首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Frozen fruit juice concentrates containing an average microbial population of log10 1.54 cfu ml-1 were examined by traditional plating techniques and direct and indirect conductimetry. The initial populations in diluted (1:4) concentrates increased to an average of log10 3.82 cfu ml-1 during incubation at 25°C for 24 h. Incubation before plating and subjecting to conductimetric tests also facilitated the resuscitation of cells that may have been freeze-injured. Yeasts were recovered in equal numbers on acidified (pH 3.5) potato dextrose agar and dichloran rose bengal chloramphenicol agar (pH 5.6). Yeasts and bacteria were recovered on orange serum agar. Detection times determined by indirect conductimetry correlated fairly well ( r = -0.73) with populations (cfu ml-1) detected on traditional plating media. Populations in diluted concentrates which were not incubated before examination were detected conductimetrically in an average of 48.9 h, whereas detection times for diluted concentrates incubated for 24 h at 25°C before testing were reduced to an average of 14.1 h. Examination by conventional (direct) conductimetry required an additional 10–20 h to reach changes in conductance of 5 μS h-1.  相似文献   

4.
工业酵母抗逆机理研究进展   总被引:1,自引:2,他引:1  
工业酵母利用木质纤维素等生物质资源发酵生产醇、酮、醛、酸等各种化合物,是解决人类面临的不可再生资源和能源危机的重要途径,这激发了人们对木质纤维素水解液为原料和环保节能型浓醪发酵技术的极度关注。然而高浓度底物、产物、渗透压、木质纤维素水解液中抑制性物质、发酵过程温度的提高均会抑制微生物生长代谢及发酵性能,这是发酵行业"瓶颈"问题。本文简述了渗透压、温度及抑制性物质对酵母细胞生长的危害,并从胞内稳态平衡、分子水平等方面着重叙述工业酵母对渗透压、温度及抑制性物质的抗逆机制研究进展。  相似文献   

5.
6.
7.
Mechanisms underlying adaptation of various yeasts to salt stress were summarized. Stress response involves modulation of enzymatic activities and changes in gene expression. Elevated salinity of the environment can be regarded as a two-factor stress process that includes an osmotic component leading to loss of cellular turgor and a toxic component inhibiting a set of functions due to an increase in the intracellular concentration of Na+. Adaptation of yeast cells to these stress conditions obligatorily involves the accumulation of osmotically active compounds (mainly glycerol) to counterbalance an increased external osmotic pressure and the modification of plasma membrane transport systems to extrude Na+ from the cell.  相似文献   

8.
9.
Heat stress is one of the best-studied exogenous stress factors; however little is known about its delayed effects. Recently, we have shown that heat stress induces cellular senescence-like G2 arrest exclusively in early S-phase cells. The mechanism of this arrest includes the generation of heat stress-induced single-stranded DNA breaks, the collision of replication forks with these breaks and the formation of difficult-to-repair double-stranded DNA breaks. However, the early S phase-specific effects of heat stress are not limited to the induction of single-stranded DNA breaks. Here, we report that HS induces partial DNA re-replication and centrosome amplification. We suggest that HS-induced alterations in the expression levels of the genes encoding the replication licensing factors are the primary source of such perturbations. Notably, these processes do not contribute to acquisition of a senescence-like phenotype, although they do elicit postponed effects. Specifically, we found that the HeLa cells can escape from the heat stress-induced cellular senescence-like G2 arrest, and the mitosis they enter is multipolar due to the amplified centrosomes.  相似文献   

10.
Conservation and release of osmolytes by yeasts during hypo-osmotic stress   总被引:2,自引:0,他引:2  
In response to fluctuations in environmental osmolarity, yeast cells adjust their intracellular solute concentrations in order to maintain a constant turgor pressure and ensure continuation of cellular activity. In this study, the effect of hypo-osmotic stress on osmolyte content of osmotolerant yeasts Zygosaccharomyces rouxii and Pichia sorbitophila and the less tolerant Saccharomyes cerevisiae was investigated. All these yeasts released glycerol upon hypo-osmotic shock. However, Z. rouxii also released arabitol, whereas P. sorbitophila released erythritol in addition to arabitol and glycerol. Osmolyte release was very rapid and specific and was neither affected by reduced temperatures nor inhibited by the channel blocker gadolinium or the protonophore carbonyl cyanide m-chlorophenyl hydrazone. Extracellular osmolyte levels increased drastically suggesting that osmolytes were not metabolised but mainly released upon exposure to hypotonic conditions. The export process is well controlled, and the amount of osmolyte released was proportional to the shock intensity. Osmolyte release occurred with little cell lysis and thus the survival as well as the subsequent growth of yeast cells was largely unaffected after hypo-osmotic shock. The kinetics and patterns of osmolyte export suggest the involvement of channel proteins, but the molecular nature of this export pathway in yeasts, with exception of S. cerevisiae, remains to be established.  相似文献   

