首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Pereskia are morphologically primitive, leafed members of the Cactaceae. Gas exchange characteristics using a dual isotope porometer to monitor 14CO2 and tritiated water uptake, diurnal malic acid fluctuations, phosphoenolpyruvate carboxylase, and malate dehydrogenase activities were examined in two species of the genus Pereskia, Pereskia grandifolia and Pereskia aculeata. Investigations were done on well watered (control) and water-stressed plants. Nonstressed plants showed a CO2 uptake pattern indicating C3 carbon metabolism. However, diurnal fluctuations in titratable acidity were observed similar to Crassulacean acid metabolism. Plants exposed to 10 days of water stress exhibited stomatal opening only during an early morning period. Titratable acidity, phosphoenolpyruvate carboxylase activity, and malate dehydrogenase activity fluctuations were magnified in the stressed plants, but showed the same diurnal pattern as controls. Water stress causes these cacti to shift to an internal CO2 recycling (“idling”) that has all attributes of Crassulacean acid metabolism except nocturnal stomata opening and CO2 uptake. The consequences of this shift, which has been observed in other succulents, are unknown, and some possibilities are suggested.  相似文献   

2.
Induction of Acid Metabolism in Portulacaria afra   总被引:16,自引:15,他引:1       下载免费PDF全文
Portulacaria afra, a succulent plant, shifts from a predominantly C3 mode of gas exchange to a typical Crassulacean acid metabolism type CO2 uptake in response to water or NaCl stress. Control plants in the absence of water stress assimilated CO2 during the light (about 7-8 mg CO2 dm−2 hr−1), transpiration (about 1.5 g dm−2 hr−1) was predominantly during the day, stomates were open during the day, and there was little diurnal organic acid fluctuation. Stressed plants showed only dark CO2 uptake and dark water loss, nocturnal stomatal opening, and an increased diurnal fluctuation of titratable acidity. Within 2 weeks after rewatering, stressed plants returned to the control acid fluctuation levels indicating that the response to stress was reversible.  相似文献   

3.
The possibility that Crassulacean acid metabolism (CAM) is subject to long day photoperiodic control in Portulacaria afra (L.) Jacq., a facultative CAM plant, was studied. Periodic measurements of 14CO2 uptake, stomatal resistance, and titratable acidity were made on plants exposed to long and short day photoperiods. Results indicates that waterstressed P. afra had primarily nocturnal CO2 uptake, daytime stomatal closure, and a large diurnal acid fluctuation in either photoperiod. Mature leaf tissue from nonstressed plants under long days exhibited a moderate diurnal acid fluctuation and midday stomatal closure. Under short days, there was a reduced diurnal acid fluctuation in mature leaf tissue. Young leaf tissue taken from nonstressed plants did not utilize the CAM pathway under either photoperiod as indicated by daytime CO2 uptake, lack of diurnal acid fluctuation, and incomplete daytime stomatal closure.

The induction of CAM in P. afra appears to be related to the water status of the plant and the age of the leaf tissue. The photosynthetic metabolism of mature leaves may be partly under the control of water stress and of photoperiod, where CAM is favored under long days.

  相似文献   

4.
In the leaf sueculent Asclepial Hoya carnosa (L.) R. Br., CAM photosynthesis occurred under well-watered conditions, as characterized by diurnal gas exchange and changes in titratable acidity. Following 10–12 days of severe water stress, the plants shifted from CAM to a modified CAM-idling mode of metabolism. CAM-idling was characterized by complete or almost complete stomatal closure accompanied by CAM-like diurnal changes in titratable acidity. H. carnosa plants maintained this CAM-idling mode of photosynthesis for at least 8 weeks. Upon reirrigation, the plants returned to the original CAM mode within 1 week. These results suggested that CAM-idling is a reversible, intermediate form of sustained metabolism which enables plant survival under conditions of extended drought.This work was supported in part by NSF Grant PCM 8200366 and in part by the Science and Education Administration of the United States Department of Agriculture under Competitive Grant 5901-0420-8-0018-0.  相似文献   

