首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this report, the alkali metal cation selectivity of the purified, voltage-dependent sodium channel from rat skeletal muscle is described. Isolated sodium channel protein (980-2840 pmol of saxitoxin binding/mg of protein) was reconstituted into egg phosphatidylcholine vesicles, and channels were subsequently activated by either batrachotoxin (5 X 10(-6) M) or veratridine (5 X 10(-4) M). Activation of the reconstituted sodium channel by batrachotoxin permitted rapid specific influx of cations into channel-containing vesicles. Quenched flow kinetic techniques were adapted to allow resolution of the kinetics of cation movement. Uptake rates for 42K+, 86Rb+, and 137Cs+ were measured directly and half-times for equilibration at 18 degrees C were determined to be 350 ms, 2.5 s, and 10 s, respectively, in this vesicle population. 22Na+ equilibration occurred within the mimimum quenching time of the apparatus (90 ms) but an upper limit of 50 ms at 18 degrees C could be assigned to its half-time. Based on this upper estimate for Na+, cation selectivity ratios of the batrachotoxin-activated channel were Na+ (1):K+ (0.14):Rb+ (0.02):Cs+ (0.005). Toxin-stimulated influx could be blocked by saxitoxin with a Ki of approximately 5 X 10(-9) M at 18 degrees C. Rates of cation movement through veratridine-activated channels were much slower, with half-times of 1.0, 1.2, 2.0, and 2.6 min at 36 degrees C for Na+, K+, Rb+, and Cs+, respectively. The temperature dependences of batrachotoxin and veratridine-stimulated cation uptake were markedly different. The activation energies for 86Rb+ and 137Cs+ movement into batrachotoxin-activated vesicles were 7.6 and 6.1 kcal/mol, respectively, while comparable measurements for these two cations in veratridine-activated vesicles yielded activation energies of 31 kcal/mol. Measurements of cation exchange with batrachotoxin-activated channels may reflect characteristics of an open sodium channel while the process of channel opening itself may be rate-limiting when veratridine is used for activation.  相似文献   

2.
Corticotropin-releasing factor (CRF) is a 41-amino acid peptide with distinct effects on gastrointestinal motility involving both CRF-1 and CRF-2 receptor-mediated mechanisms that are generally claimed to be centrally mediated. Evidence for a direct peripheral effect is rather limited. Electrophysiological studies showed a cAMP-dependent prolonged depolarization of guinea pig myenteric neurons on application of CRF. The current study aimed to test the direct effect of CRF on myenteric neurons and to identify the receptor subtype and the possible mechanisms involved. Longitudinal muscle myenteric plexus preparations and myenteric neuron cultures of guinea pig small intestine were incubated with the calcium indicator Fluo-4. Confocal Ca(2+) imaging was used to visualize activation of neurons on application of CRF. All in situ experiments were performed in the presence of nicardipine 10(-6) M to reduce tissue movement. Images were analyzed using Scion image and a specifically developed macro to correct for residual minimal movements. A 75 mM K(+)-Krebs solution identified 1,076 neurons in 46 myenteric ganglia (16 animals). Administration of CRF 10(-6) M and CRF 10(-7) M during 30 s induced a Ca(2+) response in 22.4% of the myenteric neurons (n = 303). Responses were completely abolished in the presence of the nonselective CRF antagonist astressin (n = 55). The selective CRF-1 receptor antagonist CP 154,526 (n = 187) reduced the response significantly to 2.1%. Stresscopin, a CRF-2 receptor agonist, could not activate neurons at 10(-7) M, and its effect at 10(-6) M (15.3%, n = 59) was completely blocked by CP 154,526. TTX 10(-6) M (n = 70) could not block the CRF-induced Ca(2+) transients but reduced the amplitude of the signals significantly. Removal of extracellular Ca(2+) blocked all responses to CRF (n = 47). L-type channels did not contribute to the CRF-induced Ca(2+) transients. Blocking N- or P/Q-type Ca(2+) channels did not reduce the responses significantly. Combined L- and R-type Ca(2+) channel blocking (SNX-482 10(-8) M, n = 64) abolished nearly all responses in situ. Combined L-, N-, and P/Q-type channel blocking also significantly reduced the response to 8.6%. Immunohistochemical staining for CRF-1 receptors clearly labeled individual cell bodies in the ganglia, whereas the CRF-2 receptor staining was barely above background. CRF induces Ca(2+) transients in myenteric neurons via a CRF-1 receptor-dependent mechanism. These Ca(2+) transients highly depend on somatic calcium influx through voltage-operated Ca(2+) channels, in particular R-type channels. Action potential firing through voltage-sensitive sodium channels increases the amplitude of the Ca(2+) signals. Besides centrally mediated effects, CRF is likely to modulate gastrointestinal motility on the myenteric neuronal level.  相似文献   

