首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The thallous ion was found to permeate the cation-selective channel of rabbit sarcoplasmic reticulum and to block current through this channel when present in mixtures with other permeant ions. Channel conductance in pure thallium acetate saturates with increasing concentration, with a maximum limiting conductance of 60 pS. The conductance ratio GK/GTl at 1 M is 3.7, while the permeability ratio is near 0.4 over the concentration range 0.01 to 1 M. Thallium blockade in mixtures can be described by the equation of Neher (Neher, E. (1975) Biochim. Biophys. Acta 401, 540–544).  相似文献   

2.
Summary A theory, recently developed by Sandblom, Eisenman and Neher (1977) for the conductance of single gramicidin A channels predicts three limiting behaviors of the relation between conductance and salt concentration. These are: (i) a saturating behavior resembling a simple adsorption isotherm at medium and high concentrations, (ii) a decrease in conductance at the highest obtainable concentrations and (iii) deviations from the isotherm at very low concentrations. Features i and ii have been described before. Experimental evidence for point iii is given here. The new feature points towards interactions among ions in the channel at ionic concentrations as low as 1–10mm.Particular emphasis is given to the behavior at very low salt concentrations and the experimental problems encountered in this situation. In addition, mutual blocking effects among monovalent ions in symmetrical salt mixtures are characterized and found to be in satisfactory agreement with theoretical expectations, based upon the single salt conductance data presented here and zero-current potentials in salt mixtures to be described in a subsequent paper.  相似文献   

3.
The open-channel conductance properties of a voltage-gated channel from sarcoplasmic reticulum were studied in planar phospholipid membranes. The channel is ideally selective for K+ over Cl- and for K+ over Ca++. In symmetrical 1 M solutions, the single-channel conductance (in pmho) falls in the order: K+ (214) > NH4+ (157) > Rb+ (125) > Na+ (72) > La+ (8.1) > Cs+ (< 3). In neutral bilayers, the channel conductance saturates with ion activity according to a rectangular hyperbolic relation, with half-saturation activities of 54 mM for K+ and 34 mM for Na+. Under symmetrical salt conditions, the K+:Na+ channel conductance ratio increases with salt activity, but the permeability ratio, measured by single-channel bi-ionic potentials, is constant between 20 mM and 2.5 M salt; the permeability ratio is equal to the conductance ratio in the limit of low-salt concentration. The channel conductance varies < 5% in the voltage range -100 to +70 mV. The maximum conductance varies K+ and Na+ is only weakly temperature dependent (delta H++ = 4.6 and 5.3 kcal/mol, respectively), but that of Li+ varies strongly with temperature (delta H++ = 13 kcal/mol). The channel's K+ conductance is blocked asymmetrically by Cs+, and this block is competitive with K+. The results are consistent with an Eyring-type barriers as it permeates the channel. The data conform to Lüger's (1973. Biochem. Biophys. Acta. 311:423-441) predictions for a "pure" single-ion channel.  相似文献   

4.
A conductance maximum observed in an inward-rectifier potassium channel   总被引:5,自引:2,他引:3  
One prediction of a multi-ion pore is that its conductance should reach a maximum and then begin to decrease as the concentration of permeant ion is raised equally on both sides of the membrane. A conductance maximum has been observed at the single-channel level in gramicidin and in a Ca(2+)-activated K+ channel at extremely high ion concentration (> 1,000 mM) (Hladky, S. B., and D. A. Haydon. 1972. Biochimica et Biophysica Acta. 274:294-312; Eisenmam, G., J. Sandblom, and E. Neher. 1977. In Metal Ligand Interaction in Organic Chemistry and Biochemistry. 1-36; Finkelstein, P., and O. S. Andersen. 1981. Journal of Membrane Biology. 59:155-171; Villarroel, A., O. Alvarez, and G. Eisenman. 1988. Biophysical Journal. 53:259a. [Abstr.]). In the present study we examine the conductance-concentration relationship in an inward-rectifier K+ channel, ROMK1. Single channels, expressed in Xenopus oocytes, were studied using inside-out patch recording in the absence of internal Mg2+ to eliminate blockade of outward current. Potassium, at equal concentrations on both sides of the membrane, was varied from 10 to 1,000 mM. As K+ was raised from 10 mM, the conductance increased steeply and reached a maximum value (39 pS) at 300 mM. The single-channel conductance then became progressively smaller as K+ was raised beyond 300 mM. At 1000 mM K+, the conductance was reduced to approximately 75% of its maximum value. The shape of the conductance-concentration curve observed in the ROMK1 channel implies that it has multiple K(+)-occupied binding sites in its conduction pathway.  相似文献   

