共查询到20条相似文献,搜索用时 8 毫秒
1.
Excitation-contraction coupling events leading to the onset of contraction were studied in single skeletal frog muscle fibers. This entailed the simultaneous measurement of the changes in intracellular calcium concentration using antipyrylazo III and fura-2, isometric force, and clamp voltage in a modified single vaseline gap chamber for the first time. The calcium transients were incorporated into an analysis of calcium binding to regulatory sites of troponin C (TnC) that permitted both a linear and a cooperative interaction. The analysis assumed that the onset of mechanical activation corresponds with a particular TnC saturation with calcium setting constraints for the calcium binding parameters of the regulatory sites. Using a simple model that successfully reproduced both the time course and the relative amplitudes of the measured isometric force transients over a wide membrane potential range, k(off) of TnC was calculated to be 78 s(-1) for the cooperative model at 10 degrees C. Together with the above constraints this gave a dissociation constant of 8.8 +/- 2.5 microM and a relative TnC saturation at the threshold (Sth) that would cause just detectable movement of 0.17 +/- 0.03 (n = 13; mean +/- SE). The predictions were found to be independent of the history of calcium binding to the regulatory sites. The observed delay between reaching Sth and the onset of fiber movement (8.7 +/- 1.0 ms; mean +/- SE, n = 37; from seven fibers) was independent of the membrane potential giving an upper estimate for the delay in myofilament activation. We thus emerge with quantitative values for the calcium binding to the regulatory sites on TnC under maintained structural conditions close to those in vivo. 相似文献
2.
Supercharging accelerates T-tubule membrane potential changes in voltage clamped frog skeletal muscle fibers. 总被引:5,自引:0,他引:5 下载免费PDF全文
In voltage-clamp studies of single frog skeletal muscle fibers stained with the potentiometric indicator 1-(3-sulfonatopropyl)-4-[beta[2-(di-n-octylamino)-6-naphthyl] vinyl]pyridinium betaine (di-8 ANEPPS), fluorescence transients were recorded in response to both supercharging and step command pulses. Several illumination paradigms were utilized to study global and localized regions of the transverse tubule system (T-system). The rising phases of transients obtained from global illumination regions showed distinct accelerations when supercharging pulses were applied (95% of steady-state fluorescence achieved in 1.5 ms with supercharging pulses versus 14.6 ms with step pulses). When local transients were recorded at the edge of the muscle fiber, their kinetics resembled those of the applied waveform, but a similar relationship was not observed in transients from regions near the edge chosen to minimize the surface membrane contribution. We developed a model of the T-system capable of simulating membrane potential changes as a function of time and distance along the T-system cable and the associated fluorescence changes in regions corresponding to the experimental illumination strategies. A critical parameter was the access resistance term, for which values of 110-150 Omega.cm2 were adequate to fit the data. The results suggest that the primary mechanism through which supercharging pulses boost the kinetics of T-system voltage changes most likely involves their compensating the voltage attenuation across the access resistance at the mouth of the T-tubule. 相似文献
3.
The transient increase in free myoplasmic calcium concentration due to depolarization of a skeletal muscle fiber is the net result of the release of calcium from the sarcoplasmic reticulum (SR) and its simultaneous removal by binding to various sites and by reuptake into the SR. We present a procedure for empirically characterizing the calcium removal processes in voltage-clamped fibers and for using such characterization to determine the time course of SR calcium release during a depolarizing pulse. Our results reveal a decline of the SR calcium release rate during depolarization that was not anticipated from simple inspection of the calcium transients. 相似文献
4.
