共查询到20条相似文献,搜索用时 46 毫秒
1.
作为人造极端酶的交联酶晶体 总被引:1,自引:1,他引:1
作为人造极端酶的交联酶晶体林影卢荣德郭勇(华南理工大学生物工程系,广州510640关键词交联酶晶体极端酶酶作为生物催化剂,催化效率高,立体选择性和底物专一性强,是普通化学催化剂所不可比拟的。然而,在酶的应用过程中还有很多令人不满意之处,如在环境中常常... 相似文献
2.
为了提高游离果胶酶的稳定性,对罗布麻脱胶具有特异性的枯草芽孢杆菌(FM208849)进行产果胶酶发酵时,采用交联酶聚集体(CLEAs)技术制备固定化果胶酶,并对交联果胶酶聚集体的制备条件、酶学性质进行研究。结果表明,游离果胶酶经80%饱和硫酸铵沉淀后,在30℃,经4%的戊二醛溶液交联135 min,所形成的交联果胶酶聚集体的活回收率为61.5%,其最适反应温度45℃和最适pH10,在对交联果胶酶聚集体的热稳定性和有机溶剂稳定性分析中,均显示了比游离酶更高的稳定性。 相似文献
3.
4.
交联酶晶体制备及其稳定性的研究 总被引:3,自引:0,他引:3
酶制剂已经广泛应用在化学工艺、医学、农业、食品工业和化学分析等各个领域中,但酶的明显弱点是稳定性差,特别是应用于有机合成的酶还要耐受有机溶剂的变性作用等,所以酶的稳定化研究越来越引起重视。脂肪酶由于其在疏水环境的特殊催化作用,被广泛应用于有机合成中。... 相似文献
5.
6.
7.
摘要目的:研究牛磺酸镁(TMCC)对哇巴因致豚鼠心肌细胞心律失常模型钙离子通道的作用机制。方法:运用全细胞膜片钳技术分别记录TMCC和胺碘酮对正常心肌细胞和哇巴因导致的心律失常心肌细胞模型钙离子通道的作用。结果:5bμmol/L哇巴因使心肌细胞钙离子通道电流(ICa-L)减小。200和400μmol/L可以明显使Ic}L恢复。24.26μmol/L胺碘酮使IM进一步减少(P〉0.05)。结论:400μmol/LTMCC可以明显加大正常细胞的b。,起到促进钙内流的作用,并且增强哇巴因致豚鼠心律失常心肌细胞异常减少的电流。 相似文献
8.
目的评估不同转染及培养条件下COS1细胞过表达钙离子ATP酶SERCA1a的量及活性,探讨影响真核细胞目标蛋白质表达量及活性的因素。方法应用常规的全量或者半量DNA、lipofactamin和plus reagent转染COS1细胞,37℃、34℃或31℃培养2至5d。提取微粒体蛋白后定量并测定SERCA1a的ATP酶活性。结果微粒体蛋白量在细胞培养3至4d达到高峰,改变转染及细胞培养条件,未见明显变化;降低细胞培养温度及提高DNA转染用量,可增加SERCA1a表达量;SERCA1a表达量在8μg DNA转染细胞31℃培养3d达到最高,然而降低细胞培养温度后,SERCA1a的ATP酶活性及EP生成量也随之下降;31℃表达的SERCA1a,其ATP酶活性降低比EP生成量减少的幅度更大,并且ATP酶活性及EP生成量随着细胞培养时间延长而增加。结论应用常规的半量转染试剂、全量DNA瞬时转染COS1细胞,37℃培养3-4d可获得最大量具有正常酶活性的SERCA1a蛋白。降低培养温度虽然可以提高外源性SERCA1a的表达,但却可能影响细胞内蛋白质的准确折叠及正常降解。 相似文献
9.