5.
Summary This paper presents an experimental study and a theoretical interpretation of the effects of thallous ion on the electrical properties of the cation-selective channel of the sarcoplasmic reticulum (SR channel). The properties of this channel in solutions which do not contain thallous ion are consistent with the predictions of Läuger's theory for singly occupied pores (P. Läuger, 1973,Biochim. Biophys. Acta 311:423–441). However, this theory does not account for SR channel properties in mixtures containing thallous ion. SR channel conductance is less than predicted in mixed salt solutions of thallium with either potassium or ammonium (J. Fox, 1983,Biochim. Biophys. Acta 736:241–245), yet is greater than expected in mixtures of lithium and thallium. In a simple single-ion pore, the ratio of the products of the single-salt binding constants and maximum conductances is equal to the permeability ratio calculated from zero-current potential experiments under near equilibrium conditions. This is not found for the SR channel when thallous ion is present. SR channel properties in the presence of thallous ion can, however, be explained by a model which postulates the existence of two external modulatory sites on the channel, without implying double-occupancy in the permeation pathway. When thallous ion is bound to a modulatory site the maximum conductance of the channel to all permeating ions is altered (thallous included). Two other models (a three-barrier, two-internal-site pore which allows multiple occupancy, and a pore with fluctuating barriers) are discussed, but are found to be unable to fit our conductance data at different concentrations.  相似文献   

6.
The addition of 2 M formic acid at pH 3.75 increased the single channel H+ ion conductance of gramicidin channels 12-fold at 200 mV. Other weak acids (acetic, lactic, oxalic) produce a similar, but smaller increase. Formic acid (and other weak acids) also blocks the K+ conductance at pH 3.75, but not at pH 6.0 when the anion form predominates. This increased H+ conductance and K+ block can be explained by formic acid (HF) binding to the mouth of the gramicidin channel (Km = 1 M) and providing a source of H+ ions. A kinetic model is derived, based on the equilibrium binding of formic acid to the channel mouth, that quantitatively predicts the conductance for different mixtures of H+, K+, and formic acid. The binding of the neutral formic acid to the mouth of the gramicidin channel is directly supported by the observation that a neutral molecule with a similar structure, formamide (and malonamide and acrylamide), blocks the K+ conductance at pH 6.0. The H+ conductance in the presence of formic acid provides a lower bound for the intrinsic conductance of the gramicidin channel when there is no diffusion limitation at the channel mouth. The 12-fold increase in conductance produced by formic acid suggests that greater than 90% of the total resistance to H+ results from diffusion limitation in the bulk solution.  相似文献   

7.
Three different theoretical approaches are used and compared to refine our understanding of ion permeation through the channel formed by OmpF porin from Escherichia coli. Those approaches are all-atom molecular dynamics (MD) in which ions, solvent, and lipids are represented explicitly, Brownian dynamics (BD) in which ions are represented explicitly, while solvent and lipids are represented as featureless dielectrics, and Poisson-Nernst-Planck (PNP) electrodiffusion theory in which both solvent and local ion concentrations are represented as a continuum. First, the ability of the different theoretical approaches in reproducing the equilibrium average ion density distribution in OmpF porin bathed by a 1M KCl symmetric salt solution is examined. Under those conditions the PNP theory is equivalent to the non-linear Poisson-Boltzmann (PB) theory. Analysis shows that all the three approaches are able to capture the important electrostatic interactions between ions and the charge distribution of the channel that govern ion permeation and selectivity in OmpF. The K(+) and Cl(-) density distributions obtained from the three approaches are very consistent with one another, which suggests that a treatment on the basis of a rigid protein and continuum dielectric solvent is valid in the case of OmpF. Interestingly, both BD and continuum electrostatics reproduce the distinct left-handed twisted ion pathways for K(+) and Cl(-) extending over the length of the pore which were observed previously in MD. Equilibrium BD simulations in the grand canonical ensemble indicate that the channel is very attractive for cations, particularly at low salt concentration. On an average there is 1.55 K(+) inside the pore in 10mM KCl. Remarkably, there is still 0.17 K(+) on average inside the pore even at a concentration as low as 1microM KCl. Secondly, non-equilibrium ion flow through OmpF is calculated using BD and PNP and compared with experimental data. The channel conductance in 0.2M and 1M KCl calculated using BD is in excellent accord with the experimental data. The calculations reproduce the experimentally well-known conductance-concentration relation and also reveal an asymmetry in the channel conductance (a larger conductance is observed under a positive transmembrane potential). Calculations of the channel conductance for three mutants (R168A, R132A, and K16A) in 1M KCl suggest that the asymmetry in the channel conductance arises mostly from the permanent charge distribution of the channel rather than the shape of the pore itself. Lastly, the calculated reversal potential in a tenfold salt gradient (0.1:1M KCl) is 27.4(+/-1.3)mV (BD) and 22.1(+/-0.6)mV (PNP), in excellent accord with the experimental value of 24.3mV. Although most of the results from PNP are qualitatively reasonable, the calculated channel conductance is about 50% higher than that calculated from BD probably because of a lack of some dynamical ion-ion correlations.  相似文献   