Voltage-gated and calcium-gated calcium release during depolarization of skeletal muscle fibers. 下载免费PDF全文
The role of elevated intracellular calcium concentration ([Ca2+]) in activating calcium release from the sarcoplasmic reticulum (SR) was studied in skeletal muscle fibers microinjected with strong calcium buffers. After the injection of 3.8 +/- 0.5 mM (mean +/- S.E. of mean, n = 16) BAPTA (1,2-bis[o-aminophenoxy]ethane- N,N,N',N'-tetraacetic acid) or 2.2-2.8 mM fura-2 the normal increase in [Ca2+] during a depolarizing pulse was virtually eliminated. Even though calcium was released from the SR the kinetics of this release were markedly altered: the extensive buffering selectively eliminated the early peak component of SR calcium release with no effect on the maintained steady level. Microinjections of similar volumes but with low concentrations of fura-2 had no significant effect on the release waveform. The calcium released by voltage-dependent activation during depolarization may thus be involved in activating further calcium release, that is, in a calcium-induced calcium release mechanism. 相似文献
5.
Inositol trisphosphate stimulates calcium release from peeled skeletal muscle fibers 总被引:4,自引:0,他引:4
S K Donaldson N D Goldberg T F Walseth D A Huetteman 《Biochimica et biophysica acta》1987,927(1):92-99
The effects of inositol phosphates (tris (InsP3), bis (InsP2), mono (InsP)) on rabbit adductor magnus and soleus muscles were determined using mechanically peeled fibers (sarcolemma removed). Isometric force generation of each fiber was continuously monitored and was used along with 45Ca to detect calcium release from internal fiber stores. All experiments were conducted at a physiological Mg2+ concentration (10(-3) M) of the bathing solutions. The inositol phosphates did not directly activate the contractile apparatus. At bath concentrations of 100-300 microM, only InsP3 was capable of stimulating Ca2+ release. In contrast, 1 microM InsP3 maximally and selectively stimulated Ca2+ release when microinjected into the myofilament lattice. Calcium releasing effects of InsP2 and InsP were manifested at 10 microM when they were microinjected. The end-to-end internal Ca2+ release and subsequent fiber force generation stimulated by the locally applied microinjected InsP3 suggests that the InsP3-induced Ca2+ release mechanism may involve propagation, but not via the Ca2+-induced Ca2+ release, since procaine did not inhibit this response. These findings support the possibility that InsP3 plays a role in skeletal muscle excitation-contraction coupling. 相似文献
6.
We demonstrate for the first time in this study that triadic vesicles derived from skeletal muscle display a voltage dependence of depolarization-induced calcium release similar to that found in intact muscle. We confirm previous studies by Dunn (1989) which demonstrated that changes in extravesicular potassium induced membrane potential changes in isolated transverse tubules with the voltage sensitive dye DiSC(3)-5. Depolarization-induced calcium release was studied in isolated triadic vesicles through similar changes in extravesicular [K] while clamping extravesicular Ca++ to submicromolar concentrations. The amplitude of fast phase of calcium release, identified as depolarizationinduced calcium release, varied with the percentage of transverse tubules in the preparation (determined through 3 H-PN200-110 specific activity) and different levels of depolarization. Threshold activation of calcium release was obtained with a 40.5 mV potential change; maximal calcium release was obtained with a 75 to 81 mV potential change. Boltzmann fits to the normalized depolarization induced calcium release plotted against the membrane potential change yielded a voltage dependence (k = 4.5 mV per e-fold change) very similar to that found in intact muscle (k = 3–4 mV per e-fold change; Baylor, Chandler & Marshall 1978, 1983; Miledi et al., 1981). Substitution of methanesulfonate for propionate as the impermeant ion or addition of valinomycin in the depolarizing solutions had little effect on the voltage dependence of calcium release.We thank Dr. Judith Heiny for her helpful discussions about voltagesensitive fluorescent dyes. This work was supported by the American Heart Association (Ohio Affiliate) grant MV-90 and the State of Ohio Research Challenge Grant. 相似文献
7.
Epifluorescence images of Ca2+ transients elicited by electrical stimulation of single skeletal muscle fibers were studied with fast imaging techniques that take advantage of the large fluorescence signals emitted at relatively long wavelengths by the dyes fluo-3 and rhod-2 in response to binding of Ca2+ ions, and of the suitable features of a commercially available CCD video camera. The localized release of Ca2+ in response to microinjection of InsP3 was also monitored to demonstrate the adequate space and time resolutions of the imaging system. The time resolution of the imager system, although limited to the standard video frequency response, still proved to be adequate to investigate the fast Ca2+ release process in skeletal muscle fibers at low temperatures. 相似文献
8.