酶制剂已经广泛应用在化学工艺、医学、农业、食品工业和化学分析等各个领域中,但酶的明显弱点是稳定性差,特别是应用于有机合成的酶还要耐受有机溶剂的变性作用等,所以酶的稳定化研究越来越引起重视。肪酶由于其在疏水环境的特殊催化作用,被广泛应用于有机合成中。本研究所采用Candida ru-gosa脂肪酶(CRL)是目前应用最为广泛的脂肪酶,它不仅能在水和有机介质催化酯、酸、醇的拆分,而且还能催化转酯、酰化、脱酰化等立体异构化反应和酯的水解。但是目前CRL的商业化产品是含有多种水解酶的混合物。其立体异构的专一性低,而纯化的CRL的立体异构的专一性提高,但是操作稳定性差。本文采用酶结晶技术与化学交联技术相结合的方法,制备出一种新型实用的交联酶晶体催化剂,并对它的温度、pH和在有机溶液中的稳定性进行了研究。 相似文献
10.
11.
Cross-linked enzyme aggregate (CLEA) technology has been regarded as an effective carrier-free immobilization method. This method is very attractive due to its simplicity and robustness, as well as for the possibility of using the crude enzyme extract and the opportunity to co-immobilize multiple different enzymes. The resulting CLEAs generally exhibit high catalyst productivities, improved storage and operational stability and are easy to recycle. Nowadays, although the technology has been applied to various enzymes, some undesirable properties have limited its further application. To overcome these limitations, novel strategies have been developing in recent years. This mini-review focuses on process optimization, new improved strategies and the latest advances on CLEAs technology. 相似文献
12.
Tania Diaz-Vidal Vicente Paul Armenta-Perez Luis Carlos Rosales-Rivera Juan C. Mateos-Díaz Jorge A. Rodríguez 《Biotechnology progress》2019,35(4):e2807
Despite the proven therapeutic role of capsaicin in human health, its usage is still hampered by its high pungency. In this sense, nonpungent capsaicin analogues as olvanil are a feasible alternative to the unpleasant sensations produced by capsaicin while maintaining a similar pharmacological profile. Olvanil can be obtained by a lipase-catalyzed chemoenzymatic process. In the present work, recombinant Candida antarctica lipase B (CALB) was expressed in Pichia pastoris and subsequently immobilized by cross-linked enzyme aggregate (CLEA) methodology for the synthesis of olvanil. The CALB-CLEAs were obtained directly from the fermentation broth of P. pastoris without any purification step in order to assess the role of the contaminant proteins of the crude extract as co-feeders. The CALB-CLEAs were also bioimprinted to enhance the catalytic performance in olvanil synthesis. When CALB was precipitated with isopropanol, the obtained CALB-CLEAs exhibited the highest activity in the synthesis of olvanil, regardless of the glutaraldehyde concentration. The maximum product synthesis was found at 72 hr obtaining 6.8 g L−1 of olvanil with a reaction yield of 16%. When CALB was bioimprinted with olvanil, the synthesis was enhanced 1.3 times, reaching 10.7 g L−1 of olvanil at 72 hr of reaction with a reaction yield of 25%. Scanning electron microscopy images indicated different morphologies of the CLEAs depending on the precipitating agent and the template used for bioimprinting. Recombinant CALB-CLEAs obtained directly from the fermentation broth are a suitable alternative to commercial enzymatic preparations for the synthesis of olvanil in organic medium. 相似文献
13.
A new method for monitoring reactions catalyzed by an immobilized enzyme, cross-linked penicillin acylase aggregates (PA CLEA), is suggested. Appropriate chromogenic substrates for spectrophotometric assay of catalytic activity of immobilized enzyme were chosen and their kinetic parameters determined. Active sites in PA CLEA preparations were titrated by the suggested method; it is shown that almost all active sites are retained during immobilization. This method is characterized as highly expressive, simple, and precise and may be used for control of PA immobilization efficiency as well as for study of operational, thermal, and pH stability of immobilized enzyme preparations. 相似文献
14.