3.
bTyrosine 401 of the skeletal muscle isoform (mu 1) of the rat muscle Na channel is an important determinant of high affinity block by tetrodotoxin (TTX) and saxitoxin (STX) in Na-channel isoforms. In mammalian heart Na channels, this residue is substituted by cysteine, which results in low affinity for TTX/STX and enhanced sensitivity to block by Zn2+ and Cd2+. In this study, we investigated the molecular basis for high affinity block of Na channels by STX and divalent cations by measuring inhibition of macroscopic Na+ current for a series of point mutations at residue Tyr401 of the rat mu 1 Na channel expressed in Xenopus oocytes. Substitution of Tyr401 by Gly, Ala, Ser, Cys, Asp, His, Trp, and Phe produced functional Na+ currents without major perturbation of gating or ionic selectivity. High affinity block by STX and neosaxitoxin (NEO) with Ki values in the range of 2.6-18 nM required Tyr, Phe, or Trp, suggestive of an interaction between an aromatic ring and a guanidinium group of the toxin. The Cys mutation resulted in a 7- and 23-fold enhancement of the dissociation rate of STX and NEO, respectively, corresponding to rapid toxin dissociation rates of cardiac Na channels. High affinity block by Zn2+ (Ki = 8-23 microM) required Cys, His, or Asp, three residues commonly found to coordinate directly with Zn2+ in metalloproteins. For the Cys mutant of mu 1 and also for the cardiac isoform Na channel (rh1) expressed in the L6 rat muscle cell line, inhibition of macroscopic Na+ conductance by Zn2+ reached a plateau at 85-90% inhibition, suggesting the presence of a substate current. The Asp mutant also displayed enhanced affinity for inhibition of conductance by Ca2+ (Ki = 0.3 mM vs approximately 40 mM in wild type), but block by Ca2+ was incomplete, saturating at approximately 69% inhibition. In contrast, Cd2+ completely blocked macroscopic current in the Cys mutant and the L6 cell line. These results imply that the magnitude of substate current depends on the particular residue at position 401 and the species of divalent cation. The His mutant also exhibited enhanced sensitivity to block by H+ with a pKa of approximately 7.5 for the His imidazole group. Our findings provide further evidence that residue 401 of mu 1 is located within the outer vestibule of the Na channel but external to the single-filing region for permeant ions.  相似文献   

4.
K+-stimulated 45Ca2+ uptake into rat brain and guinea pig cerebral cortex synaptosomes was measured at 10 s and 90 s at K+ concentrations of 5-75 mM. Net increases in 45Ca2+ uptake were observed in rat and guinea pig brain synaptosomes. 45Ca2+ uptake under resting or depolarizing conditions was not increased by the 1,4-dihydropyridine BAY K 8644, which has been shown to activate Ca2+ channels in smooth and cardiac muscle. High-affinity [3H]nitrendipine binding in guinea pig synaptosomes (KD = 1.2 X 10(-10) M, Bmax = 0.56 pmol mg-1 protein) was competitively displaced with high affinity (IC50 2.3 X 10(-9) M) by BAY K 8644. Thus high-affinity Ca2+ channel antagonist and activator binding sites exist in synaptosome preparations, but their relationship to functional Ca2+ channels is not clear.  相似文献   

