首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Six novel cyclic enkephalin analogues have been synthesized. Cyclization of the linear peptides containing basic amino acid residues in position 2 and 5 was achieved by treatment with bis(4-nitrophenyl)carbonate. It was found that some of the compounds exibit unusually high mu-opioid activity in the guinea pig ileum (GPI) assay. The 18-membered analogue cyclo(N(epsilon),N(beta)-carbonyl-D-Lys2,Dap5)-enkephalinamide turned out to be one of the most potent mu-agonists reported so far. NMR spectra of the peptides were recorded and structural parameters were determined. The conformational space was exhaustively examined for each of them using the electrostatically driven Monte Carlo method. Each peptide was finally described as an ensemble of conformations. A model of the bioactive conformation of this class of opioid peptides was proposed.  相似文献   

2.
A new family of cyclic opioid peptide analogues related to the 1-4 sequence of dermorphin/deltorphin (Tyr-D-Aaa2-Phe-Aaa4-NH2) has been synthesized. The synthesis of the linear precursor peptides was accomplished by the solid-phase method and ring formation was achieved via a ureido group incorporating the side chain amino functions of D-Aaa2 (D-Lys, D-Orn) and Aaa4 (Lys, Orn, Dab, Dap). The peptides were tested in the guinea-pig ileum (GPI) and mouse vas deferens (MVD) assays. Most showed very high agonist potency in the GPI assay. The peptide containing D-Lys in position 2 and Dab in position 4 was 210 times more active than enkephalin, and that containing Orn and Dab, respectively, was 150 times more active than enkephalin. The latter peptide was also very active in the MVD assay, and showed an IC50 MVD/GPI ratio of 0.816. NMR spectra of selected peptides were recorded, and structural parameters were determined. The conformational space of the peptides was examined using the electrostatically driven Monte Carlo method. With the help of the NMR spectra each peptide was described as an ensemble of conformations. The conformations have been interpreted with regard to the opioid activities, and comparisons have been made with a model proposed earlier for enkephalin analogues.  相似文献   

3.
Novel N‐(ureidoethyl)amides of cyclic enkephalin analogs have been synthesized. The p‐nitrophenyl carbamate of 1‐Boc‐1,2‐diaminoethane was coupled with 4‐methylbenzhydrylamine (MBHA) resin. The Boc group was removed by treatment with HCl/dioxane, and the peptide chain was assembled using Boc strategy. For deprotection of amino function, HCl/dioxane was used. D ‐Lys or D ‐Orn were incorporated in position 2, and the side chains of Lys, Orn, Dab, or Dap in position 5 were protected with Fmoc group. Side chain protection was removed by treatment with 55% piperidine in DMF, and cyclization was achieved by treatment with bis‐(4‐nitrophenyl)carbonate to form a urea bridge. The peptide was cleaved from the resin by treatment with 45% TFA in DCM. The peptides were tested in the guinea‐pig ileum (GPI) and mouse vas deferens (MVD) assays. Divers opioid activities were observed, depending on the size of the ring. In comparison with [Leu5]enkephalin, all peptides were more active in the GPI assay (between 125 and 12 times), and some of them were also more potent in the MVD assay. The conformational propensities of each peptide were determined using the EDMC method in conjunction with NMR experiments. This approach allows treating the dynamical behavior of small peptides properly. The results were compared with those obtained previously for corresponding nonsubstituted amides and are in agreement with the biologically active conformation proposed by us earlier. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

4.
Han Y  Mierke DF  Chorev M 《Biopolymers》2002,64(1):1-15
Structurally constraint dipeptidomimetics represent an important class of conformationally rigid dipeptide surrogates and molecular scaffolds, which are frequently employed in peptide-based structure-activity relationships (SAR) and construction of combinatorial libraries. We report on the design of an improved and general synthetic procedure to prepare synthons related to the trisubstituted 1,2,5-hexahydro-3-one-1H-1,4-diazepines [DAP(Xxx)(alpha7)] (DAP: 1,2,5-hexahydro-3-one-1H-1,4-diazepine; DAP(Xxx)(alpha7): the homologous series of DAP in which alpha refers to the location of the chiral carbon in the i(th) amino acid, Xxx represents the three letter notation for the i-1 amino acids, and 7 denotes the number of atoms in the ring) and their higher homologs [DAP(Xxx)(alphaN)] [Xxx = Phe, Asp(beta-OcHex) (cHex: cyclohexyl), and Arg(N(G)-Tos] (Tos: p-toluenesulfonyl); N = 8-10]. These dipetidomimetic structures are generated by reductive alkylation-mediated Calpha(i)-to-N(i-1) bridging between a Calpha (i)-(CH(2))(i-1)(n)-COSEt (n = 1-4) and H(2)N-C(i-1)HR-CO(2)Fm (Fm: 9-fluorenylmethyl) followed by H(2)N(i)-to-C(i-1)-CO(2)H lactam formation. We also describe the preparation of blocked N-Ac-[DAP(Phe)(alphaN)]-CONMe(2) (N = 8-10), which serve as model systems for detailed conformational analysis reported in the accompanying article.  相似文献   

