首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Migratory birds, such as the European quail, present an annual cycle with the following phases: moult, fattening, migration and reproduction. This study aimed at determining how variations in the circadian rhythm of feeding during the annual cycle took endogenous rhythmic characteristics into account. The birds (n = 8) were maintained under constant dim light from the age of 1 to 9 months. Feeding activity was recorded using infra-red detectors. The birds expressed all the phases, except migration. Activity was arrhythmic when they were moulting. A circadian rhythm of feeding activity appeared during the fattening phase. In males, the circadian period lengthened and the clarity of the rhythm increased during sexual development. These results appear to confirm the effects of physiological state on the temporal organisation of activity. Variations of the circadian rhythm could influence the ability to synchronize with exogenous cycles such as the alternation of day and night.  相似文献   

2.
The aim of these experiments was to test the effect of a cyclic administration of melatonin, by mimicking the daily rhythm of hormone levels, on the circadian organization of two distinct functions in quail: oviposition and feeding activity. Laying and feeding rhythms under photoperiodic conditions and constant darkness (DD) were investigated. Under DD, where the two rhythms were free running, a daily rhythm of melatonin was administered. In LD 14h:10h, two different individual profiles of laying were established, with stable females laying at the same time each day and delayed females laying progressively later each day. For feeding activity, all birds were clearly synchronized to the photoperiodic cycle. In DD, the laying birds showed a free-running rhythm of oviposition with a period longer than 24 h for both profiles but the delayed profile females had a longer period than stable profile females. In comparison, the free-running period of feeding rhythm of the same birds was shorter than 24 h. A cyclic administration of melatonin had no effect on laying rhythm, which continued to free-run in DD, whereas feeding activity was synchronized as soon as the first cycle of melatonin was administered. From these results, it seems that two different circadian systems drive each of the two types of behavior separately. Melatonin could be the main synchronizer for the temporal control of feeding behavior, but it does not play a part in the control of oviposition in Japanese quail.  相似文献   

3.
Our aim was to study the age-related changes of the rhythm of feeding activity in sexually inactive Japanese quail, Coturnix japonica . For that, we recorded the feeding activity of 16 birds maintained in constant darkness during a fortnight, when they were 1 month old, and when they were 19 ± 3 months old. We used birds from selected lines in order to test individuals of rhythmic and arrhythmic phenotypes. Three parameters were studied: the period, the clarity of the rhythm and the level of activity. All the birds kept the same circadian phenotype during the both recordings. For the rhythmic birds, the circadian period of feeding activity weakly lengthened, but this increase was not statistically significant. For all the birds, the clarity of the circadian rhythm and the level of activity per cycle decreased significantly with ageing. We found a positive relation between the ratios of the correlation coefficients of circadian activity, expressing the clarity of the rhythm, when the birds were young and older. So, it seems that a basic decrease of clarity as well as of level of activity, though these two parameters are not directly linked, take place with ageing. The results are discussed in terms of causal and functional aspects of circadian rhythm of feeding activity.  相似文献   

4.
The effects of constant light on the expression of the circadian rhythm of feeding activity in Japanese quail, and in particular on the clarity of the rhythm were investigated. We used 46 4-week-old birds (35 females and 11 males) issued from two lines selected for a more (line R: 25 females and 10 males) or less (line A: 10 females and 1 male) clear circadian rhythm of feeding activity. The birds, were placed successively under three light schedules: constant darkness (DD), constant dim green light (LLdim) and constant bright light (LLbright). Schedules were changed every 2 weeks. Feeding activity was recorded continuously, analysed by autocorrelation and spectral analysis, and the ratio of the correlation coefficients and the area of the spectrum peak were used as indexes to quantify the clarity of the circadian rhythm. During the experiment, some birds showed gonadal development. Therefore, we analysed separately birds showing either a high or low degree of sexual development at the end of the experiment. In DD, 35 birds showed a circadian feeding rhythm with a mean period of 22.5 ± 0.1 h, whereas 11 birds showed an arrhythmic activity. In LLdim, 27 birds were rhythmic (22 birds R and 5 birds A), and in LLbright, only 3 birds showed a rhythmic circadian activity. For the R-line birds (for females and males), the rhythm clarity decreased in LLdim compared to DD, except for the not developed females. For the A-line birds (for females), the rhythm clarity of the immature birds increased in LLdim and that of the developed birds remained stable. In LLbright, circadian activity became arrhythmic. In LLdim, the active phases of 12 birds showed two main peaks, with mean periods of 22.7 h and 25.1 h, respectively. Therefore, constant light appeared to have an inhibitory effect on the expression of the circadian rhythm. We postulate that two hierarchically coupled oscillators could control circadian feeding activity, and arrhythmia in LLbright could be the results of internal desynchronization of the pacemakers.  相似文献   