8.
The patch-clamp technique of Mueller (1975, Ann. N.Y. Acad. Sci., 274:247-264) and Neher and Sakmann (1976, Nature (Lond.), 260:799-802) was modified to be suitable for single-channel measurements in lipid bilayers at potentials up to 500 mV. This method was used to study gramicidin A single-channel current-voltage characteristics. It was found that the sublinear current-voltage behavior normally observed at low permeant ion concentrations and rather low potentials (V less than or equal to 200 mV) continues to be seen all the way up to 500 mV. This phenomenon is characteristic of the low permeant ion situation in which the channel is far from saturation, and implies that the overall rate constant for association between ion and channel is very weakly, if at all, voltage dependent. The magnitude of the single channel currents at 500 mV is consistent with the notion that the aqueous convergence conductance is a significant factor in determining the permeability characteristics of the gramicidin A channel.  相似文献   

9.
We have identified in organic solvent extracts of whole cells of the gram-positive pathogen Rhodococcus equi two channel-forming proteins with different and complementary properties. The isolated proteins were able to increase the specific conductance of artificial lipid bilayer membranes made from phosphatidylcholine-phosphatidylserine mixtures by the formation of channels able to be permeated by ions. The channel-forming protein PorA(Req) (R. equi pore A) is characterized by the formation of cation-selective channels, which are voltage gated. PorA(Req) has a single-channel conductance of 4 nS in 1 M KCl and shows high permeability for positively charged solutes because of the presence of negative point charges. According to the results of sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), the protein has an apparent molecular mass of about 67 kDa. The analysis (using the effect of negative charges on channel conductance) of the concentration dependence of the single-channel conductance suggested that the diameter of the cell wall channel is about 2.0 nm. The second channel (formed by PorB(Req) [R. equi pore B]) shows a preferred movement of anions through the channel and is not voltage gated. This channel shows a single-channel conductance of 300 pS in 1 M KCl and is characterized by the presence of positive point charges in or near the channel mouth. Based on SDS-PAGE, the apparent molecular mass of the channel-forming protein is about 11 kDa. Channel-forming properties of the investigated cell wall porins were compared with those of others isolated from mycolic acid-containing actinomycetes. We present here the first report of a fully characterized anion-selective cell wall channel from a member of the order Actinomycetales.  相似文献   

10.
The properties of the channel of the purified acetylcholine receptor (AChR) were investigated after reconstitution in planar lipid bilayers. The time course of the agonist-induced conductance exhibits a transient peak that relaxes to a steady state value. The macroscopic steady state membrane conductance increases with agonist concentration, reaching saturation at 10(-5) M for carbamylcholine (CCh). The agonist-induced membrane conductance was inhibited by d-tubocurarine (50% inhibition, IC50, at approximately 10(-6) M) and hexamethonium (IC50 approximately 10(-5) M). The single channel conductance, gamma, is ohmic and independent of the agonist. At 0.3 M monovalent salt concentrations, gamma = 28 pS for Na+, 30 pS for Rb+, 38 pS for Cs+, and 50 pS for NH+4. The distribution of channel open times was fit by a sum of two exponentials, reflecting the existence of two distinct open states. tau o1 and tau o2, the fast and slow components of the distribution of open times, are independent of the agonist concentration: for CCh this was verified in the range of 10(-6) M less than C less than 10(-3)M. tau 01 and tau o2 are approximately three times longer for suberyldicholine ( SubCh ) than for CCh. tau o1 and tau o2 are moderately voltage dependent, increasing as the applied voltage in the compartment containing agonist is made more positive with respect to the other. At desensitizing concentrations of agonist, the AChR channel openings occurred in a characteristic pattern of sudden paroxysms of channel activity followed by quiescent periods. A local anesthetic derivative of lidocaine ( QX -222) reduced both tau o1 and tau o2. This effect was dependent on both the concentration of QX -222 and the applied voltage. Thus, the AChR purified from Torpedo electric organ and reconstituted in planar lipid bilayers exhibits ion conduction and kinetic and pharmacological properties similar to AChR in intact muscle postsynaptic membranes.  相似文献   