Ca2+ dependence of transverse tubule-mediated calcium release in skinned skeletal muscle fibers 总被引:1,自引:4,他引:1 下载免费PDF全文
Isometric force and 45Ca efflux from the sarcoplasmic reticulum were measured at 19 degrees C in frog skeletal muscle fibers skinned by microdissection. After Ca2+ loading, application of the ionophores monensin, an Na+(K+)/H+ exchanger, or gramicidin D, an H+ greater than K+ greater than Na+ channel-former, evoked rapid force development and stimulated release of approximately 30% of the accumulated 45Ca within 1 min, whereas CCCP (carbonyl cyanide pyruvate p-trichloromethoxyphenylhydrazone), a protonophore, and valinomycin, a neutral, K+-specific ionophore, did not. When monensin was present in all bathing solutions, i.e., before and during Ca2+ loading, subsequent application failed to elicit force development and to stimulate 45Ca efflux. 5 min pretreatment of the skinned fibers with 50 microM digitoxin, a permeant glycoside that specifically inhibits the Na+,K+ pump, inhibited monensin and gramicidin D stimulation of 45Ca efflux; similar pretreatment with 100 microM ouabain, an impermeant glycoside, was ineffective. Monensin stimulation of 45Ca efflux was abolished by brief pretreatment with 5 mM EGTA, which chelates myofilament-space calcium. These results suggest that: monensin and gramicidin D stimulate Ca2+ release from the sarcoplasmic reticulum that is mediated by depolarization of the transverse tubules, which seal off after sarcolemma removal and form closed compartments; a transverse tubule membrane potential (myofilament space-negative) is maintained and/or established by the operation of the Na+,K+ pump in the transverse tubule membranes and is sensitive to the permeant inhibitor digitoxin; the transverse tubule-mediated stimulation of 45Ca efflux appears to be entirely Ca2+ dependent. 相似文献
9.
Sustained release of calcium elicited by membrane depolarization in ryanodine-injected mouse skeletal muscle fibers 下载免费PDF全文
The effect of micromolar intracellular levels of ryanodine was tested on the myoplasmic free calcium concentration ([Ca(2+)](i)) measured from a portion of isolated mouse skeletal muscle fibers voltage-clamped at -80 mV. When ryanodine-injected fibers were transiently depolarized to 0 mV, the early decay phase of [Ca(2+)](i) upon membrane repolarization was followed by a steady elevated [Ca(2+)](i) level. This effect could be qualitatively well simulated, assuming that ryanodine binds to release channels that open during depolarization and that ryanodine-bound channels do not close upon repolarization. The amplitude of the postpulse [Ca(2+)](i) elevation depended on the duration of the depolarization, being hardly detectable for pulses shorter than 100 ms, and very prominent for duration pulses of seconds. Within a series of consecutive pulses of the same duration, the effect of ryanodine produced a staircase increase in resting [Ca(2+)](i), the slope of which was approximately twice larger for depolarizations to 0 or +10 mV than to -30 or -20 mV. Overall results are consistent with the "open-locked" state because of ryanodine binding to calcium release channels that open during depolarization. Within the voltage-sensitive range of calcium release, increasing either the amplitude or the duration of the depolarization seems to enhance the fraction of release channels accessible to ryanodine. 相似文献
10.