5.
Endocrine biorhythms are classified according to the period time, as one of the most characteristic properties of biorhythms. Each endocrine organ has parallel more than one biorhythms with different period time (e. g. circadian and circannual rhythms). The time of acrophase of the biorhythms at the different endocrine organs is fairly variant. This review summarizes the rhythmic function of the THS-thyroid, gonadotrophic-gonadal and ACTH-adrenocortical systems. Pineal gland plays an integrative role in the regulation of rhythmic function of the endocrine system. The melatonin secretion of this gland also reveals conspicuous circadian and circannual rhythms both in mammals and in birds. Mammalian pineal is functional only if its peripheral sympathetic innervation from the superior cervical ganglion is intact. In contrast, melatonin secretion and its circadian rhythm is also maintained in birds under isolated conditions (explanted into an in vitro superfusion system). The 24 hours period time of melatonin circadian rhythm can not be changed by light impulses. The phases of the circadian rhythm, however, can be turned by changing the time of environmental light-dark phases. The wavelength of the artificial light used for reversal of circadian rhythm is an important factor. The development of the entrainment and synchronization of the circadian melatonin rhythm in birds is independent of the rhythmic day-night changes in environmental lighting condition. The differences in the main elements of the biological clock between mammals and birds are discussed.  相似文献   

6.
The effects of constant light on the expression of the circadian rhythm of feeding activity in Japanese quail, and in particular on the clarity of the rhythm were investigated. We used 46 4-week-old birds (35 females and 11 males) issued from two lines selected for a more (line R: 25 females and 10 males) or less (line A: 10 females and 1 male) clear circadian rhythm of feeding activity. The birds, were placed successively under three light schedules: constant darkness (DD), constant dim green light (LLdim) and constant bright light (LLbright). Schedules were changed every 2 weeks. Feeding activity was recorded continuously, analysed by autocorrelation and spectral analysis, and the ratio of the correlation coefficients and the area of the spectrum peak were used as indexes to quantify the clarity of the circadian rhythm. During the experiment, some birds showed gonadal development. Therefore, we analysed separately birds showing either a high or low degree of sexual development at the end of the experiment. In DD, 35 birds showed a circadian feeding rhythm with a mean period of 22.5 ± 0.1 h, whereas 11 birds showed an arrhythmic activity. In LLdim, 27 birds were rhythmic (22 birds R and 5 birds A), and in LLbright, only 3 birds showed a rhythmic circadian activity. For the R-line birds (for females and males), the rhythm clarity decreased in LLdim compared to DD, except for the not developed females. For the A-line birds (for females), the rhythm clarity of the immature birds increased in LLdim and that of the developed birds remained stable. In LLbright, circadian activity became arrhythmic. In LLdim, the active phases of 12 birds showed two main peaks, with mean periods of 22.7 h and 25.1 h, respectively. Therefore, constant light appeared to have an inhibitory effect on the expression of the circadian rhythm. We postulate that two hierarchically coupled oscillators could control circadian feeding activity, and arrhythmia in LLbright could be the results of internal desynchronization of the pacemakers.  相似文献   