5.
Disulfide cyclization is a well-known procedure to impose conformational restriction to peptides undergoing backbone flexibility. Rigid conformations are induced only for small rings with a specific combination of amino acids. In this work, we present a computational search of the backbone and backbone-dependent side-chain orientation of two series of linear and cyclic peptide analogs. The -C[XY]C- scaffold (where X,Y is arginine, aspartic acid or alanine residue) in its open and (S,S) cyclic form was used for the design of the studied analogs. Thirty-six compounds, resulting from the extension with one residue at either the N- or the C-terminus were studied with classical MD. The local backbone conformation and the relative orientation of the X and Y side chains induced by either cyclization and/or the presence of the charged residues are discussed. From the present study it is concluded that cyclization has a great impact on the synplanar orientation of the X and Y side chains in the (S,S)Ac-XCYC-NH2 series of compounds while charge-charge interaction has only a weak synergic effect. On the contrary, the antiplanar orientation is favored in the case of (S,S)Ac-CXCY-NH2.  相似文献   

6.
Hu X  Kuhlman B 《Proteins》2006,62(3):739-748
Loss of side-chain conformational entropy is an important force opposing protein folding and the relative preferences of the amino acids for being buried or solvent exposed may be partially determined by which amino acids lose more side-chain entropy when placed in the core of a protein. To investigate these preferences, we have incorporated explicit modeling of side-chain entropy into the protein design algorithm, RosettaDesign. In the standard version of the program, the energy of a particular sequence for a fixed backbone depends only on the lowest energy side-chain conformations that can be identified for that sequence. In the new model, the free energy of a single amino acid sequence is calculated by evaluating the average energy and entropy of an ensemble of structures generated by Monte Carlo sampling of amino acid side-chain conformations. To evaluate the impact of including explicit side-chain entropy, sequences were designed for 110 native protein backbones with and without the entropy model. In general, the differences between the two sets of sequences are modest, with the largest changes being observed for the longer amino acids: methionine and arginine. Overall, the identity between the designed sequences and the native sequences does not increase with the addition of entropy, unlike what is observed when other key terms are added to the model (hydrogen bonding, Lennard-Jones energies, and solvation energies). These results suggest that side-chain conformational entropy has a relatively small role in determining the preferred amino acid at each residue position in a protein.  相似文献   

7.
The solution structure of contryphan-Vn, a cyclic peptide with a double cysteine S-S bridge and containing a D-tryptophan extracted from the venom of the cone snail Conus ventricosus, has been determined by NMR spectroscopy using a variety of homonuclear and heteronuclear NMR methods and restrained molecular dynamics simulations. The main conformational features of backbone contryphan-Vn are a type IV beta-turn from Gly 1 to Lys 6 and a type I beta-turn from Lys 6 to Cys 9. As already found in other contryphans, one of the two prolines--the Pro4--is mainly in the cis conformation while Pro7 is trans. A small hydrophobic region probably partly shielded from solvent constituted from the close proximity of side chains of Pro7 and Trp8 was observed together with a persistent salt bridge between Asp2 and Lys6, which has been revealed by the diagnostic observation of specific nuclear Overhauser effects. The salt bridge was used as a restraint in the molecular dynamics in vacuum but without inserting explicit electrostatic contribution in the calculations. The backbone of the unique conformational family found of contryphan-Vn superimposes well with those of contryphan-Sm and contryphan-R. This result indicates that the contryphan structural motif represents a robust and conserved molecular scaffold whose main structural determinants are the size of the intercysteine loop and the presence and location in the sequence of the D-Trp and the two Pro residues.  相似文献   