5.
Membrane conductances for Ca2+ in cultured rat pigment epithelial cells were studied in the whole-cell configuration of the patch-clamp technique using barium (10 mM) as a charge carrier. Two types of voltage-dependent and verapamiland diltiazem-sensitive Ba2+ currents were observed. First, a nearly sustained current was activated by depolarization to potentials more positive than — 30mV and blocked by nifedipine (1 μM). This current was observed in cells of primary cultures less than 13 days old. Second, a transient nifedipine (1 μM) insensitive current was activated by depolarization to potentials more positive than — 55mV in cultures which were more than 13 days old. This current was not carried by sodium and blocked by 1 μM tetrodotoxin (TTX). In summary, cultured rat retinal pigment epithelial cells in younger primary cultures express Ba2+ currents indicating the presence of L-type Ca2+ channels. In order primary cultures a low-voltage activated channel was observed with properties different from T-type calcium channels or TTX-sensitive calcium conducting sodium channels. © 1994 Wiley-Liss, Inc.  相似文献   

6.
J K Reed  M A Raftery 《Biochemistry》1976,15(5):944-953
The biochemical properties of the electrically excitable sodium channels in the electroplaque of Electrophorus electricus were investigated using tritiated tetrodotoxin (TTX) as a specific membrane probe. Membrane fragments from the electroplaque were isolated essentially by differential centrifugation and characterized with respect to the plasma membrane markers acetylcholine receptors, acetylcholinesterase, (Na+ + K+)ATPase, and [3H]TTX binding. Equilibrium binding studies showed that [3H]TTX bound to a single population of noninteracting receptor sites with an apparent dissociation constant of 6 +/- 1 X 10(-9) M. The toxin-membrane complex dissociated with a first-order rate constant of 0.012 sec-1. Studies on the pH dependence of complex formation demonstrated the requirement for an ionizable, functional group with a pK of 5.3 and this group has been shown to be a carboxyl. Treatment of the membranes with trimethyloxonium tetrafluoroborate, a carboxyl group modifying reagent, resulted in an irreversible loss in the binding of [3H]TTX, which could be prevented by low concentrations of TTX or saxitoxin. This decrease was due to a reduction in the total number of binding sites and not to a decrease in toxin binding affinities. The relative binding affinities of various monovalent alkali metal and polyatomic cations for the TTX-receptor site showed that this site displayed cation discrimination properties which were similar to those reported previously for the electrically excitable sodium channel in intact nerve fibers. A possible role for this site in the ion selectivity of the sodium channel is proposed.  相似文献   

7.
The expression of Na+ channels during differentiation of cultured embryonic chick skeletal muscle cells was investigated using saxitoxin (STX) and batrachotoxin (BTX), which previously have been shown to interact with distinct, separate receptor sites of the voltage-sensitive Na+ channel of excitable cells. In the present study, parallel measurements of binding of [3H]-STX (STX) and of BTX-activated 22Na+ uptake (Na influx) were made in order to establish the temporal relationship of the appearance of these two Na+ channel activities during myogenesis. Na influx was clearly measurable in 2-d cells; from day 3 to day 7 the maximum Na influx approximately doubled when measured with saturating BTX concentrations potentiated by Leiurus scorpion toxin, while the apparent affinity of BTX, measured without scorpion toxin, also increased. Saturable STX binding did not appear consistently until day 3; from then until day 7 the STX binding capacity increased about threefold, whereas the equilibrium dissociation constant (KD) decreased about fourfold. Although Na influx in cells of all ages was totally inhibited by STX or tetrodotoxin (TTX) at 10 microM, lower concentrations (2-50 nM) blocked the influx in 7-d cells much more effectively than that in 3-d cells, where half the flux was resistant to STX at 20-50 nM. Similar but smaller differences characterized the block by TTX. In addition, when protein synthesis is inhibited by cycloheximide, both Na influx and STX binding activities disappear more rapidly in 3-d than in 7-d cells, which shows that these functions are less stable metabolically in the younger cells.  相似文献   

