首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
S C Stirzaker  G W Both 《Cell》1989,56(5):741-747
The rotavirus glycoprotein VP7 has a cleavable signal peptide and is normally resident as an integral membrane protein in the ER of infected cells. A gene was constructed in which the VP7 H2 signal peptide was replaced by one from influenza hemagglutinin. COS cells transfected with this gene produced VP7 with the correct amino terminus, but the protein was rapidly secreted. Uncleaved VP7 from either precursor was not detected in cells after brief pulse-labeling, suggesting that the signal peptide was not acting as a temporary anchor; rather, it exerted its effect despite rapid cleavage. By splicing the H2 signal peptide onto another reporter protein, the malaria S-antigen, we demonstrated that H2 was necessary, but not itself sufficient, for targeting and retention. We propose that an interaction between the cleaved signal peptide and other downstream sequences in VP7 is required for retention of this protein in the ER as an integral membrane polypeptide.  相似文献   

2.
Cytochrome P450b is an integral membrane protein of the rat hepatocyte endoplasmic reticulum (ER) which is cotranslationally inserted into the membrane but remains largely exposed on its cytoplasmic surface. The extreme hydrophobicity of the amino-terminal portion of P450b suggests that it not only serves to initiate the cotranslational insertion of the nascent polypeptide but that it also halts translocation of downstream portions into the lumen of the ER and anchors the mature protein in the membrane. In an in vitro system, we studied the cotranslational insertion into ER membranes of the normal P450b polypeptide and of various deletion variants and chimeric proteins that contain portion of P450b linked to segments of pregrowth hormone or bovine opsin. The results directly established that the amino-terminal 20 residues of P450b function as a combined insertion-halt-transfer signal. Evidence was also obtained that suggests that during the early stages of insertion, this signal enters the membrane in a loop configuration since, when the amino-terminal hydrophobic segment was placed immediately before a signal peptide cleavage site, cleavage by the luminally located signal peptidase took place. After entering the membrane, the P450b signal, however, appeared to be capable of reorienting within the membrane since a bovine opsin peptide segment linked to the amino terminus of the signal became translocated into the microsomal lumen. It was also found that, in addition to the amino-terminal combined insertion-halt-transfer signal, only one other segment within the P450b polypeptide, located between residues 167 and 185, could serve as a halt-transfer signal and membrane-anchoring domain. This segment was shown to prevent translocation of downstream sequences when the amino-terminal combined signal was replaced by the conventional cleavable insertion signal of a secretory protein.  相似文献   

3.
Nrf1 (nuclear factor-erythroid 2 p45 subunit-related factor 1) is negatively controlled by its NTD (N-terminal domain) that lies between amino acids 1 and 124. This domain contains a leucine-rich sequence, called NHB1 (N-terminal homology box 1; residues 11-30), which tethers Nrf1 to the ER (endoplasmic reticulum). Electrophoresis resolved Nrf1 into two major bands of approx. 95 and 120 kDa. The 120-kDa Nrf1 form represents a glycosylated protein that was present exclusively in the ER and was converted into a substantially smaller polypeptide upon digestion with either peptide:N-glycosidase F or endoglycosidase H. By contrast, the 95-kDa Nrf1 form did not appear to be glycosylated and was present primarily in the nucleus. NHB1 and its adjacent residues conform to the classic tripartite signal peptide sequence, comprising n-, h- and c-regions. The h-region (residues 11-22), but neither the n-region (residues 1-10) nor the c-region (residues 23-30), is required to direct Nrf1 to the ER. Targeting Nrf1 to the ER is necessary to generate the 120-kDa glycosylated protein. The n-region and c-region are required for correct membrane orientation of Nrf1, as deletion of residues 2-10 or 23-30 greatly increased its association with the ER and the extent to which it was glycosylated. The NHB1 does not contain a signal peptidase cleavage site, indicating that it serves as an ER anchor sequence. Wild-type Nrf1 is glycosylated through its Asn/Ser/Thr-rich domain, between amino acids 296 and 403, and this modification was not observed in an Nrf1(Delta299-400) mutant. Glycosylation of Nrf1 was not necessary to retain it in the ER.  相似文献   