5.
In the leaf succulent Asclepiad Hoya carnosa (L.) R. Br., CAM photosynthesis occurred under well-watered conditions, as characterized by diurnal gas exchange and changes in titratable acidity. Following 10–12 days of severe water stress, the plants shifted from CAM to a modified CAM-idling mode of metabolism. CAM-idling was characterized by complete or almost complete stomatal closure accompanied by CAM-like diurnal changes in titratable acidity. H. carnosa plants maintained this CAM-idling mode of photosynthesis for at least 8 weeks. Upon reirrigation, the plants returned to the original CAM mode within 1 week. These results suggested that CAM-idling is a reversible, intermediate form of sustained metabolism which enables plant survival under conditions of extended drought.This work was supported in part by NSF Grant PCM 8200366 and in part by the Science and Education Administration of the United States Department of Agriculture under Competitive Grant 5901-0420-8-0018-0.  相似文献   

6.
Summary Hemiepiphytic species in the genera Clusia and Ficus were investigated to study their mode of photosynthetic metabolism when growing under natural conditions. Despite growing sympatrically in many areas and having the same growth habit, some Clusia species show Crassulacean acid metabolism (CAM) whereas all species of Ficus investigated are C3. This conclusion is based on diurnal CO2 fixation patterns, diurnal stomatal conductances, diurnal titratable acidity fluctuations, and 13C isotope ratios. Clusia minor, growing in the savannas adjacent to Barinas, Venezuela, shows all aspects of Crassulacean acid metabolism (CAM) on the basis of nocturnal gas exchange, stomatal conductance, total titratable acidity, and carbon isotope composition when measured during the dry season (February 1986). During the wet season (June 1986), the plants shifted to C3-type gas exchange with all CO2 uptake occurring during the daylight hours. The carbon isotope composition of new growth was-28 to-29 typical of C3 plants.  相似文献   

7.
Summary Gas exchange characteristics of droughted and rewatered Portulacaria afra were studied during the seasonal shift from CAM to C3 photosynthesis. 14CO2 uptake, stomatal conductance, and total titratable acidity were determined for both irrigated and 2, 4, and 7.5 month waterstressed plants from summer 1984 to summer 1985. Irrigated P. afra plants were utilizing the CAM pathway throughout the summer and shifted to C3 during the winter and spring. Beginning in September, P. afra plants shifted from CAM to CAM-idling after 2 months of water-stress. When water-stress was initiated later in the fall, exogenous CO2 uptake was still measurable after 4 months of drought. After 7.5 months of stress, exogenous CO2 uptake was absent. The shift from CAM to CAM-idling or C3 in the fall and winter was related to when water stress was initiated and not to the duration of the stress. Gas exchange resumed within 24 h of rewatering regardless of the duration of the drought. In the winter and spring, rewatering resulted in a full resumption of daytime CO2 uptake. Whereas during the summer, rewatering quickly resulted in early morning CO2 uptake, but nocturnal CO2 uptake through the CAM pathway was observed after 7 days. Gas exchange measurements, rewatering characteristics, and transpirational water loss support the hypothesis that the C3 pathway was favored during the winter and spring. The CAM pathway was functional during the summer when potential for water loss was greater. Our investigations indicate that P. afra has a flexible photosynthetic system that can withstand long-term drought and has a rapid response to rewatering.  相似文献   

8.
Crassulacean acid metabolism (CAM) was examined under natural environmental conditions in the succulent C4 dicot Portulaca oleracea L. Two groups of plants were monitored; one was watered daily (well watered), while the other received water once every 3 to 4 weeks to produce a ψ of −8 bars (drought stressed). Gas exchange, transpiration rate, and titratable acidity were measured for 24-hour periods during the growing season. CAM activity was greatest in drought-stressed plants during late August which had 13 hour days and day/night temperatures of 35/15°C. Under these conditions net CO2 uptake occurred slowly throughout the night. Diurnal fluctuations of titratable acidity took place in both leaves and stems with amplitudes of 17 and 47 microequivalents per gram fresh weight, respectively. Transpiration data indicated greater opening of stomata during the night than the day. CAM was less pronounced in drought-stressed P. oleracea plants in July and September; neither dark CO2 uptake nor positive carbon balance occurred during the July measurements. In contrast, well-watered plants appeared to rely on C4 photosynthesis throughout the season, although some acid fluctuations occurred in stems of these plants during September.  相似文献   