11.
The influenza A virus-associated M2 ion channel is generally believed to function during uncoating of virions in infected cells. On endocytosis of a virion into the lumen of endosomes, the M2 ion channel is thought to cause acidification of the virion interior. In addition, the influenza virus M2 ion channel is thought to function in the exocytic pathway by equilibrating the pH gradient between the acidic lumen of the trans-Golgi network and the neutral cytoplasm. A necessary test of the proposed roles of the influenza virus M2 ion channel in the virus life cycle is to show directly that the M2 ion channel conducts protons. We have measured the ionic selectivity and activation of three subtypes (Udorn, Weybridge, and Rostock) of the M2 ion channel in oocytes of Xenopus laevis by measurement of 1) the intracellular pH (pHin) of voltage-clamped oocytes, 2) the current-voltage relationship in solutions of various pH and ionic composition, and 3) the flux of 86Rb. We took advantage of the low pHin achieved during incubation in low pH medium to study the effects of low pHin on M2 activation. Oocytes expressing each of the three subtypes of the M2 protein a) underwent a slow acidification when incubated in medium of low pH (acidification was blocked by the M2 ion channel inhibitor, amantadine); b) had current-voltage relationships that shifted to more positive values and had greater conductance when the pHout was lowered (this relationship was modified when Na- was replaced by NH4+ or Li+); c) had an amantadine-sensitive influx of Rb+. The effects on the current-voltage relationship of reduced pHin were opposed to the increased conductance found with reduced pHout. We interpret these results to indicate that the M2 ion channel is capable of conducting H+ and that other ions may also be conducted. Moreover, the channel conductance is reduced by decreased pHin. These findings are consistent with the proposed roles of the M2 protein in the life cycle of influenza A virus.  相似文献   

12.
The M(2) ion channel protein of influenza A virus is essential for mediating protein-protein dissociation during the virus uncoating process that occurs when the virus is in the acidic environment of the lumen of the secondary endosome. The difficulty of determining the ion selectivity of this minimalistic ion channel is due in part to the fact that the channel activity is so great that it causes local acidification in the expressing cells and a consequent alteration of reversal voltage, V(rev). We have confirmed the high proton selectivity of the channel (1.5-2.0 x 10(6)) in both oocytes and mammalian cells by using four methods as follows: 1) comparison of V(rev) with proton equilibrium potential; 2) measurement of pH(in) and V(rev) while Na(+)(out) was replaced; 3) measurements with limiting external buffer concentration to limit proton currents specifically; and 4) comparison of measurements of M(2)-expressing cells with cells exposed to a protonophore. Increased currents at low pH(out) are due to true activation and not merely increased [H(+)](out) because increased pH(out) stops the outward current of acidified cells. Although the proton conductance is the biologically relevant conductance in an influenza virus-infected cell, experiments employing methods 1-3 show that the channel is also capable of conducting NH(4)(+), probably by a different mechanism from H(+).  相似文献   

13.
Abstract A new method of pore size determination is presented. The results of applying this simple method to ion channels formed by staphylococcal α-toxin and its N-terminal fragment as well as to cholera toxin channels are shown. The advantages and the difficulties of this method are discussed. It was found that (i) the mobility of ions in solutions depends only on the percentage of concentration of added non-electrolytes and practically not on their chemical nature (sugars or polyglycols) and molecular size; (ii) the proportional change of both ion channel conductance and bulk solution conductivity by low M . non-electrolytes may be used as an indication of a diffusion mechanism of ion transport through channels; (iii) the slope of the dependence of the ion channel conductance on the bulk conductivity of solutions containing different concentrations of non-electrolyte is a good measure of channel permeability for non-electrolytes.  相似文献   