4.
The NHE6 protein is a unique Na(+)/H(+) exchanger isoform believed to localize in mitochondria. It possesses a hydrophilic N-terminal portion that is rich in positively charged residues and many hydrophobic segments. In the present study, signal sequences in the NHE6 molecule were examined for organelle localization and membrane topogenesis. When the full-length protein was expressed in COS7 cells, it localized in the endoplasmic reticulum and on the cell surface. Furthermore, the protein was fully N-glycosylated. When green fluorescent protein was fused after the second (H2) or third (H3) hydrophobic segment, the fusion proteins were targeted to the endoplasmic reticulum (ER) membrane. The localization pattern was the same as that of fusion proteins in which green fluorescent protein was fused after H2 of NHE1. In an in vitro system, H1 behaved as a signal peptide that directs the translocation of the following polypeptide chain and is then processed off. The next hydrophobic segment (H2) halted translocation and eventually became a transmembrane segment. The N-terminal hydrophobic segment (H1) of NHE1 also behaved as a signal peptide. Cell fractionation studies using antibodies against the 15 C-terminal residues indicated that NHE6 protein localized in the microsomal membranes of rat liver cells. All of the NHE6 molecules in liver tissue possess an endoglycosidase H-resistant sugar chain. These findings indicate that NHE6 protein is targeted to the ER membrane via the N-terminal signal peptide and is sorted to organelle membranes derived from the ER membrane.  相似文献   

5.
M L Clarke  L J Lockett    G W Both 《Journal of virology》1995,69(10):6473-6478
The sequences responsible for binding rotavirus glycoprotein VP7 to the membrane of the endoplasmic reticulum (ER) have not been identified. Here we show that the sequences which promote membrane binding in vitro are distinct from the N-terminal sequences which promote retention of VP7 in the ER in vivo. The role of the C-terminal region in membrane binding was also examined by using truncation mutants. Membrane binding in vitro was reduced but not abolished by removing up to 102 residues from the C terminus. The data suggest that the last 36 residues of VP7 may be present in the membrane or translocation pore, possibly with the C terminus protruding into the cytoplasm, since these residues contribute to, but do not account for, membrane binding. Surprisingly, modified forms of VP7 which are secreted from transfected cells showed the same membrane-binding properties in vitro as the protein retained in the ER membrane. Thus, secreted VP7 may not be present as a soluble polypeptide in the ER. A model to explain these results is presented. Previously published data are consistent with the idea that the highly conserved C terminus of nascent VP7 could have a cytoplasmic orientation which is important for assembly of mature virus particles.  相似文献   

6.
T C Hobman  R Shukin    S Gillam 《Journal of virology》1988,62(11):4259-4264
Rubella virus (RV) contains four structural proteins, C (capsid), E2a, E2b, and E1, which are derived from posttranslational processing of a single polyprotein precursor, p110. C protein is nonglycosylated and is thought to interact with RV RNA to form a nucleocapsid. E1 and E2 are membrane glycoproteins that form the spike complexes located on the virion exterior. Two different E1 cDNAs were used to analyze the requirements for translocation of E1 into the endoplasmic reticulum. Analysis of expression of these cDNAs both in vivo and in vitro showed that RV E1 was stably expressed and glycosylated in COS cells and correctly targeted into microsomes in the absence of E2 glycoprotein. The results provide experimental evidence that translocation of RV E1 glycoprotein into the endoplasmic reticulum is mediated by a signal peptide contained within the 69 carboxyl-terminal residues of E2.  相似文献   

7.
The Simian 11 rotavirus glycoprotein VP7 is directed to the endoplasmic reticulum (ER) of the cell and retained as an integral membrane protein. The gene coding for VP7 predicts two potential initiation codons, each of which precedes a hydrophobic region of amino acids (H1 and H2) with the characteristics of a signal peptide. Using the techniques of gene mutagenesis and expression, we have determined that either hydrophobic domain alone can direct VP7 to the ER. A protein lacking both hydrophobic regions was not transported to the ER. Some polypeptides were directed across the ER membrane and then into the secretory pathway of the cell. For a variant retaining only the H1 domain, secretion was cleavage dependent, since an amino acid change which prevented cleavage also stopped secretion. However, secretion of two other deletion mutants lacking H1 and expressing truncated H2 domains was unaffected by this mutation, suggesting that these proteins were secreted without cleavage of their NH2-terminal hydrophobic regions or secreted after cleavage at a site(s) not predicted by current knowledge.  相似文献   