7.
Continuous melatonin administration via silastic implants accelerates the resynchronization of the circadian locomotor activity rhythm in house sparrows (Passer domesticus) after exposure to phase shifts of a weak light-dark cycle. Constant melatonin might induce this effect either by increasing the sensitivity of the visual system to a light zeitgeber or by reducing the degree of self-sustainment of the circadian pacemaker. To distinguish between these two possible mechanisms, two groups of house sparrows, one carrying melatonin implants and the other empty implants, were kept in constant dim light and subjected to advance and delay shifts of a 12-h feeding phase. The resynchronization times of their circadian feeding rhythm following the phase shifts were significantly shorter when the birds carried melatonin implants than when they carried empty implants. In a second experiment, melatonin-implanted and control birds were released into food ad libitum conditions 2 days after either a delay or an advance phase shift. The number of hours by which the activity rhythms had been shifted on the second day in food ad libitum conditions was assessed. Melatonin-implanted house sparrows had significantly larger phase shifts in their circadian feeding rhythm than control birds. This is in accordance with the first experiment since a larger phase shift at a given time reflects accelerated resynchronization. Additionally, the second experiment also excludes any possible masking effects of the nonphotic zeitgeber. In conclusion, constant melatonin accelerates resynchronization even after phase shifts of a nonphotic zeitgeber, indicating that constant high levels of melatonin can reduce the degree of self-sustainment of the circadian pacemaker independent of any effects on the photoreceptive system.  相似文献   

8.
Development involves interactions between genetic and environmental influences. Vertebrate mothers are generally the first individuals to encounter and interact with young animals. Thus, their role is primordial during ontogeny. The present study evaluated non‐genomic effects of mothers on the development of rhythms of precocial Japanese quail (Coturnix c. japonica). First, we investigated the influence of mothering on the ontogeny of endogenous rhythms of young. We compared circadian and ultradian rhythms of feeding activity of quail reared with or without adoptive mothers. More brooded than non‐brooded quail presented a circadian and/or an ultradian rhythm. Thus, the presence of the mother during the normal brooding period favors, in the long term, expression of rhythms in the young. Second, we investigated the influence of rhythmic phenotype of the mother on the development of endogenous rhythms of young by comparing quail brooded by circadian‐rhythmic adoptive mothers (R) to quail brooded by circadian‐arrhythmic adoptive mothers (A). More R‐brooded than A‐brooded quail expressed circadian rhythmicity, and circadian rhythm clarities were greater in R‐brooded than A‐brooded quail. Ultradian rhythmicity did not differ between R‐ and A‐brooded quail, nor between R and A adoptive mothers. Thus, the rhythmic phenotypes of quail mothers influence the rhythmic phenotypes of their young. Our results demonstrate that mothers of precocial birds influence epigenetically the ontogeny of endogenous rhythms of the young they raise.  相似文献   

9.
Hydroxyindole-O-methyltrasferase (HIOMT) plays an important role as the final enzyme in the synthesis of melatonin. In this study, the expression of the HIOMT gene in Japanese quail was investigated with respect to tissue distribution and the effects of light and vitamin A deficiency. HIOMT mRNA in the pineal gland and eye had a clear daily rhythm with peak values in daytime. The testis also contained a detectable amount of HIOMT mRNA, which did not display a rhythmic change over a 24-h period. When birds were rendered vitamin A deficient through feeding with a vitamin A-free diet, the daily rhythm of the HIOMT gene almost disappeared in both the pineal gland and eye due to increases in the nighttime values. Our previous observations and these results suggest that vitamin A and a photo-signal are required to maintain the rhythmic expression of the HIOMT gene as well as the arylalkylamine N-acetyltransferase gene.  相似文献   

10.
The function of ultradian rhythms is not yet clearly elucidated. In particular, short-term rhythms are expressed during early ontogeny, especially in broods of precocial birds. We investigated the relationship between the clarity of the ultradian rhythm of the activity/rest cycle of a group of young Japanese quail (Coturnix japonica) and the level of social synchronisation and spatial cohesion between the birds within that group. The subjects were descended from two lines selected for either very pronounced rhythmic or arrhythmic circadian activity. We found a positive relationship between the clarity of the ultradian rhythm of the activity/rest cycle when birds were young and the clarity of the circadian rhythm of feeding activity when birds were older, but still immature. The temporal organisation of the behaviour of the chicks from these two lines was observed in outdoor aviaries, when they were 4, 8, 12 and 15 days old. The mean ultradian period expressed by groups of 12 chicks was variable, with a minimum of 6 minutes. The ultradian period lengthened regularly as chicks grew older, and reached approximately 40 min on day 15. The clarity of the ultradian rhythmicity of group activity was linked to the level of inter-individual social synchronisation and of spatial cohesion; the more pronounced the ultradian rhythms of a group, the greater the temporal and spatial cohesion of the chicks within the group. Moreover, these characteristics varied with the age of the chicks. Finally, chicks in the less rhythmic groups weighed less. These results stress the adaptive value of this temporal organisation strategy under natural conditions.  相似文献   