14.
The open-channel conductance properties of a voltage-gated Cl- channel derived from Torpedo californica electroplax and incorporated into planar bilayers were studied by several approaches. In neutral bilayers the channel conductance saturates with Cl- activity according to a rectangular hyperbolic relation with a half-saturation activity of 75 mM and a maximum conductance of 32 pmho. The observation of identical behavior in charged membranes implies that ions permeating the channel do not sense the surface potential of the bulk membrane. The Cl-:Br- permeability ratio, measured under biionic conditions, is independent of salt concentration. SCN- ion reversibly blocks the channel. The voltage dependence of the block implies the existence of two separate blocking sites within the channel: one accessible from the cis side only (the side to which vesicles are added) and the other accessible from the trans side only. The block at each site is competitive with Cl-. The results are consistent with a single-ion Eyring model of the conduction process in which the ion must traverse three kinetic barriers as it permeates the channel and in which the channel can accommodate at most one ion at a time.  相似文献   

15.
To test the hypothesis that transmembrane domain histidine residue 37 of the M2 ion channel of influenza A virus mediates the low pH-induced activation of the channel, the residue was changed to glycine, glutamate, arginine, or lysine. The wild-type and altered M2 proteins were expressed in oocytes of Xenopus laevis and membrane currents were recorded. The mass of protein expressed in individual oocytes was measured using quantitative immunoblotting and correlated with membrane currents. Oocytes expressing the M2-H37G protein had a voltage-independent conductance with current-voltage relationship similar to that of the wild-type M2 channel. The conductance of the M2-H37G protein was reversibly inhibited by the M2 ion channel blocker amantadine and was only very slightly modulated by changes in pHout over the range pH 5.4 to pH 8.2. Oocytes expressing the M2-H37E protein also had a voltage-independent conductance with a current-voltage relationship similar to that of the wild-type M2 channel. The conductance of the M2-H37E protein was reversibly inhibited by amantadine and was also only very slightly modulated by changes in pHout over the range pH 5.4 to pH 8.2. These slight alterations in conductance of the mutant ion channels on changes in pHout are in striking contrast to the 50-fold change in conductance seen for the wild-type M2 channel over the range pH 4.5 to pH 8.2. The specific activity of the M2-H37G protein was 1.36 +/- 0.37 microA/ng and the specific activity of the M2-H37E protein was 30 +/- 3 microA/ng at pH 6.2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
We investigated the mechanism whereby ions cross dihydropyridine- sensitive (L-type) Ca channels in guinea pig ventricular myocytes. At the single-channel level, we found no evidence of an anomalous mole- fraction effect like that reported previously for whole-cell currents in mixtures of Ba and Ca. With the total concentration of Ba + Ca kept constant at 10 (or 110) mM, neither conductance nor absolute unitary current exhibits a paradoxical decrease when Ba and Ca are mixed, thereby weakening the evidence for a multi-ion permeation scheme. We therefore sought independent evidence to support or reject the multi- ion nature of the L-type Ca channel by measuring conductance at various permeant ion concentrations. Contrary to the predictions of models with only one binding site in the permeation pathway, single-channel conductance does not follow Michaelis-Menten kinetics as Ba activity is increased over three orders of magnitude. Two-fold variation in the Debye length of permeant ion solutions has little effect on conductance, making it unlikely that local surface charge effects could account for these results. Instead, the marked deviation from Michaelis- Menten behavior was best explained by supposing that the permeation pathway contains three or more binding sites that can be occupied simultaneously. The presence of three sites helps explain both a continued rise in conductance as [Ba2+] is increased above 110 mM, and the high single-channel conductance (approximately 7 pS) with 1 mM [Ba2+] as the charge carrier; the latter feature enables the L-type channel to carry surprisingly large currents at physiological divalent cation concentrations. Thus, despite the absence of an anomalous mole- fraction effect between Ba and Ca, we suggest that the L-type Ca channel in heart cells supports ion flux by a single-file, multi-ion permeation mechanism.  相似文献   