8.
The single-channel blocking kinetics of tetrodotoxin (TTX), saxitoxin (STX), and several STX derivatives were measured for various Na-channel subtypes incorporated into planar lipid bilayers in the presence of batrachotoxin. The subtypes studied include Na channels from rat skeletal muscle and rat brain, which have high affinity for TTX/STX, and Na channels from denervated rat skeletal muscle and canine heart, which have about 20-60-fold lower affinity for these toxins at 22 degrees C. The equilibrium dissociation constant of toxin binding is an exponential function of voltage (e-fold per 40 mV) in the range of -60 to +60 mV. This voltage dependence is similar for all channel subtypes and toxins, indicating that this property is a conserved feature of channel function for batrachotoxin-activated channels. The decrease in binding affinity for TTX and STX in low-affinity subtypes is due to a 3-9-fold decrease in the association rate constant and a 4-8-fold increase in the dissociation rate constant. For a series of STX derivatives, the association rate constant for toxin binding is approximately an exponential function of net toxin charge in membranes of neutral lipids, implying that there is a negative surface potential due to fixed negative charges in the vicinity of the toxin receptor. The magnitude of this surface potential (-35 to -43 mV at 0.2 M NaCl) is similar for both high- and low-affinity subtypes, suggesting that the lower association rate of toxin binding to toxin-insensitive subtypes is not due to decreased surface charge but rather to a slower protein conformational step. The increased rates of toxin dissociation from insensitive subtypes can be attributed to the loss of a few specific bonding interactions in the binding site such as loss of a hydrogen bond with the N-1 hydroxyl group of neosaxitoxin, which contributes about 1 kcal/mol of intrinsic binding energy.  相似文献   

9.
A cation channel has been identified in the plasma membrane of skeletal muscle that oscillates open and closed in a regular manner. In an experimental system of patch-clamped reconstituted plasma membrane in phospholipid bilayers, the oscillations are calcium-dependent and constitute regular closing events due to inhibition of the channel by calcium with a Ki of 2.2 +/- 1 x 10(-6) M, followed by reopening. There are 3.7 +/- 1 calcium binding sites/channel. With sodium as the current vehicle, conductance is increased by voltage, insulin (Km = 5 +/- 0.6 x 10(-9) M), and hydrolyzable guanine nucleotides. Cyclic GMP alone with increase the conductance with a Km of 3.7 +/- 0.6 x 10(-7) M. In the absence of calcium, the unitary conductance with insulin + GTP or cGMP at 150 mM NaCl is 153 picosiemens. Sodium current is insensitive to 10(-5) M tetrodotoxin but inhibited by mu-conotoxin (Ki = 5 x 10(-8) M). These findings in the reconstituted system were verified in patch-clamped whole muscle cells where an insulin and cGMP-dependent sodium current inhibited by mu-conotoxin could be demonstrated. In the whole cell experiments, slow calcium-dependent oscillations of the sodium current were also detected.  相似文献   

10.
We have previously shown that the [3H]saxitoxin binding site of the sodium channel is expressed independently of the [125I]scorpion toxin binding site in chick muscle cultures and in rat brain. In the present work, we studied the development of the sodium channel protein during chemically induced differentiation of N1E-115 neuroblastoma cells, using [3H]saxitoxin binding, [125I]scorpion toxin binding, and 22Na uptake techniques. When grown in their normal culture medium, these cells are mostly undifferentiated, bind 90 +/- 10 fmol of [3H]saxitoxin/mg of protein and 112 +/- 14 fmol of [125I]scorpion toxin/mg protein, and, when stimulated with scorpion toxin and batrachotoxin, take up 70 +/- 5 nmol of 22Na/min/mg of protein. Cells treated with dimethyl sulfoxide (DMSO) or hexamethylene-bis-acetamide (HMBA) differentiate morphologically within 3 days. At this time, the [3H]saxitoxin binding, the [125I]scorpion toxin binding, and the 22Na uptake values are not very different from those of undifferentiated cells. With subsequent time in DMSO or HMBA, these values continue to increase, a result indicating that the main period of sodium channel expression occurs well after the cells have assumed the morphologically differentiated state. The data indicate that the expression of sodium channels and morphological differentiation are independently regulated neuronal properties, that the attainment of morphological differentiation is necessary but not in itself sufficient for full expression of the sodium channel proteins, and that, in contrast to the chick muscle cultures and rat brain, the [3H]saxitoxin site and [125I]scorpion toxin site appear to be coregulated in N1E-115 cells.  相似文献   