8.
Desmet J  Spriet J  Lasters I 《Proteins》2002,48(1):31-43
We have developed an original method for global optimization of protein side-chain conformations, called the Fast and Accurate Side-Chain Topology and Energy Refinement (FASTER) method. The method operates by systematically overcoming local minima of increasing order. Comparison of the FASTER results with those of the dead-end elimination (DEE) algorithm showed that both methods produce nearly identical results, but the FASTER algorithm is 100-1000 times faster than the DEE method and scales in a stable and favorable way as a function of protein size. We also show that low-order local minima may be almost as accurate as the global minimum when evaluated against experimentally determined structures. In addition, the new algorithm provides significant information about the conformational flexibility of individual side-chains. We observed that strictly rigid side-chains are concentrated mainly in the core of the protein, whereas highly flexible side-chains are found almost exclusively among solvent-oriented residues.  相似文献   

9.
Conditions for the synthesis of i−(i+4) side chain-to-side chain head-to-tail Lys→Glu and Glu→Lys linked cyclic peptides related to hypoglycaemic analogues of human growth hormone hGH [6–13] have been examined. The success of the cyclisation reaction with the corresponding resin-bound, partially protected linear peptides was found to be both reagent as well as sequence dependent, with competing inter-chain oligomerisation predominating in some cases. The results also indicated that protection with the bulky Fmoc group of the amino acid residues immediately adjacent to the side chain-deprotected Lys and Glu residues, which participate in the cyclisation reaction, enhanced the rate of lactam formation. © 1998 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

10.
Recent advances in modeling protein structures at the atomic level have made it possible to tackle "de novo" computational protein design. Most procedures are based on combinatorial optimization using a scoring function that estimates the folding free energy of a protein sequence on a given main-chain structure. However, the computation of the conformational entropy in the folded state is generally an intractable problem, and its contribution to the free energy is not properly evaluated. In this article, we propose a new automated protein design methodology that incorporates such conformational entropy based on statistical mechanics principles. We define the free energy of a protein sequence by the corresponding partition function over rotamer states. The free energy is written in variational form in a pairwise approximation and minimized using the Belief Propagation algorithm. In this way, a free energy is associated to each amino acid sequence: we use this insight to rescore the results obtained with a standard minimization method, with the energy as the cost function. Then, we set up a design method that directly uses the free energy as a cost function in combination with a stochastic search in the sequence space. We validate the methods on the design of three superficial sites of a small SH3 domain, and then apply them to the complete redesign of 27 proteins. Our results indicate that accounting for entropic contribution in the score function affects the outcome in a highly nontrivial way, and might improve current computational design techniques based on protein stability.  相似文献   

11.
Side chain optimization is an integral component of many protein modeling applications. In these applications, the conformational freedom of the side chains is often explored using libraries of discrete, frequently occurring conformations. Because side chain optimization can pose a computationally intensive combinatorial problem, the nature of these conformer libraries is important for ensuring efficiency and accuracy in side chain prediction. We have previously developed an innovative method to create a conformer library with enhanced performance. The Energy‐based Library (EBL) was obtained by analyzing the energetic interactions between conformers and a large number of natural protein environments from crystal structures. This process guided the selection of conformers with the highest propensity to fit into spaces that should accommodate a side chain. Because the method requires a large crystallographic data‐set, the EBL was created in a backbone‐independent fashion. However, it is well established that side chain conformation is strongly dependent on the local backbone geometry, and that backbone‐dependent libraries are more efficient in side chain optimization. Here we present the backbone‐dependent EBL (bEBL), whose conformers are independently sorted for each populated region of Ramachandran space. The resulting library closely mirrors the local backbone‐dependent distribution of side chain conformation. Compared to the EBL, we demonstrate that the bEBL uses fewer conformers to produce similar side chain prediction outcomes, thus further improving performance with respect to the already efficient backbone‐independent version of the library. Proteins 2014; 82:3177–3187. © 2014 Wiley Periodicals, Inc.  相似文献   

12.
Here we describe the updated MolProbity rotamer‐library distributions derived from an order‐of‐magnitude larger and more stringently quality‐filtered dataset of about 8000 (vs. 500) protein chains, and we explain the resulting changes and improvements to model validation as seen by users. To include only side‐chains with satisfactory justification for their given conformation, we added residue‐specific filters for electron‐density value and model‐to‐density fit. The combined new protocol retains a million residues of data, while cleaning up false‐positive noise in the multi‐ datapoint distributions. It enables unambiguous characterization of conformational clusters nearly 1000‐fold less frequent than the most common ones. We describe examples of local interactions that favor these rare conformations, including the role of authentic covalent bond‐angle deviations in enabling presumably strained side‐chain conformations. Further, along with favored and outlier, an allowed category (0.3–2.0% occurrence in reference data) has been added, analogous to Ramachandran validation categories. The new rotamer distributions are used for current rotamer validation in MolProbity and PHENIX, and for rotamer choice in PHENIX model‐building and refinement. The multi‐dimensional distributions and Top8000 reference dataset are freely available on GitHub. These rotamers are termed “ultimate” because data sampling and quality are now fully adequate for this task, and also because we believe the future of conformational validation should integrate side‐chain with backbone criteria. Proteins 2016; 84:1177–1189. © 2016 Wiley Periodicals, Inc.  相似文献   