R. A. Sheldon R. Schoevaart L. M. Van Langen 《Biocatalysis and Biotransformation》2013,31(3-4):141-147
The key to obtaining optimum performance of an enzyme is often a question of devising an effective method for its immobilization. This review describes a novel, versatile and effective methodology for enzyme immobilization, namely, as cross-linked enzyme aggregates (CLEAs). The method is exquisitely simple – involving precipitation of the enzyme from aqueous buffer followed by cross-linking of the resulting physical aggregates of enzyme molecules – and amenable to rapid optimization. It is applicable to a wide variety of enzymes, including cofactor-dependent oxidoreductases and lyases, and affords stable, recyclable catalysts with high retention of activity, sometimes higher than that of the free enzyme it was derived from. The enzyme does not need to be of high purity. Indeed, the methodology is essentially a combination of purification and immobilization in one step. The technique is also applicable to the preparation of combi-CLEAs, containing two or more enzymes, for use in one-pot, multi-step syntheses. For example, an oxynitrilase/nitrilase combi-CLEA was used for the one-pot synthesis of (S)-mandelic acid from benzaldehyde, in high yield and enantiomeric purity. 相似文献
15.
The key to obtaining optimum performance of an enzyme is often a question of devising an effective method for its immobilization. This review describes a novel, versatile and effective methodology for enzyme immobilization, namely, as cross-linked enzyme aggregates (CLEAs). The method is exquisitely simple - involving precipitation of the enzyme from aqueous buffer followed by cross-linking of the resulting physical aggregates of enzyme molecules - and amenable to rapid optimization. It is applicable to a wide variety of enzymes, including cofactor-dependent oxidoreductases and lyases, and affords stable, recyclable catalysts with high retention of activity, sometimes higher than that of the free enzyme it was derived from. The enzyme does not need to be of high purity. Indeed, the methodology is essentially a combination of purification and immobilization in one step. The technique is also applicable to the preparation of combi-CLEAs, containing two or more enzymes, for use in one-pot, multi-step syntheses. For example, an oxynitrilase/nitrilase combi-CLEA was used for the one-pot synthesis of (S)-mandelic acid from benzaldehyde, in high yield and enantiomeric purity. 相似文献
16.
Muhammad Bilal Sadia Noreen Syed Zakir Hussain Shah Ram Naresh Bharagava 《Biocatalysis and Biotransformation》2019,37(3):159-182
Enzyme-based catalysis has become one of the most important disciplines in organic synthesis and plays a noteworthy role in the establishment of many chemical industries, e.g. fine chemicals, food or energy, textiles, agricultural, cosmeceutical, medicinal and pharmaceutical industries. However, pristine enzymes fail to demonstrate requisite functionalities for an industrial setting where extremely specific and stable catalysts are required. Immobilization enhances the catalytic stability and activity of enzymes and trims the overall cost burden of the enzyme. Therefore, it widely endeavours for proficient, sustainable, and environmentally responsive catalytic processes. Amongst several immobilization strategies, e.g. (1) supports-assisted, i.e. physical or covalent coupling and (2) supports-free techniques, i.e. cross-linked enzyme crystals (CLECs) or aggregates are the most promising ones and widely pursued for enzyme immobilization purposes. This perspective review focuses on up-to-date developments in the area of enzyme immobilization and presents their potentialities to upgrade and/or modify enzyme properties. Both types of immobilization strategies, i.e. supports-assisted and supports-free techniques are discussed with particular reference to CLECs or aggregates and protein-coated microcrystals. Also, several useful traits achieved after immobilization are also discussed in the second half of the review. 相似文献
17.
# 本文研究了用吸附交联技术共固定化蔗糖酶和葡萄糖氧化酶(GOD)的方法,考查了共固定化酶的动力学性质。试验结果表明:与溶液酶相比较,固定化蔗糖酶和GOD的响应滞迟期分别为3分钟和2分钟,稳态响应时间增加了6分钟和4分钟,Km值增大,pH—活力曲线变宽,最适pH值分别增大0.7和0.64,最适温度则降低7.3℃和16℃。 以活性氧化铝作载体,戊二醛作交联剂制备的共固定化蔗糖酶和GOD,其蛋白质固定化率为62.9%,分解葡萄糖的总速度为441.6IU,当蔗糖浓度为0.2%,以内时其反应速度与蔗糖的浓度呈正相关(r=0.996),使用半衰期1623次,在4℃下保存120天活力残存为83.7%。 相似文献
18.