The role of intracellular free magnesium concentration ([Mg2+]) in modulating calcium release from the sarcoplasmic reticulum (SR) was studied in voltage-clamped frog cut skeletal muscle fibers equilibrated with cut end solutions containing two calcium indicators, fura-2 and antipyrylazo III (AP III), and various concentrations of free Mg2+ (25 microM-1 mM) obtained by adding appropriate total amounts of ATP and magnesium to the solutions. Changes in AP III absorbance were used to monitor calcium transients, whereas fura-2 fluorescence was used to monitor resting calcium. The rate of release (Rrel) of calcium from the SR was calculated from the calcium transient and found to be increased in low internal [Mg2+]. After correcting for effects of calcium depletion from the SR and normalization to SR content, the mean values of the inactivatable and noninactivatable components of Rrel were increased by 163 and 46%, respectively, in low Mg2+. Independent of normalization to SR content, the ratio of inactivatable to noninactivatable components of Rrel was increased in low internal [Mg2+]. Both observations suggest that internal [Mg2+] preferentially modulates the inactivatable component of Rrel, which is thought to be due to calcium-induced calcium release from the SR. This could also explain the observation that, in low internal [Mg2+], the time to the peak of the calcium transient for a 5-ms depolarizing pulse was not very different from the time to the peak of the delta [Ca2+] for a 10-ms pulse of the same amplitude. Finally, in low internal [Mg2+], the calcium transient elicited by a short depolarizing pulse was in some cases clearly followed by a very slow rise of calcium after the end of the pulse. The observed effects of reduced [Mg2+] on calcium release are consistent with a removal of the inhibition that the normal 1 mM myoplasmic [Mg2+] exerts on calcium release in skeletal muscle fibers. 相似文献
11.
Voltage-dependent calcium release in human malignant hyperthermia muscle fibers. 总被引:1,自引:0,他引:1 下载免费PDF全文
Malignant hyperthermia (MH) results from a defect of calcium release control in skeletal muscle that is often caused by point mutations in the ryanodine receptor gene (RYR1). In malignant hyperthermia-susceptible (MHS) muscle, calcium release responds more sensitively to drugs such as halothane and caffeine. In addition, experiments on the porcine homolog of malignant hyperthermia (mutation Arg615Cys in RYR1) indicated a higher sensitivity to membrane depolarization. Here, we investigated depolarization-dependent calcium release under voltage clamp conditions in human MHS muscle. Segments of muscle fibers dissected from biopsies of the vastus lateralis muscle of MHN (malignant hyperthermia negative) and MHS subjects were voltage-clamped in a double vaseline gap system. Free calcium was determined with the fluorescent indicator fura-2 and converted to an estimate of the rate of SR calcium release. Both MHN and MHS fibers showed an initial peak of the release rate, a subsequent decline, and rapid turn-off after repolarization. Neither the kinetics nor the voltage dependence of calcium release showed significant deviations from controls, but the average maximal peak rate of release was about threefold larger in MHS fibers. 相似文献
12.
Calcium dependence of inactivation of calcium release from the sarcoplasmic reticulum in skeletal muscle fibers 总被引:9,自引:7,他引:9 下载免费PDF全文
The steady-state calcium dependence of inactivation of calcium release from the sarcoplasmic reticulum was studied in voltage-clamped, cut segments of frog skeletal muscle fibers containing two calcium indicators, fura-2 and anti-pyrylazo III (AP III). Fura-2 fluorescence was used to monitor resting calcium and relatively small calcium transients during small depolarizations. AP III absorbance signals were used to monitor larger calcium transients during larger depolarizations. The rate of release (Rrel) of calcium from the sarcoplasmic reticulum was calculated from the calcium transients. The equilibrium calcium dependence of inactivation of calcium release was determined using 200-ms prepulses of various amplitudes to elevate [Ca2+] to various steady levels. Each prepulse was followed by a constant test pulse. The suppression of peak Rrel during the test pulse provided a measure of the extent of inactivation of release at the end of the prepulse. The [Ca2+] dependence of inactivation indicated that binding of more than one calcium ion was required to inactivate each release channel. Half-maximal inactivation was produced at a [Ca2+] of approximately 0.3 microM. Variation of the prepulse duration and amplitude showed that the suppression of peak release was consistent with calcium-dependent inactivation of calcium release but not with calcium depletion. The same calcium dependence of inactivation was obtained using different amplitude test pulses to determine the degree of inactivation. Prepulses that produced near maximal inactivation of release during the following test pulse produced no suppression of intramembrane charge movement during the test pulse, indicating that inactivation occurred at a step beyond the voltage sensor for calcium release. Three alternative set of properties that were assumed for the rapidly equilibrating calcium-binding sites intrinsic to the fibers gave somewhat different Rrel records, but gave very similar calcium dependence of inactivation. Thus, equilibrium inactivation of calcium release appears to be produced by rather modest increases in [Ca2+] above the resting level and in a steeply calcium-dependent manner. However, the inactivation develops relatively slowly even during marked elevation of [Ca2+], indicating that a calcium-independent transition appears to occur after the initial calcium-binding step. 相似文献
13.