13.
ω‐AGA IVB is an important lead structure when considering the design of effectors of glutamate release inducting P/Q‐type calcium channels. The best route to achieve the analogues possessing the three‐dimensional arrangement corresponding to the native binding loop was the introduction of constraint by ring formation via side chain to side chain lactamization for suitably protected Lys and Glu residues. Since tryptophane residue located at position 14 of this neuropeptide has been suggested as essential for binding, analogues in which this amino acid was replaced by aza‐tryptophane and alanine were synthesized. The synthesis was carried out on various acid‐labile resins (BARLOS chlorotrityl, Rink amide, PEG‐based or Wang resins), by Fmoc strategy. In this paper, we describe optimization of the peptide cyclization with various protecting groups, and on resin or in solution cyclization experimental parameters. Copyright © 2007 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

14.
Cyclic peptides form an interesting class of compounds for study by conformational analysis, by virtue of their unique conformational features and biological properties. The small cyclic peptides having 3-6 peptide units in their ring, show a variety of conformational characteristics such as occurrence ofcis peptide units, flexibility of peptide dimension and variety in hydrogen bonding. The different possible conformations of cyclic tri- and hexa-peptides are given and certain specific conformational features are discussed for cyclic tetra and pentapeptides. For higher cyclic peptides, the hydrogen bonding requirement for stability of the backbone of the ring, is seen to be kept to a minimum. These various features and their significance are examined and discussed in the light of energy minimization studies and analysis of available experimental data.  相似文献   

15.
We have recently reported a series of synthetic anticancer heptapeptides (H‐KKWβ2,2WKK‐NH2) containing a central achiral and lipophilic β2,2‐amino acid that display low toxicity against non‐malignant cells and high proteolytic stability. In the present study, we have further investigated the effects of increasing the rigidity and amphipathicity of two of our lead heptapeptides by preparing a series of seven to five residue cyclic peptides containing the two most promising β2,2‐amino acid derivatives as part of the central lipophilic core. The peptides were tested for anticancer activity against human Burkitt's lymphoma (Ramos cells), haemolytic activity against human red blood cells (RBC) and cytotoxicity against healthy human lung fibroblast cells (MRC‐5). The results demonstrated a considerable increase in anticancer potency following head‐to‐tail peptide cyclization, especially for the shortest derivatives lacking a tryptophan residue. High‐resolution NMR studies and molecular dynamics simulations together with an annexin‐V‐FITC and propidium iodide fluorescent assay showed that the peptides had a membrane disruptive mode of action and that the more potent peptides penetrated deeper into the lipid bilayer. The need for new anticancer drugs with novel modes of action is demanding, and development of short cyclic anticancer peptides with an overall rigidified and amphipathic structure is a promising approach to new anticancer agents. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

16.
In previous studies we have shown that light-induced cis/trans isomerization of the azobenzene moiety in cyclo-[Ala-Cys-Ala-Thr-Cys-Asp-Gly-Phe-AMPB] [AMPB: (4-aminomethyl)phenylazobenzoic acid] leads both in the monocyclic and in the oxidized bicyclic form to markedly differentiated conformational states in DMSO, a fact that lends itself for photomodulation of the redox potential of such bis-cysteinyl-peptides. For this purpose water-soluble systems are required, and this was achieved by replacing three residues outside the Cys-Ala-Thr-Cys active-site motif of thioredoxin reductase with lysines. The resulting cyclo-[Lys-Cys-Ala-Thr-Cys-Asp-Lys-Lys-AMPB] fully retains its photoresponsive properties in water as well assessed by uv and CD measurements. Paralleling results of the previously investigated azobenzene-containing cyclic peptides, the trans --> cis isomerization of the water-soluble monocyclic and oxidized bicyclic peptide is accompanied by a marked transition from a well-defined conformation to an ensemble of possible conformations. However, the conformational preferences are very dissimilar from those of the DMSO-soluble peptides. In fact, hydrogen bonds as well as secondary structure elements were found that change in the mono- and bicyclic peptide upon irradiation. The photo switch between different turn types and hydrogen bonding networks offers the structural rational for the significantly differentiated redox potentials, but also the possibility of monitoring by femtosecond uv-vis and ir spectroscopy fast and ultra fast backbone rearrangement processes following the electronic trans --> cis isomerization.  相似文献   

