control, all three mutants failed to cause a hypersensitive response when infiltrated in tobacco leaves, suggesting that P. agglomerans T3SS is functional and injects effector proteins in plant cells. In contrast to P. savastanoi pv. savastanoi DAPP-PG 722, the wildtype strain Pagglomerans DAPP-PG 734 and its Hrp T3SS mutants did not cause olive knot disease in 1-year-old olive plants. Coinoculation of Psavastanoi pv. savastanoi with P. agglomerans wildtype strains did not significantly change the knot size, while the DAPP-PG 734 hrpY mutant induced a significant decrease in knot size, which could be complemented by providing hrpY on a plasmid. By epifluorescence microscopy and confocal laser scanning microscopy, we found that the localization patterns in knots were nonoverlapping for Psavastanoi pv. savastanoi and P. agglomerans when coinoculated. Our results suggest that suppression of olive plant defences mediated by the Hrp T3SS of P. agglomerans DAPP-PG 734 positively impacts the virulence of Psavastanoi pv. savastanoi DAPP-PG 722.  相似文献   

15.
In order to understand the mode of action of taxonomically related Pseudomonas syringae pathovar strains that infect pea, tomato, and soya bean, we examined their extracellular polysaccharides (EPS). Maximum production of polysaccharide in shake culture of these pathogens was observed between 24 and 60 h. P. syringae pv. pisi 519, the bacterial blight pathogen of pea, produced a higher amount of polysaccharide (34.87 g/mL) at 60 h compared with 32.67 g/mL produced by P. syringae pv. glycinea NCPPB 1783, the bacterial blight pathogen of soya bean, and 30.03 g/mL produced by P. syringae pv. tomato NCPPB 269, the bacterial speck pathogen of tomato. EPS produced by P. syringae pv. pisi 519, P. syringae pv. tomato NCPPB 269, and P. syringae pv. glycinea NCPPB 1783 was characterized with infrared (FTIR), nuclear magnetic resonance (NMR), high performance thin layer chromatography, (HPTLC), and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. HPTLC profiles revealed the presence of glucose and glucuronic acid in all bacteria and mannose only in P. syringae pv. tomato. Molecular mass of EPS of P. syringae pv. pisi (m/z 933.8), P. syringae pv. tomato (m/z 950.4), and P. syringae pv. glycinea (m/z 933.5) was confirmed by MALDI-TOF mass spectrometry.  相似文献   

16.
The first outbreaks of bacterial canker of kiwifruit caused by Pseudomonas syringae pv. actinidiae biovar 3 were detected in France in 2010. P. syringae pv. actinidiae causes leaf spots, dieback, and canker that sometimes lead to the death of the vine. P. syringae pv. actinidifoliorum, which is pathogenic on kiwi as well, causes only leaf spots. In order to conduct an epidemiological study to track the spread of the epidemics of these two pathogens in France, we developed a multilocus variable-number tandem-repeat (VNTR) analysis (MLVA). MLVA was conducted on 340 strains of P. syringae pv. actinidiae biovar 3 isolated in Chile, China, France, Italy, and New Zealand and on 39 strains of P. syringae pv. actinidifoliorum isolated in Australia, France, and New Zealand. Eleven polymorphic VNTR loci were identified in the genomes of P. syringae pv. actinidiae biovar 3 ICMP 18744 and of P. syringae pv. actinidifoliorum ICMP 18807. MLVA enabled the structuring of P. syringae pv. actinidiae biovar 3 and P. syringae pv. actinidifoliorum strains in 55 and 16 haplotypes, respectively. MLVA and discriminant analysis of principal components revealed that strains isolated in Chile, China, and New Zealand are genetically distinct from P. syringae pv. actinidiae strains isolated in France and in Italy, which appear to be closely related at the genetic level. In contrast, no structuring was observed for P. syringae pv. actinidifoliorum. We developed an MLVA scheme to explore the diversity within P. syringae pv. actinidiae biovar 3 and to trace the dispersal routes of epidemic P. syringae pv. actinidiae biovar 3 in Europe. We suggest using this MLVA scheme to trace the dispersal routes of P. syringae pv. actinidiae at a global level.  相似文献   

17.
18.
Toxin-based identification procedures are useful for differentiating Pseudomonas syringae pathovars. A biological test on peptone-glucose-NaCl agar in which the yeast Rhodotorula pilimanae was used proved to be more reliable for detecting lipodepsipeptide-producing strains of P. syringae than the more usual test on potato dextrose agar in which Geotrichum candidum is used. A PCR test performed with primers designed to amplify a 1,040-bp fragment in the coding sequence of the syrD gene, which was assumed to be involved in syringomycin and syringopeptin secretion, efficiently detected the gene in pathovars that produce the lipodepsipeptides. Comparable results were obtained in both tests performed with strains of the syringomycin-producing organisms P. syringae pv. syringae, P. syringae pv. atrofaciens, and P. syringae pv. aptata, but the PCR test failed with a syringotoxin-producing Pseudomonas fuscovaginae strain. The specificity of the test was verified by obtaining negative PCR test results for related pathovars or species that do not produce the toxic lipodepsipeptides. P. syringae pv. syringae was detected repeatedly in liquid medium inoculated with diseased vegetative tissue and assayed by the PCR test. Our procedure was also adapted to detect P. syringae pv. morsprunorum with a cfl gene-based PCR test.  相似文献   

19.
A selected group of strains of Pseudomonas syringae subsp. savastanoi from olive, oleander and ash were compared with pathogenicity tests and with DNA restriction fingerprinting using sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and silver staining. The strains from each host were distinguishable by their pathogenicity to the same host and to the other two plant species. A division into the same groups was obtained with unweighted pair-group method with averages (UPGMA) clustering of the data from genomic fingerprinting, even though high overall similarity between the strains also indicated that they formed a single, well characterized taxon. It seems clear that the subspecies savastanoi of P. syringae comprises at least 3 groups of strains that differ in their precise host range, in the nature of the symptoms induced on the individual hosts, and in their genomic profile.  相似文献   

20.
Cellular fatty acids of 80 strains of Xanthomonas campestris, representing 9 different pathovars, were analyzed by gas-liquid chromatography and mass spectrometry. A total of 48 fatty acids were identified, the most important being the 16:0 (averaging at least 4.5 % of the total), the cis- and trans- 9 16 : 1 (over 14.4 %), and the iso and anteiso 15 : 0 (over 30 %). Other major fatty acids (averaging over 1 % of total) were the saturated 14 : 0 and 15 : 0, the hydroxy-substituted iso 3-OH 11 : 0, 3-OH 12 : 0 and iso 3-OH 13 : 0, and the branch-chained iso 11 : 0, iso 16 : 0, iso 17 : 1, iso 17 : 0 and anteiso 17 : 0. Of 33 minor fatty acids detected and identified, only 7 have been previously reported in the xanthomonads. Significant differences in mean percentages of 5 major fatty acids and 4 (chemical) class totals were detected among pathovars, which statistically segregated into three groups by rank analysis. X. campestris pv. dieffenbachiae was in a group by itself; pvs. campestris, citri (pathotypes A and B), manihotis, phaseoli, pruni and vesicatoria were in a seond group, and pvs. glycines, begonia and citri (pathotype E) were in a third.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号