Ionic calcium concentrations were measured in frog skeletal muscle fibers using Ca-selective microelectrodes. In fibers with resting membrane potentials more negative than -85 mV, the mean pCa value was 6.94 (0.12 microM). In fibers depolarized to -73 mV with 10-mM K the mean pCa was 6.43 (0.37 microM). This increase in the intracellular [Ca2+] could be related to the higher oxygen consumption and heat production (Solandt effect) reported to occur under these conditions. Caffeine, 3 mM, also produced an increase in the free ionic calcium to a pCa of 6.52 (0.31 microM) without changes in the membrane potential. Lower caffeine concentrations, 1 and 2 mM, did not change the fiber pCa. Lower Ca concentrations in the external medium effectively reduced the internal ionic calcium to an estimated pCa of 7.43 (0.03 microM). 相似文献
14.
Microinjection of strong calcium buffers suppresses the peak of calcium release during depolarization in frog skeletal muscle fibers 总被引:4,自引:2,他引:4
《The Journal of general physiology》1993,101(2):297-333
The effects of high intracellular concentrations of various calcium buffers on the myoplasmic calcium transient and on the rate of release of calcium (Rrel) from the sarcoplasmic reticulum (SR) were studied in voltage-clamped frog skeletal muscle fibers. The changes in intracellular calcium concentration (delta[Ca2+]) for 200-ms pulses to 0-20 mV were recorded before and after the injection of the calcium buffer and the underlying Rrel was calculated. If the buffer concentration after the injection was high, the initial rate of rise of the calcium transient was slower after injection than before and was followed by a slow increase of [Ca2+] that resembled a ramp. The increase in myoplasmic [Mg2+] that accompanies the calcium transient in control was suppressed after the injection and a slight decrease was observed instead. After the injection the buffer concentration in the voltage-clamped segment of the fiber decreased as the buffer diffused away toward the open ends. The calculated apparent diffusion coefficient for fura-2 (Dapp = 0.40 +/- 0.03 x 10(-6) cm2/s, mean +/- SEM, n = 6) suggests that approximately 65-70% of the indicator was bound to relatively immobile intracellular constituents. As the concentration of the injected buffer decreased, the above effects were reversed. The changes in delta[Ca2+] were underlined by characteristic modification of Rrel. The early peak component was suppressed or completely eliminated; thus, Rrel rose monotonically to a maintained steady level if corrected for depletion. If Rrel was expressed as percentage of SR calcium content, the steady level after injection did not differ significantly from that before. Control injections of anisidine, to the concentration that eliminated the peak of Rrel when high affinity buffers were used, had only a minor effect on Rrel, the peak was suppressed by 26 +/- 5% (mean +/- SE, n = 6), and the steady level remained unchanged. Thus, the peak component of Rrel is dependent on a rise in myoplasmic [Ca2+], consistent with calcium-induced calcium release, whereas the steady component of Rrel is independent of myoplasmic [Ca2+]. 相似文献
15.