11.
Our aim was to investigate the response of selected yeasts and yeast-like fungi from extreme?environments to various temperatures at the level of their plasma membranes, in order to elucidate the connections between their plasma-membrane fluidity (measured by electron paramagnetic resonance spectroscopy - EPR), growth temperature range, stress tolerance, and ecological distribution. Although all studied fungi can be considered mesophilic according to their growth temperature profiles, their plasma-membrane fluidity indicated otherwise. Arctic yeast Rhodosporidium diobovatum could be classified as psychrotolerant?due to its higher average membrane fluidity. Extremely halotolerant black yeast-like fungus Hortaea werneckii isolated from solar salterns, on the other hand, is not adapted to low temperature, which is reflected in the higher average rigidity of its plasma membrane and as a consequence its inability to grow at temperatures lower than 10°C. The plasma membrane of Aureobasidium sp. isolated so far exclusively from an Arctic glacier with its intermediate fluidity and high fluidity variation at different temperatures may indicate the specialization of this yeast-like fungus to the specific glacial environment. Similar behaviour of plasma membrane was detected in the reference yeast, non-extremophilic Saccharomyces cerevisiae. Its membranes of intermediate fluidity and with high fluidity?fluctuation at different temperatures may reflect the specialization of this yeast to mesophilic environments and prevent its colonization of extreme environments. Halotolerant Aureobasidium pullulans from salterns, and Arctic Cryptococcus liquefaciens and Rhodotorula?mucilaginosa with moderately fluctuating plasma membranes of intermediate fluidity are representatives of globally distributed generalistic and stress-tolerant species that can thrive in a variety of environments. Keeping the membranes stable and flexible is one of the necessities for the microorganisms to survive changes in extreme habitats. Our data suggest that plasma-membrane fluidity can be used as an indicator of fitness for survival in the extreme environments. In addition to the average fluidity of plasma membrane, the fluctuation of fluidity is an important determinant of stress tolerance: high absolute fluidity fluctuation is tied to decreased survival. The fluidity and its variation therefore reflect survival strategy and fitness in extreme environments and are good indicators?of the adaptability of microorganisms.  相似文献   

12.
13.
14.
Glycerol production by yeasts under osmotic and sulfite stress.   总被引:3,自引:0,他引:3  
The yeasts Saccharomyces cerevisiae, Candida boidinii, Pichia augusta, and Pichia anomala were tested for glycerol production both under osmotic stress and by addition of a sulfite-steering agent. The osmotic pressure was increased by employing glucose concentrations from 50 to 200 g/L and by supplementing with NaCl (40 g/L). Of all the yeasts, S. cerevisiae exhibited the highest level of osmotolerance. The increased osmotic pressure affected glycerol formation the most in C. boidinii. In both Pichia species, glycerol formation was not sufficiently induced when exposed to sugar and salt stress. The addition of 40 g/L Na2SO3 to the medium containing 100 g/L glucose shifted the metabolism of all yeasts towards glycerol formation. Saccharomyces cerevisiae achieved 68.6%, while C. boidinii reached 25.5% of the theoretical glycerol yield, respectively. The highest glycerol yield, 82.3% of the theoretical, was produced by S. cerevisiae under microaerophilic conditions.  相似文献   

15.
16.
17.
Many yeasts and bacteria were isolated from moist hays (>30% water content) treated with up to 3% propionic acid-based preservatives. Predominant yeasts were Candida guilliermondii var. guilliermondii and Hyphopichia burtonii. Growth of both species was decreased more than 50% in liquid medium containing 54 mmol/l ammonium propionate but some still occurred in 135 mmol/l propionate. Both metabolized between 80 and 85% of 27 mmol/l ammonium propionate in 1% malt broth within four weeks at 25°C. Growth on solid malt extract agar containing ammonium propionate was decreased by decreasing the water availability (water activity, aw) in the medium. Growth rates were slightly greater when glycerol rather than NaCl was used to alter aw in the range 0.995 to 0.93. At both 0.995 and 0.95 aw optimum growth was at pH 6. The significance of these findings with regard to the preservation of moist hay is discussed.  相似文献   

18.
19.
AIMS: The aim of this study was to analyse the effect of osmotic stress on the biosynthesis of invertase enzyme in nonconventional yeasts. METHODS AND RESULTS: Invertase activities of the nonconventional yeast species belonging to Kluyveromyces, Schwanniomyces and Pichia genus were measured either in the presence or in the absence of various amounts of NaCl. The effect of hyperosmotic stress on the glucose consumption of Saccharomyces cerevisiae and Pichia anomala were also compared. Like S. cerevisiae, derepression of invertase synthesis in Kluyveromyces lactis, Schwanniomyces occidentalis and Pichia jadinii is inhibited by hyperosmotic stress. However, derepression of invertase synthesis in P. anomala is not affected by hyperosmotic stress. In addition, low levels of osmotic stress activated invertase synthesis three- to fourfold in P. anomala and K. lactis. CONCLUSIONS: This study shows that low levels of osmotic stress induces the invertase synthesis at very high levels in P. anomala and K. lactis. Glucose consumption was not influenced at significant levels by the hyperosmotic stress in P. anomala. SIGNIFICANCE AND IMPACT OF THE STUDY: This study shows the activation of invertase synthesis by low levels of osmotic stress in P. anomala and K. lactis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号