8.
The rotavirus outer capsid glycoprotein, VP7, is an endoplasmic reticulum (ER) membrane-associated glycoprotein in both infected and transfected cells. It was previously demonstrated in this laboratory and by others that both the cleaved signal sequence (H2) and the first NH2-terminal 61 amino acids of VP7 are sufficient and necessary for ER retention of this molecule. Using site-specific mutagenesis and transfection techniques, we show that residues Ile-9, Thr-10, and Gly-11 were specifically necessary for ER retention. These results further define the ER retention sequence of VP7 and demonstrate that conservative changes, apparently innocuous in only three adjacent amino acids, can lead to major solubility and compartmentalization changes. It was found that placement of the first 31 mature NH2-terminal residues of VP7, in addition to the cleaved ER translocation signal sequence, was sufficient to retain the enzymatically active chimeric alpha-amylase in the ER; this enzyme is normally secreted. Deletions of the residues Ile-9, Thr-10, and Gly-11 within the amylase chimera containing 31 VP7 amino acids resulted in secretion of enzymatically active protein. It was also observed that the residues of VP7 presented in certain chimeras were able to abolish alpha-amylase enzymatic activity. These chimeras are presumably misfolded since it was demonstrated by pulse-chase experiments that these molecules are degraded in the ER. We surmise that a favorable conformation is necessary for retention since ER retention and activity of the chimeras depend on the primary sequence context.  相似文献   

9.
10.
How non-enveloped viruses overcome host cell membranes is poorly understood. Here, we show that after endocytosis and transport to the endoplasmic reticulum (ER), but before crossing the ER membrane to the cytosol, incoming simian virus 40 particles are structurally remodelled leading to exposure of the amino-terminal sequence of the minor viral protein VP2. These hydrophobic sequences anchor the virus to membranes. A negatively charged residue, Glu 17, in the α-helical, membrane-embedded peptide is essential for infection, most likely by introducing an 'irregularity' recognized by the ER-associated degradation (ERAD) system for membrane proteins. Using a siRNA-mediated screen, the lumenal chaperone BiP and the ER-membrane protein BAP31 (both involved in ERAD) were identified as being essential for infection. They co-localized with the virus in discrete foci and promoted its ER-to-cytosol dislocation. Virus-like particles devoid of VP2 failed to cross the membrane. The results demonstrated that ERAD-factors assist virus transport across the ER membrane.  相似文献   

11.
CHIP28 is a 28-kD hydrophobic integral membrane protein that functions as a water channel in erythrocytes and renal tubule epithelial cell membranes. We examined the transmembrane topology of CHIP28 in the ER by engineering a reporter of translocation (derived from bovine prolactin) into nine sequential sites in the CHIP28 coding region. The resulting chimeras were expressed in Xenopus oocytes, and the topology of the reporter with respect to the ER membrane was determined by protease sensitivity. We found that although hydropathy analysis predicted up to seven potential transmembrane regions, CHIP28 spanned the membrane only four times. Two putative transmembrane helices, residues 52-68 and 143-157, reside on the lumenal and cytosolic surfaces of the ER membrane, respectively. Topology derived from these chimeric proteins was supported by cell-free translation of five truncated CHIP28 cDNAs, by N-linked glycosylation at an engineered consensus site in native CHIP28 (residue His69), and by epitope tagging of the CHIP28 amino terminus. Defined protein chimeras were used to identify internal sequences that direct events of CHIP28 topogenesis. A signal sequence located within the first 52 residues initiated nascent chain translocation into the ER lumen. A stop transfer sequence located in the hydrophobic region from residues 90-120 terminated ongoing translocation. A second internal signal sequence, residues 155-186, reinitiated translocation of a COOH-terminal domain (residues 186-210) into the ER lumen. Integration of the nascent chain into the ER membrane occurred after synthesis of 107 residues and required the presence of two membrane-spanning regions. From this data, we propose a structural model for CHIP28 at the ER membrane in which four membrane- spanning alpha-helices form a central aqueous channel through the lipid bilayer and create a pathway for water transport.  相似文献   

12.
SEC72 encodes the 23-kD subunit of the Sec63p complex, an integral ER membrane protein complex that is required for translocation of presecretory proteins into the ER of Saccharomyces cerevisiae. DNA sequence analysis of SEC72 predicts a 21.6-kD protein with neither a signal peptide nor any transmembrane domains. Antibodies directed against a carboxyl-terminal peptide of Sec72p were used to confirm the membrane location of the protein. SEC72 is not essential for yeast cell growth, although an sec72 null mutant accumulates a subset of secretory precursors in vivo. Experiments using signal peptide chimeric proteins demonstrate that the sec72 translocation defect is associated with the signal peptide rather than with the mature region of the secretory precursor.  相似文献   