M A Wingertzahn R S Ochs 《Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.)》1999,221(3):234-241
We have observed a disparity between the actions of caffeine and ryanodine, two agents known to affect the same site of intracellular calcium (Ca2+) release in muscle. The site of intracellular Ca2+ release, the ryanodine receptor (RyR), is established as the route of Ca2+ movement from the sarcoplasmic reticulum (SR) to the cytosol during excitation-contraction coupling. We measured Ca2+ release fluorimetrically in both saponin-permeabilized and intact L6 cells, in response to known modulators (i.e., caffeine and ryanodine), during differentiation in vitro. The undifferentiated L6 cells showed little response to caffeine. However, a substantial caffeine-induced calcium release (caffCR) was evident by Day 3 of differentiation, and was nearly maximal by Day 7 of differentiation. By contrast, ryanodine failed to stimulate Ca2+ release until Day 4, lagging behind the caffeine response. Ryanodine-stimulated Ca2+ release was also maximal by Day 7. Higher concentrations of ryanodine, known to inhibit Ca2+ release, only began to affect caffCR at Day 4, indicating that cells were insensitive to both ryanodine stimulation and ryanodine inhibition prior to this time. Most of the results could be obtained both in permeabilized and intact cells. Using intact cells, we measured the time course of K+ -dependent (i.e., depolarization-induced) Ca2+ release. This time course matched caffeine and not ryanodine-induced Ca2+ release suggesting the action of caffeine was not due to Ca2+ release unrelated to excitation-contraction coupling. These findings suggest that ryanodine binding sites on the RyR may not be functional at early stages of muscle development, that ryanodine sensitivity is a poor indicator of Ca2+ flux through the RyR, or that other proteins are involved in Ca2+ release under certain circumstances. 相似文献
16.
Wetzel P Kleinke T Papadopoulos S Gros G 《American journal of physiology. Cell physiology》2002,283(4):C1242-C1253
A countertransport ofH+ is coupled to Ca2+ transport across thesarcoplasmic reticulum (SR) membrane. We propose that SR carbonic anhydrase (CA) accelerates the CO2-HCO reaction so that H+ ions, which are exchanged forCa2+ ions, are produced or buffered in the SR at sufficientrates. Inhibition of this SR-CA is expected to reduce the rate ofH+ fluxes, which then will retard the kinetics ofCa2+ transport. Fura 2 signals and isometric force weresimultaneously recorded in fiber bundles of the soleus (SOL) andextensor digitorum longus (EDL) from rats in the absence and presenceof the lipophilic CA inhibitors L-645151, chlorzolamide (CLZ), andethoxzolamide (ETZ), as well as the hydrophilic inhibitor acetazolamide(ACTZ). Fura 2 and force signals were analyzed for time to peak (TTP), 50% decay time (t50), and their amplitudes.L-645151, CLZ, and ETZ significantly increased TTP of fura 2 by10-25 ms in SOL and by 5-7 ms in EDL and TTP of force by6-30 ms in both muscles. L-645151 and ETZ significantly prolongedt50 of fura 2 and force by 20-55 and40-160 ms, respectively, in SOL and EDL. L-645151, CLZ, and ETZalso increased peak force of single twitches and amplitudes of furafluorescence ratio (R340/380) at an excitation wavelengthof 340 to 380 nm. All effects of CA inhibitors on fura 2 and forcesignals could be reversed. ACTZ did not affect TTP, t50, and amplitudes of fura 2 signals or force.L-645151, CLZ, and ETZ had no effects on myosin-, Ca2+-,and Na+-K+-ATPase activities, nor did theyaffect the amplitude and half-width of action potentials. We concludethat inhibition of SR-CA by impairing H+ countertransportis responsible for deceleration of intracellular Ca2+transients and contraction times. 相似文献
17.