17.
Monleón D  Celda B 《Biopolymers》2003,70(2):212-220
Plastocyanin is a small (approximately 10 kDa), type I blue copper protein that works as an electron donor to photosystem I from cytochrome f in both chloroplast systems and in some strains of cyanobacteria. Comparative studies of the kinetic mechanisms of plastocyanins in different organisms show that the electron transfer from photosystem I happens by simple collision in cyanobacteria but through a intermediate transition complex in green algae and superior plants. Previous work has proved that this effect cannot be explained by structural variations across the different plastocyanins but it can be explained by differences in the electrostatic potential distribution at the protein surface. In that case, minor conformational errors at the amino acid side chain level may imply an important effect in the electrostatic potential distribution calculation. In this work we present a high resolution study of side chain conformation by homonuclear NMR for the reduced wild-type plastocyanin Synechocystis using intensity ratios for 2D-NOESY and 2D-H,H-TOCSY cross peaks at different mixing times. We also present the corresponding comparison with different plastocyanin structures and the effect in the electrostatic potential distribution at the protein surface. We discuss the importance of indirect J-coupling information from TOCSY-type experiments as complement for intraresidue distances derived from NOESY experiments in the determination of side chain orientation and stereo-specific assignments.  相似文献   

18.
Xu XP  Case DA 《Biopolymers》2002,65(6):408-423
We have used density functional calculations on model peptides to study conformational effects on (15)N, (13)C alpha, (13)C beta, and (13)C' chemical shifts, associated with hydrogen bonding, backbone conformation, and side-chain orientation. The results show a significant dependence on the backbone torsion angles of the nearest three residues. Contributions to (15)N chemical shifts from hydrogen bonding (up to 8 ppm), backbone conformation (up to 13 ppm), side-chain orientation and neighborhood residue effects (up to 22 ppm) are significant, and a unified theory will be required to account for their behavior in proteins. In contrast to this, the dependence on sequence and hydrogen bonding is much less for (13)C alpha and (13)C beta chemical shifts (<0.5 ppm), and moderate for carbonyl carbon shifts (<2 ppm). The effects of side-chain orientation are mainly limited to the residue itself for both nitrogen and carbon, but the chi(1) effect is also significant for the nitrogen shift of the following residue and for the (13)C' shift of the preceding residue. The calculated results are used, in conjunction with an additive model of chemical shift contributions, to create an algorithm for prediction of (15)N and (13)C shifts in proteins from their structure; this includes a model to extrapolate results to regions of torsion angle space that have not been explicitly studied by density functional theory (DFT) calculations. Crystal structures of 20 proteins with measured shifts have been used to test the prediction scheme. Root mean square deviations between calculated and experimental shifts 2.71, 1.22, 1.31, and 1.28 ppm for N, C alpha, C beta, and C', respectively. This prediction algorithm should be helpful in NMR assignment, crystal and solution structure comparison, and structure refinement.  相似文献   

19.
We propose a method to extensively characterize the native state ensemble of cyclic cysteine-rich peptides. The method uses minimal information, namely, amino acid sequence and cyclization, as a topological feature that characterizes the native state. The method does not assume a specific disulfide bond pairing for cysteines and allows the possibility of unpaired cysteines. A detailed view of the conformational space relevant for the native state is obtained through a hierarchic multi-resolution exploration. A crucial feature of the exploration is a geometric approach that efficiently generates a large number of distinct cyclic conformations independently of one another. A spatial and energetic analysis of the generated conformations associates a free-energy landscape to the explored conformational space. Application to three long cyclic peptides of different folds shows that the conformational ensembles and cysteine arrangements associated with free energy minima are fully consistent with available experimental data. The results provide a detailed analysis of the native state features of cyclic peptides that can be further tested in experiment.  相似文献   

20.
假设分子对接面的紧密堆积类似于蛋白质内部的紧密堆积,因此用于蛋白质内部的侧链构象预测方法,如死端排除法,可应用于分子对接面内的侧链构象预测。应用9个晶体结构对这一假设进行检验。结果表明假设基本正确。对2个蛋白酶和抑制剂的应用比较成功。9个配体中的7个有正确的均方根差的趋势。还发现受体结构的柔性较小,说明由于对接面的紧密堆积产生的侧链构象变化很小。根据这些结果,提出一个新的分子对接流程图,即在刚体对  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号