11.
The role of sodium and calcium ions in strophanthidin inotropy was studied by measuring simultaneously the electrical, mechanical, and intracellular sodium ion activities in electrically driven cardiac Purkinje fibers under conditions that change the intracellular sodium or calcium level (tetrodotoxin, strophanthidin, high calcium, and norepinephrine). Tetrodotoxin (TTX; 1-5 X 10(-6)M) shifted the action potential plateau to more negative values, shortened the action potential duration, and decreased the contractile tension and the intracellular sodium ion activity (aiNa). The changes in tension and in aiNa caused by TTX appear to be related since they had similar time courses. Strophanthidin (2-5 X 10(-7)M) increased tension and aiNa less in the presence of TTX, and, for any given value of aiNa, tension was less than in the absence of TTX. Increasing extracellular calcium (from 1.8 to 3.3-3.6 mM) or adding norepinephrine (0.5-1 X 10(-6)M) increased tension and decreased aiNa less in the presence than in the absence of TTX. When two of the above procedures were combined, the results were different. Thus, during the increase in aiNa and tension caused by strophanthidin in the presence of TTX, increasing calcium or adding norepinephrine increased tension markedly but did not increase aiNa further. In a TTX-high calcium or TTX-norepinephrine solution, adding strophanthidin increased both tension and aiNa, and the increase in tension was far greater than in the presence of TTX alone. The results indicate that: (a) the contractile force in Purkinje fibers is affected by a change in aiNa; (b) a decrease in aiNa by TTX markedly reduces the inotropic effect of strophanthidin, possibly as a consequence of depletion of intracellular calcium; (c) increasing calcium influx with norepinephrine or high calcium in the TTX-strophanthidin solution produces a potentiation of tension development, even if aiNa does not increase further; and (d) when the calcium influx is already increased by high calcium or norepinephrine, strophanthidin has its usual inotropic effect even in the presence of TTX. In conclusion, the positive inotropic effect of strophanthidin requires that an increase in aiNa be associated with suitable calcium availability.  相似文献   

12.
The two-microelectrode, voltage-clamp technique was applied to rabbit cardiac Purkinje fibers to study the interaction of tetrodotoxin (TTX) with the slowly inactivating Na current. Binding of TTX to rested, inactivated, and activated channels was estimated by measuring the relative decrease of current at the beginning (rested and inactivated channels) and the end (activated channels) of a 1 s depolarizing clamp to -45 mV. The accelerated decline of the Na current in the presence of a submaximal dose of TTX was interpreted as an increase in blocking efficiency upon depolarization. The experiments show that activated as well as inactivated channels are more sensitive to TTX than are rested channels. The dissociation equilibrium constants for the three states are 3.5 X 10(-6) M for the rested, 0.94 X 10(-6) M for the activated, and 0.75 X 10(-6) M for the inactivated channels. The time course of activation block was dependent on TTX concentration. Rate constants for association and dissociation of the activated state are 1.3 X 10(6) M-1 X s-1 and 1.5 s-1, respectively.  相似文献   

13.
Tetrodotoxin (TTX) is a potent toxin that specifically binds to voltage gated sodium channels. TTX binding physically blocks the flow of sodium ions through the channel, thereby preventing action potential (AP) generation and propagation. TTX has different binding affinities for different sodium channel isoforms. These differences are imparted by amino acid substitutions. Such substitutions confer TTX resistance to a variety of species. Tetrodotoxin resistance, however, may come at a cost to performance caused by changes in the biophysical properties and/or ion selectivity of the TTX resistant sodium channels. We here review the properties of sodium channels and their interaction with TTX, and look at some special examples of TTX resistant channels wherein the benefit of toxin resistance may be offset by other behavioral costs.  相似文献   