A general procedure for determining the rate of calcium release from the sarcoplasmic reticulum in skeletal muscle fibers. 总被引:19,自引:3,他引:19 下载免费PDF全文
A general procedure for using myoplasmic calcium transients measured with a metallochromic indicator dye to calculate the time course of calcium release from the sarcoplasmic reticulum in voltage-clamped skeletal muscle fibers is described and analyzed. Explicit properties are first assigned to all relatively rapidly equilibrating calcium binding sites in the myoplasm so that the calcium content (CaF) in this pool of "fast" calcium can be calculated from the calcium transient. The overall properties of the transport systems and relatively slowly equilibrating binding sites that remove calcium from CaF are then characterized experimentally from the decay of CaF following fiber repolarization. The rate of calcium release can then be calculated as dCaF/dt plus the rate of removal of calcium from CaF. Two alternatives are assumed for the component of CaF that is due to fast binding sites intrinsic to the fiber: a linear instantaneous buffer or a set of binding sites having properties similar to thin filament troponin. Both assumptions yielded similar calcium release wave forms. Three alternative methods for characterizing the removal system are presented. The choice among these or other methods for characterizing removal can be based entirely on convenience since any method that reproduces the decay of CaF following fiber repolarization will give the same release wave form. The calculated release wave form will be accurate provided that the properties assumed for CaF are correct, that release turns off within a relatively short time after fiber repolarization, that the properties of the slow removal system are the same during and after fiber depolarization, and that possible spatial nonuniformities of free or bound calcium do not introduce major errors. 相似文献
18.
The binding of 45Ca2+ to glycerinated rabbit psoas fibers was measured by means of a double isotope technique. With 5 mM Mg2+ (no ATP) binding was half-maximal at 1.4 · 10?6M Ca2+ and the maximal amount bound was 1.6 μmol/g protein. At < 50% saturation, the Scatchard plot had a positive slope and the Hill coefficient was 2.2. At greater than 50% saturation, the Scatchard plot was linear with a negative slope (K′ = 0.8 · 106 M?1) and the Hill coefficient was 1.0. In the absence of Mg2+, binding was half-maximal at 3 · 10?7 M Ca2+ and the maximal amount bound was 2.9 μmol/g protein. The Scatchard plot indicated two classes of sites with K′ values of about 2 · 107 and 2 · 106 M?1. The Hill coefficient in the mid-saturation range was approx. 0.6. The data indicate that in the presence of Mg2+ binding to about half of the total Ca2+ binding sites is suppressed and there is a strong positive cooperativity involving half of the remaining sites. 相似文献
19.
Catalase has been localized immunocytochemically with anti-bovine catalase in long thin filament structures in aerobic type I fibers in the skeletal muscles of normal and genetically dystrophic hamsters. The filaments range in length from 1 to 60 micron, are orientated regularly along the long axis of the fibers, and also seem to surround and project from muscle nuclei. The enzyme thus appears to be more prominent in the sarcoplasmic reticulum than in peroxisomes, and in this situation is suitably placed for destroying toxic hydrogen peroxide which may be continously generated in aerobic fibers. 相似文献
20.
A Vaseline gap potentiometric recording and voltage clamp method is developed for frog skeletal muscle fibers. The method is based on the Frankenhaeuser-Dodge voltage clamp for myelinated nerve with modifications to improve the frequency response, to compensate for external series resistance, and to compensate for the complex impedance of the current-passing pathway. Fragments of single muscle fibers are plucked from the semitendinosus muscle and mounted while depolarized by a solution like CsF. After Vaseline seals are formed between fluid pools, the fiber ends are cut once again, the central region is rinsed with Ringer solution, and the feedback amplifiers are turned on. Errors in the potential and current records are assessed by direct measurements with microelectrodes. The passive properties of the preparation are simulated by the "disk" equivalent circuit for the transverse tubular system and the derived parameters are similar to previous measurements with microelectrodes. Action potentials at 5 degrees C are long because of the absence of delayed rectification. Their shape is approximately simulated by solving the disk model with sodium permeability in the surface and tubular membranes. Voltage clamp currents consist primarily of capacity currents and sodium currents. The peak inward sodium current density at 5 degrees C is 3.7 mA/cm2. At 5 degrees C the sodium currents are smoothly graded with increasing depolarization and free of notches suggesting good control of the surface membrane. At higher temperatures a small, late extra inward current appears for small depolarizations that has the properties expected for excitation in the transverse tubular system. Comparison of recorded currents with simulations shows that while the transverse tubular system has regenerative sodium currents, they are too small to make important errors in the total current recorded at the surface under voltage clamp at low temperature. The tubules are definitely not under voltage clamp control. 相似文献