9.
The kinetics of chlorophyll fluorescence were measured in Portulacaria afra (L.) Jacq. when the plants were functioning in either Crassulacean acid metabolism (CAM) or C3/CAM cycling (called cycling) modes, as determined by fluctuation in titratable acidity and gas exchange properties. Cycling plants showed primarily daytime CO2 uptake typical of C3 plants, but with a slight diurnal acid fluctuation, whereas CAM plants showed nocturnal CO2 uptake, daytime stomatal closure, and a large diurnal acid fluctuation. Results from fluorescence measurements indicated no significant differences in photochemical quenching between cycling and CAM plants; however, sizable differences were detected in nonphoto-chemical quenching (qn), with the largest differences being observed during the middle of the day. Cycling plants had lower qn than CAM plants, indicating altered photosynthetic regulation processes. This qn difference was believed to be related to reduced internal CO2 concentration in the CAM plants because of daytime stomatal closure and reduced deacidification rates in the late afternoon when most of the malic acid has been utilized. Experimentally, higher external CO2 given to plants in the CAM mode resulted in a decline in qn in comparison to that measured in plants in the cycling mode. No changes were observed in photochemical quenching when CO2 was added.  相似文献   

10.
Shoots of Sedum nuttallianum exhibited CAM* acid fluctuations in the field. These nocturnal acid accumulations persisted in the laboratory under well-watered and water-stressed conditions. Simultaneous measurements of transpiration, however, indicated daytime stomatal opening and nocturnal stomatal closure. Measurements of CO2 and H2O vapor exchange continuously for six days after watering substantiated these results in part: the majority of CO2 uptake occurred during the day early in the experiment; however, after several days without water, nighttime CO2 uptake was stimulated and eventually was greater than the drastically reduced daytime CO2 uptake. This nighttime uptake was never quite sufficient to account for all estimated increases in tissue acidity. Thus, a combination of CAM and CAM-cycling occurred early in the desiccation experiment. Evidence for CAM and a form of CAM-idling was found later in the experiment. Though nighttime CO2 uptake occurred and persisted after only one day without water, rates were too low to alter the tissue 13C/12C value from a C3-like number (–30). Thus, although CAM and CAM-idling may have survival value during extended droughts, shoots of S. nuttallianum apparently utilize the C3 pathway to obtain most of their carbon.Abbreviations C3 pathway - CO2 fixation pathway in which an intermediate containing 3 carbon atoms is formed - CAM Crassulacean acid metabolism - Chl Chlorophyll - ci internal CO2 concentration - DW Dry weight - gc mean conductance to CO2 - FW Fresh weight - PAR Photosynthetically active radiation - SD Standard deviation - vpd Vapor pressure deficit - WUE Water use efficiency  相似文献   

11.
By measuring titratable acidity, gas exchange parameters, mesophyll succulence, and 13C/12C ratios, we have shown that Cissus quadrangularis L. has C3-like leaves and stems with Crassulacean acid metabolism (CAM). In addition, the nonsucculent leaves show the diurnal fluctuations in organic acids termed recycling despite the fact that all CO2 uptake and stomatal opening occurs during the day. Young succulent stems have more C3 photosynthesis than older stems, but both have characteristics of CAM. The genus Cissus will be a fruitful group to study the physiology, ecology, and evolution of C3 and CAM since species occur that exhibit characteristics of both photosynthetic pathways.  相似文献   

12.
Summary Evidence for the operation of CAM in the deciduous climber, Cissus trifoliata L., was obtained in field and laboratory studies. Under natural conditions, diurnal oscillations of titratable acidity and colorimetric measurements of night CO2 fixation, determined for a period of two and a half years, suggested that acid accumulation was related to plant water status, assessed through the daily courses of stomatal resistance and xylem water potential during dry and rainy seasons. These findings were confirmed by gas exchange studies under controlled conditions which showed that the plant fixed all its CO2 during the day when it was well irrigated; as water stress increased, dark CO2 uptake gradually replaced fixation during the day until the plant only performed dark fixation. In severe water stress, even the rate of the latter process decreased until leaves fell.Abbreviations CAM Crassulacean acid metabolism - FW leaf fresh weight - SWC relative soil water content - PAR photosynthetically active radiation - TR total radiation; r, leaf diffusive resistance - WSD water saturation deficit (leaf-air vapour concentration difference) - RWC relative water content of leaves  相似文献   