葡萄糖测定方法的比较研究 总被引:8,自引:0,他引:8
比较了传统斐林定糖,葡萄糖氧化酶-过氧化物酶比色法,葡萄糖氧化酶电极自动分析仪法测定葡萄糖。比较测定了的结果显示,三法的平均标准误差(SD),变异系数(CV)均十分接近。通过对此三种方法的回归相关性分析显示:斐林法-酶终点比色法的回归方程为y=0.9843x+6.3239,相关系数R^2=0.9989,斐林法-自动分析仪法的回归方程为y=1.0088x+2.0483,相关系数R^2=0.9991, 相似文献
19.
Nithyakalyani Doraiswamy Mahalakshmi Sarathi 《Preparative biochemistry & biotechnology》2013,43(3):270-278
AbstractThe present study focusses on the enhancement of the catalytic activity and stability of an acetylesterase enzyme isolated from Staphylococcus spp. as Cross-Linked Enzyme Aggregates (CLEAs). The various parameters governing the activity of CLEAs were optimized. The magnetite and graphene oxide nanoparticles were successfully prepared via the chemical co-precipitation and Hummer's method, respectively. These nanoparticles supported the preparation as magnetite nanoparticle-supported cross-Linked Enzyme Aggregates (MGNP-CLEAs) and graphene oxide-supported Cross-Linked Enzyme Aggregates (GO-CLEAs). The activity and stability of these immobilized CLEAs were compared with the free enzyme at various temperature, pH, and organic solvents along with its storage stability and reusability. The immobilized preparations were analyzed by Scanning Electron Microscopy (SEM) and Fourier Transform Infrared spectroscopy (FT-IR) techniques. Acetylesterase precipitated with 60% saturated ammonium sulfate salt (SAS) solution and cross-linked with 100?mM glutaraldehyde for 4?h at 30?°C was found to be optimal to produce CLEAs with highest activity recovery of 99.8%. The optimal pH at 8.0 and temperature at 30?°C remained the same for both the free and immobilized enzyme, respectively. Storage stability significantly improved for the immobilized enzyme as compared to free enzyme. SEM showed type-I aggregate and FT-IR revealed the successful immobilization of the enzyme. MGNP-CLEAs were found to have better activity and stability in comparison to other immobilized preparations. 相似文献
20.
Wolfgang Kerner Martin Kiwit Burkhard Linke
Fritz S. Keck
Horst ZierErnst F. Pfeiffer
《Biosensors & bioelectronics》1993,8(9-10):473-482Electroenzymatic glucose sensors implanted into sub-cutaneous (s.c.) tissue of human subjects and experimental animals exhibit lower sensitivities to glucose than in buffer solutions before implantation. The mechanism of the decrease of sensitivity is not known. Sensors used in this study were fabricated from platinum wires (diameter 0.125 mm) with covalently bound glucose oxidase at the tip of the wire. After coating the tip with polyurethane, wires were placed into 27 gauge steel needles. Sensors were operated potentiostatically at 700 mV against Ag/AgCl pseudo-reference electrodes. These sensors were implanted s.c. in 6 diabetic patients for 7 h. In 4 patients, sensors were responsive to successive increases of plasma glucose levels. Mean sensitivity to glucose in s.c. tissue was 29% of in vitro sensitivity. In 2 patients there was a sudden decrease of sensor currents, unrelated to glucose, shortly after implantation. Sensors were inhibited in human plasma to a similar extent. When sensors were exposed to native plasma and to plasma ultrafiltrate (mol. wt. <10 kDa) for 10 h, identical decreases of signals were found. Exposure to dialysed plasma (mol. wt. >12 kDa) caused much less decrease of sensor signals. Losses of sensor sensitivities to glucose in s.c. tissue and in plasma were totally reversible upon re-exposure of sensors to buffer solutions. We conclude that sensor inactivation in plasma and possibly in s.c. tissue is caused by low molecular weight substances not retained by the polyurethane membrane. 相似文献