14.
The blockage of skeletal muscle sodium channels by tetrodotoxin (TTX) and saxitoxin (STX) have been studied in CHO cells permanently expressing rat Nav1.4 channels. Tonic and use-dependent blockage were analyzed in the framework of the ion-trapped model. The tonic affinity (26.6 nM) and the maximum affinity (7.7 nM) of TTX, as well as the "on" and "off" rate constants measured in this preparation, are in remarkably good agreement with those measured for Nav1.2 expressed in frog oocytes, indicating that the structure of the toxin receptor of Nav1.4 and Nav1.2 channels are very similar and that the expression method does not have any influence on the pore properties of the sodium channel. The higher affinity of STX for the sodium channels (tonic and maximum affinity of 1.8 nM and 0.74 nM respectively) is explained as an increase on the "on" rate constant (approximately 0.03 s(-1) nM(-1)), compared to that of TTX (approximately 0.003 s(-1) nM(-1)), while the "off" rate constant is the same for both toxins (approximately 0.02 s(-1)). Estimations of the free-energy differences of the toxin-channel interaction indicate that STX is bound in a more external position than TTX. Similarly, the comparison of the toxins free energy of binding to a ion-free, Na(+)- and Ca(2+)-occupied channel, is consistent with a binding site in the selectivity filter for Ca(2+) more external than for Na(+). This data may be useful in further attempts at sodium-channel pore modeling.  相似文献   

15.
Purified bovine hepatic fructose-1,6-diphosphatase, which exhibits maximal activity at neutral pH, is competitively inhibited by several analogs of its substrate, fructose 1,6-diphosphate. These include glucose 1,6-diphosphate (Ki = 9.4 X 10(-5) M), hexitol 1,6-diphosphate (Ki = 2.3 X 10(-4) M), and 2,5-anhydro-D-mannitol 1,6-diphosphate (Ki = 3.3 X 10(-8) M), and 2,5-anhydro-D-glucitol 1,6-diphosphate (Ki = 5.5 X 10(-7) M). The Ki values for both 2,5-anhydro-D-mannitol 1,6-diphosphate and 2,5-anhydro-D-glucitol 1,6-diphosphate are lower than the Km of 1.4 X 10(-6) M for fructose 1,6-diphosphate. Since 2,5-anhydro-D-mannitol 1,6-diphosphate is an analog of the beta anomer of fructose 1,6-diphosphate and 2,5-anhydro-D-glucitol 1,6-diphosphate is an analog of the alpha anomer, the lower Ki for the mannitol analog may indicate that the beta anomer of fructose 1,6-diphosphate, which predominates in solution, is the true substrate. The substrate analog 1,5-pentanediol diphosphate inhibits slightly (K0.5 = 5 X 10(-3) M), but 1,4-cyclohexyldiol diphosphate does not. The Ki for product inhibition by sodium phosphate is 9.4 X 10(-3) M. 2,5-Anhydro-D-mannitol 1,6-diphosphate and alpha-D-glucose 1,6-diphosphate are substrates at pH 9.0, but not at pH 6.5.  相似文献   

16.
The purpose of this study was to examine effects of tunicamycin (TM), which inhibits core glycosylation of the beta-subunit, on functional expression of the Na(+)-K+ pump in primary cultures of embryonic chick skeletal muscle. Measurements were made of specific-[3H]-ouabain binding, ouabain-sensitive 86Rb uptake, resting membrane potential (Em), and electrogenic pump contribution to Em (Ep) of single myotubes with intracellular microelectrodes. Growth of 4-6-day-old skeletal myotubes in the presence of TM (1 microgram/ml) for 21-24 hr reduced the number of Na(+)-K+ pumps to 60-90% of control. Na(+)-K+ pump activity, the level of resting Em and Ep were also reduced significantly by TM. In addition, TM completely blocked the hyperpolarization of Em induced in single myotubes by cooling to 10 degrees C and then re-warming to 37 degrees C. Effects of tunicamycin were compared with those of tetrodotoxin (TTX; 2 x 10(-7) M for 24 hr), which blocks voltage-dependent Na+ channels. TM produced significantly greater decreases in ouabain-binding and Em than did TTX, findings that indicate that reduced Na(+)-K+ pump expression was not exclusively secondary to decreased intracellular Na+, the primary regulator of pump synthesis in cultured muscle. Similarly, effects of TM were significantly greater than those of cycloheximide, which inhibits protein synthesis by 95%. These findings demonstrate that effects were not due to inhibition of protein synthesis. We conclude that glycosylation of the Na(+)-K+ pump beta-subunit is required for full physiological expression of pump activity in skeletal muscle.  相似文献   