13.
The changes of titratable acidity, enzyme activity, water status, and pigment composition were studied in Portulacaria afra (L.) Jacq. during a normal summer drought and rewatering. Two groups of plants were grown outside under a clear plastic canopy with water stress initiated at 2-week intervals in May 1986. Drought resulted in a linear decrease of fresh weight for 80 days and there was no further fresh weight change for the next 65 days. Nocturnal CO2 uptake remained measurable for 83 days. Cessation of exogenous CO2 uptake corresponded to the point where the pressure potential (Ψp) became zero. Ribulose-1, 5-bisphosphate (RuBP) and phosphoenolpyruvate carboxylase were reduced to 50% of this activity by the end of the drought period. Phosphoenolpyruvate carboxykinase activity was undetectable after 120 to 140 days of drought. Chlorophyll (Chl) levels decreased with a preferential loss of Chl a over Chl b. Carotenoid content was relatively constant over the course of the drought period. After 145 days of drought, plants responded to rewatering within 24 hours; Ψp became positive and daytime CO2 uptake resumed after 24 hours. After 3 days, RuBP carboxylase activity reached control levels. Activity of the CAM pathway recovered after 5 days, as noted by increased diurnal acid fluctuations. Phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxykinase activity fully recovered within 6 days. Chl levels were greater than control levels within 5 days. Chl a/b ratios took 27 days to return to control levels. The results indicated that P. afra can withstand a normal summer drought by utilizing the CAM and CAM-idling pathway for 130 to 140 days. The plants respond rapidly to rewatering because of the conservation of enzyme activity and the quick recovery of Ψp.  相似文献   

14.
In response to water stress, Portulacaria afra (L.) Jacq. (Portulacaceae) shifts its photosynthetic carbon metabolism from the Calvin-Benson cycle for CO2 fixation (C3) photosynthesis or Crassulacean acid metabolism (CAM)-cycling, during which organic acids fluctuate with a C3-type of gas exchange, to CAM. During the CAM induction, various attributes of CAM appear, such as stomatal closure during the day, increase in diurnal fluctuation of organic acids, and an increase in phosphoenolpyruvate carboxylase activity. It was hypothesized that stomatal closure due to water stress may induce changes in internal CO2 concentration and that these changes in CO2 could be a factor in CAM induction. Experiments were conducted to test this hypothesis. Well-watered plants and plants from which water was withheld starting at the beginning of the experiment were subjected to low (40 ppm), normal (ca. 330 ppm), and high (950 ppm) CO2 during the day with normal concentrations of CO2 during the night for 16 days. In water-stressed and in well-watered plants, CAM induction as ascertained by fluctuation of total titratable acidity, fluctuation of malic acid, stomatal conductance, CO2 uptake, and phosphoenolpyruvate carboxylase activity, remained unaffected by low, normal, or high CO2 treatments. In well-watered plants, however, both low and high ambient concentrations of CO2 tended to reduce organic acid concentrations, low concentrations of CO2 reducing the organic acids more than high CO2. It was concluded that exposing the plants to the CO2 concentrations mentioned had no effect on inducing or reducing the induction of CAM and that the effect of water stress on CAM induction is probably mediated by its effects on biochemical components of leaf metabolism.  相似文献   

15.
Seasonal Shifts of Photosynthesis in Portulacaria afra (L.) Jacq   总被引:6,自引:5,他引:1       下载免费PDF全文
Portulacaria afra (L.) Jacq., a perennial facultative Crassulacean acid metabolism (CAM) species, was studied under natural photoperiods and temperatures in San Diego, California. The plants were irrigated every fourth day throughout the study period. Measurements of 14CO2 uptake, stomatal resistance, and titratable acidity were made periodically from July 1981 through May 1982. P. afra maintained C3 photosynthesis during the winter and the spring. Diurnal acid fluctuations were low and maximal 14CO2 uptake occurred during the day. The day/night ratio of carbon uptake varied from 5 to 10 and indicated little nocturnal CO2 uptake. CAM photosynthesis occurred during the summer and a mixture of both C3 and CAM during the fall. Large acid fluctuations of 100 to 200 microequivalents per gram fresh weight were observed and maximal 14CO2 uptake shifted to the late night and early morning hours. Daytime stomatal closure was evident. A reduction in the day/night ratio of carbon uptake to 2 indicated a significant contribution of nocturnal CO2 uptake to the overall carbon gain of the plant. The seasonal shift from C3 to CAM was facilitated by increasing daytime temperature and accompanied by reduced daytime CO2 uptake despite irrigation.  相似文献   

16.
The CO2 compensation point of the submersed aquatic macrophyte Hydrilla verticillata varied from high (above 50 microliters per liter) to low (10 to 25 microliters per liter) values, depending on the growth conditions. Plants from the lake in winter or after incubation in an 11 C/9-hour photoperiod had high values, whereas summer plants or those incubated in a 27 C/14-hour photoperiod had low values. The plants with low CO2 compensation points exhibited dark 14CO2 fixation rates that were up to 30% of the light fixation rates. This fixation reduced respiratory CO2 loss, but did not result in a net uptake of CO2 at night. The low compensation point plants also showed diurnal fluctuations in titratable acid, such as occur in Crassulacean acid metabolism plants. However, dark fixation and diurnal acid fluctuations were negligible in Hydrilla plants with high CO2 compensation points.  相似文献   