13.
C-tail-anchored proteins are defined by an N-terminal cytosolic domain followed by a transmembrane anchor close to the C terminus. Their extreme C-terminal polar residues are translocated across membranes by poorly understood post-translational mechanism(s). Here we have used the yeast system to study translocation of the C terminus of a tagged form of mammalian cytochrome b(5), carrying an N-glycosylation site in its C-terminal domain (b(5)-Nglyc). Utilization of this site was adopted as a rigorous criterion for translocation across the ER membrane of yeast wild-type and mutant cells. The C terminus of b(5)-Nglyc was rapidly glycosylated in mutants where Sec61p was defective and incapable of translocating carboxypeptidase Y, a well known substrate for post-translational translocation. Likewise, inactivation of several other components of the translocon machinery had no effect on b(5)-Nglyc translocation. The kinetics of translocation were faster for b(5)-Nglyc than for a signal peptide-containing reporter. Depletion of the cellular ATP pool to a level that retarded Sec61p-dependent post-translational translocation still allowed translocation of b(5)-Nglyc. Similarly, only low ATP concentrations (below 1 microm), in addition to cytosolic protein(s), were required for in vitro translocation of b(5)-Nglyc into mammalian microsomes. Thus, translocation of tail-anchored b(5)-Nglyc proceeds by a mechanism different from that of signal peptide-driven post-translational translocation.  相似文献   

14.
Cotranslational translocation of proteins across the mammalian ER membrane involves, in addition to the signal recognition particle receptor and the Sec61p complex, the translocating chain-associating membrane (TRAM) protein, the function of which is still poorly understood. Using reconstituted proteoliposomes, we show here that the translocation of most, but not all, secretory proteins requires the function of TRAM. Experiments with hybrid proteins demonstrate that the structure of the signal sequence determines whether or not TRAM is needed. Features that distinguish TRAM-dependent and -independent signal sequences include the length of their charged, NH2-terminal region and the structure of their hydrophobic core. In cases where TRAM is required for translocation, it is not needed for the initial interaction of the ribosome/nascent chain complex with the ER membrane but for a subsequent step inside the membrane in which the nascent chain is inserted into the translocation site in a protease-resistant manner. Thus, TRAM functions in a signal sequence-dependent manner at a critical, early phase of the translocation process.  相似文献   

15.
So far it has been demonstrated that the signal sequence of proteins which are made at the ER functions both at the level of protein targeting to the ER and in initiation of chain translocation across the ER membrane. However, its possible role in completing the process of chain transfer (see Singer, S. J., P. A. Maher, and M. P. Yaffe. Proc. Natl. Acad. Sci. USA. 1987. 84:1015-1019) has remained elusive. In this work we show that the p62 protein of Semliki Forest virus contains an uncleaved signal sequence at its NH2-terminus and that this becomes glycosylated early during synthesis and translocation of the p62 polypeptide. As the glycosylation of the signal sequence most likely occurs after its release from the ER membrane our results suggest that this region has no role in completing the transfer process.  相似文献   

16.
Summary Export of the outer membrane protein, OmpA, across the cytoplasmic membrane of Escherichia coli was severely inhibited by the presence of two, three, four or six additional basic residues at the N-terminus of the mature polypeptide, but not by three similarily positioned acidic residues. Because a few bacterial proteins do possess basic residues close to the leader peptidase cleavage site and because the type of inhibition described here could pose problems in the construction of hybrid secretory proteins, we also studied means of alleviating this form of export incompatibility. Inhibition was abolished when basic residues were preceded by acidic ones. Also, the processing rates of the mutants with two or six basic residues could be partially restored by increasing the length of the hydrophobic core of the signal peptide. Taking this as a precedent, it is suggested that the structure of the signal peptide is an important feature for maintenance of a reasonable rate of translocation of those exported proteins which possess basic residue(s) at the N-terminus of the mature polypeptide.  相似文献   