17.
In the isolated electrically stimulated right ventricular papillary muscles the onset of hypoxic contracture occurred 7 +/- 1.2 min and reached maximum 29.2 +/- 4.6 min after the onset of hypoxia. Switching off of the stimulation and diltiazem (10(-6) M) or tetrodotoxin (3 X 10(-6) M) administration delayed the development of the hypoxic contracture and decreased its maximum level. The protective action of diltiazem was noted only in the presence of rhythmical stimulation. It was concluded that, in addition to the influx of Ca ions through calcium channels, the influx of Na ions through sodium channels was important in the development of hypoxic contracture.  相似文献   

18.
When skeletal muscle is stretched or injured, satellite cells, resident myogenic stem cells positioned beneath the basal lamina of mature muscle fibers, are activated to enter the cell cycle. This signaling pathway is a cascade of events including calcium-calmodulin formation, nitric oxide (NO) radical production by NO synthase, matrix metalloproteinase activation, release of hepatocyte growth factor (HGF) from the extracellular matrix, and presentation of HGF to the receptor c-met, as demonstrated by assays of primary cultures and in vivo experiments. Here, we add evidence that two ion channels, the mechanosensitive cation channel (MS channel) and the long-lasting-type voltage-gated calcium-ion channel (L-VGC channel), mediate the influx of extracellular calcium ions in response to cyclic stretch in satellite cell cultures. When applied to 1-h stretch cultures with individual inhibitors for MS and L-VGC channels (GsMTx-4 and nifedipine, respectively) or with a less specific inhibitor (gadolinium chloride, Gd), satellite cell activation and upstream HGF release were abolished, as revealed by bromodeoxyuridine-incorporation assays and Western blotting of conditioned media, respectively. The inhibition was dose dependent with a maximum at 0.1 μM (GsMTx-4), 10 μM (nifedipine), or 100 μM (Gd) and canceled by addition of HGF to the culture media; a potent inhibitor for transient-type VGC channels (NNC55-0396, 100 μM) did not show any significant inhibitory effect. The stretch response was also abolished when calcium-chelator EGTA (1.8 mM) was added to the medium, indicating the significance of extracellular free calcium ions in our present activation model. Finally, cation/calcium channel dependencies were further documented by calcium-imaging analyses on stretched cells; results clearly demonstrated that calcium ion influx was abolished by GsMTx-4, nifedipine, and EGTA. Therefore, these results provide an additional insight that calcium ions may flow in through L-VGC channels by possible coupling with adjacent MS channel gating that promotes the local depolarization of cell membranes to initiate the satellite cell activation cascade.  相似文献   

19.
Single glutamate-gated ion channels with a conductance of 135 pS are demonstrated in tonic muscle fibres of the locust hindgut. Channel kinetics closely resemble those of glutamatergic channels in locust skeletal muscles. Glutamate concentrations increasing within the range from 5 X 10(-5) to 1 X 10(-3) M result in an increase of the frequency of channel opening and a decrease in channel closed times. Delta-philanthotoxin, a toxin isolated from the venom of the digger wasp Philanthus triangulum, inhibits channel activity by blocking open channels and increasing channel closed times.  相似文献   

20.
A N Zubov 《Tsitologiia》1980,22(10):1207-1213
Ionic currents through sodium channels of dialyzed mouse neuroblastoma N18 A-1 cells were measured under voltage clamp conditions. The PNa/PK ratio evaluated by reversal potential shifts was 10.4 +/- 0.7. Parameters of steady-state fast inactivation curves (h--V) and peak sodium conductance curves (gNa--V) were determined. The inactivation kinetics had usually a two-exponential time course. The internal perfusion of cells by trypsin and pronase caused a slowing-down of the sodium current falling phase, pronase being more specific in this respect. An external application of the purified scorpion toxin in concentration of 1.42 X 10(-7) M leads to a fast and sharp slowing-down of sodium inactivation. The same toxin in concentration of 5 X 10(-6) M, applied internally was quite unaffective. Experimental results demonstrate similarities in the main features between the sodium channels of neuroblastoma cells and those of other excitable cell membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号