17.
Detergent-solubilized cell wall extracts of the gram-positive, strictly aerobic bacterium Nocardia asteroides contain channel-forming activity as judged from reconstitution experiments using lipid bilayer membranes. The cell wall porin was identified as a protein with an apparent molecular mass of about 84 kDa based on SDS-PAGE. The porin was purified to homogeneity using preparative SDS-PAGE. The 84-kDa protein was no longer observed after heating in SDS buffer. The presumed dissociation products were not observed on SDS-polyacrylamide gels. The cell wall porin increased the specific conductance of artificial lipid bilayer membranes from phosphatidylcholine/phosphatidylserine mixtures by the formation of cation-selective channels, which had an average single-channel conductance of 3.0 nS in 1 M KCl. The single-channel conductance was only moderately dependent on the bulk aqueous KCl concentration, which indicated negative point charge effects on the channel properties. The analysis of the concentration dependence of the single-channel conductance using the effect of negative charges on channel conductance suggested that the diameter of the cell wall channel is about 1.4 nm. Asymmetric addition of the cell wall porin to lipid bilayer membranes resulted in an asymmetric voltage dependence. The cell wall channel switched into substates, when the cis side of the membrane, the side of the addition of the protein, had negative polarity. Positive potentials at the cis side had no influence on the conductance of the cell wall channel. Received: 23 September 1998 / Accepted: 9 December 1998  相似文献   

18.
The M(2) integral membrane protein of influenza A virus forms a proton-selective ion channel. We investigated the mechanism for proton transport of the M(2) protein in Xenopus oocytes using a two-electrode voltage clamp and in CV-1 cells using the whole cell patch clamp technique. Membrane currents were recorded while manipulating the external solution to alter either the total or free proton concentration or the solvent itself. Membrane conductance decreased by approximately 50% when D(2)O replaced H(2)O as the solvent. From this, we conclude that hydrogen ions do not pass through M(2) as hydronium ions, but instead must interact with titratable groups that line the pore of the channel. M(2) currents measured in solutions of low buffer concentration (<15 mM in oocytes and <0.15 mM in CV-1 cells) were smaller than those studied in solutions of high buffer concentration. Furthermore, the reversal voltage measured in low buffer was shifted to a more negative voltage than in high buffer. Also, at a given pH, M(2) current amplitude in 15 mM buffer decreased when pH-pK(a) was increased by changing the buffer pK(a). Collectively, these results demonstrate that M(2) currents can be limited by external buffer capacity. The data presented in this study were also used to estimate the maximum single channel current of the M(2) ion channel, which was calculated to be on the order of 1-10 fA.  相似文献   

19.
N-methyl-D-aspartate (NMDA) receptor channels in cultured CA1 hippocampal neurons were studied using patch-clamp techniques. The purpose of the research was to determine the occupancy of the channel by permeant cations and to determine the influence of charged residues in or near the pore. The concentration dependence of permeability ratios, the mole-fraction dependence of permeability ratios, the concentration dependence of the single-channel conductance, and a single-channel analysis of Mg2+ block all independently indicated that the NMDA receptor behaves as a singly-occupied channel. More precisely, there is one permeant cation at a time occupying the site or sites that are in the narrow region of the pore directly in the permeation pathway. Permeability-ratio measurements in mixtures of monovalent and divalent cations indicated that local charges in or near the pore do not produce a large local surface potential in physiologic solutions. In low ionic strength solutions, a local negative surface potential does influence the ionic environment near the pore, but in normal physiologic solutions the surface potential appears too small to significantly influence ion permeation. The results indicate that the mechanism for the high Ca2+ conductance of the NMDA receptor channel is not the same as for the voltage-dependent Ca2+ channel (VDCC). The VDCC has two high affinity, interacting binding sites that provide high Ca2+ selectivity and conductance. The binding site of the NMDA receptor is of lower affinity. Therefore, the selectivity for Ca2+ is not as high, but the lower affinity of binding provides a faster off rate so that interacting sites are not required for high conductance.  相似文献   

20.
Summary Gramicidin-doped asymmetric bilayers made by the Montal-Mueller method exhibited an asymmetric current-voltage relationship. The asymmetric conductance was shown to be the product of two components, a rectifying single-channel conductance and an asymmetric voltage dependence of the reaction which leads to the conducting channel. The single-channel conductance was asymmetric in both asymmetric bilayers made of charged lipids and asymmetric bilayers made only of neutral lipids. The single-channel asymmetry decreased with increasing ion concentration. From the comparison of the singlechannel conductance in symmetric and asymmetric bilayers and the dependence of the asymmetry on the solution ion concentrations, it was concluded that (1) the rate of ion entry into the channel is dependent on the lipid composition of the membrane and is asymmetric in asymmetric bilayers; (2) the entry step is rate determining at low ion concentrations; and (3) at higher ion concentrations the rate-determining step is the translocation across the main barrier in the membrane; and this translocation appears insensitive to lipid asymmetry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号