17.
The translocation of secretory and membrane proteins across the endoplasmic reticulum (ER) membrane is mediated by co-translational (via the signal recognition particle (SRP)) and post-translational mechanisms. In this study, we investigated the relative contributions of these two pathways in trypanosomes. A homologue of SEC71, which functions in the post-translocation chaperone pathway in yeast, was identified and silenced by RNA interference. This factor is essential for parasite viability. In SEC71-silenced cells, signal peptide (SP)-containing proteins traversed the ER, but several were mislocalized, whereas polytopic membrane protein biogenesis was unaffected. Surprisingly trypanosomes can interchangeably utilize two of the pathways to translocate SP-containing proteins except for glycosylphosphatidylinositol-anchored proteins, whose level was reduced in SEC71-silenced cells but not in cells depleted for SRP68, an SRP-binding protein. Entry of SP-containing proteins to the ER was significantly blocked only in cells co-silenced for the two translocation pathways (SEC71 and SRP68). SEC63, a factor essential for both translocation pathways in yeast, was identified and silenced by RNA interference. SEC63 silencing affected entry to the ER of both SP-containing proteins and polytopic membrane proteins, suggesting that, as in yeast, this factor is essential for both translocation pathways in vivo. This study suggests that, unlike bacteria or other eukaryotes, trypanosomes are generally promiscuous in their choice of mechanism for translocating SP-containing proteins to the ER, although the SRP-independent pathway is favored for glycosylphosphatidylinositol-anchored proteins, which are the most abundant surface proteins in these parasites.  相似文献   

18.
Maturation of rotavirus occurs in the endoplasmic reticulum (ER), a site of intracellular calcium storage. It was demonstrated previously that calcium plays an important role in the maturation of bovine rotavirus. We used protein A colloidal gold conjugated to an antibody to localize VP7, the outer capsid protein of the simian rotavius SA11, in permeabilized infected cells in the presence and absence of calcium in the culture medium. In medium containing calcium, VP7 was associated with nonenveloped double-shelled particles and membranous structures of the ER. In calcium-free medium, gold particles were not associated with the ER or with virus particles. Gold particles were distributed through the cytoplasm and were mainly associated with granular structures, but did not assemble onto virus particles. Our data suggest that in calcium-free medium, VP7 is synthesized, but does not remain incorporated, in the ER.  相似文献   

19.
SecA is an acidic, peripheral membrane protein involved in the translocation of secretory proteins across the cytoplasmic membrane. The direct interaction of SecA with secretory proteins was demonstrated by means of chemical cross-linking with 1-ethyl-3-(3-dimethylaminoprophyl)carbodiimide. OmpF-Lpp, a model secretory protein, carries either an uncleavable or cleavable signal peptide, and mutant secretory proteins derived from uncleavable OmpF-Lpp were used as translocation substrates. The interaction was SecA-specific. None of the control proteins, which are as acidic as SecA, was cross-linked with uncleavable OmpF-Lpp. The interaction was signal peptide-dependent. The interaction was increasingly enhanced as the number of positively charged amino acid residues at the amino-terminal region of the signal peptide was increased, irrespective of the species of amino acid residues donating the charge. Finally, parallelism was observed between the efficiency of interaction and that of translocation among mutant secretory proteins. It is suggested that precursors of secretory proteins interact with SecA to initiate the translocation reaction.  相似文献   

20.
We found recently that beta-lactamase folds in the yeast cytosol to a native-like, catalytically active, and trypsin-resistant conformation, and is thereafter translocated into the ER and secreted to the medium. Previously, it was thought that pre-folded proteins cannot be translocated. Here we have studied in living yeast cells whether beta-lactamase, a tight globule in authentic form, must be unfolded for ER translocation. A beta-lactamase mutant (E166A) binds irreversibly benzylpenicillin via Ser(70) in the active site. We fused E166A to the C terminus of a yeast-derived polypeptide having a post-translational signal peptide. In the presence of benzylpenicillin, the E166A fusion protein was not translocated into the endoplasmic reticulum, whereas translocation of the unmutated variant was not affected. The benzylpenicillin-bound protein adhered to the endoplasmic reticulum membrane, where it prevented translocation of BiP, carboxypeptidase Y, and secretory proteins. Although the 321-amino acid-long N-terminal fusion partner adopts no regular secondary structure and should have no constraints for pore penetration, the benzylpenicillin-bound protein remained fully exposed to the cytosol, maintaining its signal peptide. Our data suggest that the beta-lactamase portion must unfold for translocation, that the unfolding machinery is cytosolic, and that unfolding of the remote C-terminal beta-lactamase is required for initiation of pore penetration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号