17.
Upon transfer from well-watered conditions to total drought, long-day-grown cladodes of Opuntia ficus-indica Mill. shift from full Crassulacean acid metabolism (CAM) to CAM-idling. Experiments using 14C-tracers were conducted in order to characterize the carbon-flow pattern in cladodes under both physiological situations. Tracer was applied by 14CO2 fumigations and NaH14CO3 injections during the day-night cycle. The results showed that behind the closed stomata, mesophyll cells of CAM-idling plants retained their full capacity to metabolize CO2 in light and in darkness. Upon the induction of CAM-idling the level of the capacity of phosphoenolpyruvate carboxylase (EC 4.1.1.31) was maintained. By contrast, malate pools decreased, displaying finally only a small or no day-night oscillation. The capacity of NADP-malic enzyme (EC 1.1.1.40) decreased in parallel with the reduction in malate pools. Differences in the labelling patterns, as influenced by the mode of tracer application, are discussed.Abbreviations CAM Crassulacean acid metabolism - PEP-Case phosphoenolpyruvate carboxylase  相似文献   

18.
Responses of succulents to plant water stress   总被引:19,自引:16,他引:3       下载免费PDF全文
Experiments were performed to test the hypothesis that succulents “shift” their method of photosynthetic metabolism in response to environmental change. Our data showed that there were at least three different responses of succulents to plant water status. When plant water status of Portulacaria afra (L.) Jacq. was lowered either by withholding water or by irrigating with 2% NaCl, a change from C3-photosynthesis to Crassulacean acid metabolism (CAM) occurred. Fluctuation of titratable acidity and nocturnal CO2 uptake was induced in the stressed plants. Stressed Peperomia obtusifolia A. Dietr. plants showed a change from C3-photosynthesis to internal cycling of CO2. Acid fluctuation commenced in response to stress but exogenous CO2 uptake did not occur. Zygocactus truncatus Haworth plants showed a pattern of acid fluctuation and nocturnal CO2 uptake typical of CAM even when well irrigated. The cacti converted from CAM to an internal CO2 cycle similar to Peperomia when plants were water-stressed. Reverse phase gas exchange in succulents results in low water loss to carbon gain. Water is conserved and low levels of metabolic activity are maintained during drought periods by complete stomatal closure and continual fluctuation of organic acids.  相似文献   

19.
Physiological and isotopic aspects of photosynthesis in peperomia   总被引:2,自引:2,他引:0       下载免费PDF全文
Physiological and isotopic aspects of several Peperomia species were investigated. All but one species had C3-like stomatal behavior, in that stomata were open during the day and closed during the night. In these species, most atmospheric CO2 uptake occurred during the day. Concurrent with this stomatal behavior, there were Crassulacean acid metabolism-like acid fluctuations in most species. Carbon and hydrogen isotope ratios of cellulose nitrate from Peperomia reflect their physiological behavior. The δ13C values of cellulose nitrate from Peperomia species were similar to values observed in C3 plants and consistent with the daytime uptake of exogeneous CO2 via the C3 photosynthetic pathway. The δD values of cellulose nitrate from Peperomia species approach those of Crassulacean acid metabolism plants. These elevated δD values are caused by fractionations occurring during biochemical reactions and not as a consequence of water relations.  相似文献   

20.
Under well-watered conditions in the laboratory, Sedum pulchellum assimilated CO2 only during the day, yet exhibited small nocturnal increases in tissue acid content followed by deacidification in the light (CAM-cycling). When drought-stressed, little CO2 was fixed in the day and none at night, yet even greater acid fluctuations were observed (CAM-idling). Calculations indicate that water savings associated with CAM-cycling when water is available are small. Water saving is more likely to be significant during CAM-idling when water supply is limited and stomata are closed day and night. Thus, in this species, CAM-idling may be of greater benefit to the plant, relative to CAM-cycling, in surviving habitats prone to frequent drought stress.Abbreviations A CO2 exchange rate - CAM Crassulacean acid metabolism - ci shoot internal CO2 concentration - gc shoot conductance to CO2 - PPFD photosynthetic photon flux density - WUE water-use efficiency Supported by National Science Foundation Grant No. DMB 8506093.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号