11.
The function of ultradian rhythms is not yet clearly elucidated. In particular, short-term rhythms are expressed during early ontogeny, especially in broods of precocial birds. We investigated the relationship between the clarity of the ultradian rhythm of the activity/rest cycle of a group of young Japanese quail (Coturnix japonica) and the level of social synchronisation and spatial cohesion between the birds within that group. The subjects were descended from two lines selected for either very pronounced rhythmic or arrhythmic circadian activity. We found a positive relationship between the clarity of the ultradian rhythm of the activity/rest cycle when birds were young and the clarity of the circadian rhythm of feeding activity when birds were older, but still immature. The temporal organisation of the behaviour of the chicks from these two lines was observed in outdoor aviaries, when they were 4, 8, 12 and 15 days old. The mean ultradian period expressed by groups of 12 chicks was variable, with a minimum of 6 minutes. The ultradian period lengthened regularly as chicks grew older, and reached approximately 40 min on day 15. The clarity of the ultradian rhythmicity of group activity was linked to the level of inter-individual social synchronisation and of spatial cohesion; the more pronounced the ultradian rhythms of a group, the greater the temporal and spatial cohesion of the chicks within the group. Moreover, these characteristics varied with the age of the chicks. Finally, chicks in the less rhythmic groups weighed less. These results stress the adaptive value of this temporal organisation strategy under natural conditions.  相似文献   

12.
Blinding by enucleation has a dramatic effect on the circadian activity rhythm of Japanese quail. The activity patterns of enucleated birds held under 24-hr light-dark cycles are disrupted, although entrainment can persist in many birds. In constant darkness (DD), blinded birds are rendered arrhythmic. These results demonstrate that the eyes are a major component of the circadian system, and that insofar as enucleation produces arrhythmicity in DD, the eyes' role is not merely a photosensory one. The eyes of quail can synthesize and secrete the hormone melatonin, which has been implicated as a blood-borne messenger relaying timing information between elements of the circadian system in some avian species. However, the way in which the eyes communicate with the rest of the circadian system in quail appears to be neural, since (1) optic nerve section produces the same effects as blinding by enucleation on the circadian activity rhythm, and (2) eyes subjected to optic nerve section retain their ability to synthesize and secrete melatonin.  相似文献   

13.
This study investigated whether changes in illumination modify perception of day and night conditions in a diurnal species, the Indian weaver bird. Birds were initially subjected to a 12-h light:12-h dark regime (12L:12D; L=20 lux, D =0.5 lux). After every 2 wks, the combinations of light illumination in L and D phases were changed as follows: 20:2 lux, 20:5 lux, 20:10 lux, 20:20 lux, 20:100 lux, and 20:200 lux. Finally, birds were released into dim constant light (0.5 lux) for 2 wks to determine the phase and period of the circadian activity rhythm. They were also laparotomized at periodic intervals to examine the effects of the light regimes on the seasonal testicular cycle. All individuals showed a consistently similar response. As evident by the activity pattern under these light regimes, both in total activity during contrasting light phases and during the 2?h in the beginning and end of first light phase, birds interpreted the period of higher light intensity as day, and the period of lower intensity as the night. During the period of similar light intensity, i.e., under LL, birds free-ran with a circadian period ( ~ 24 h). In bright LL (20 lux), the activity rhythm was less distinct, but periodogram analysis revealed the circadian period for the group as 24.46 (+/-) 0.41 h (mean???SE). However, in dim LL at the end of the experiment, all birds exhibited a circadian pattern with average period of 25.52 (+/-) 0.70 h. All birds also showed testicular growth and regression during the 16-wks study. It is suggested that weaver birds interpret day and night subjectively based on both the light intensity and contrast between illuminations during two phases over the 24 h.  相似文献   

14.
The pineal gland plays a key role in the control of the daily and seasonal rhythms in most vertebrate species. In mammals, rhythmic melatonin (MT) release from the pineal gland is controlled by the suprachiasmatic nucleus via the sympathetic nervous system. In most non‐mammalian species, including birds, the pineal gland contains a self‐sustained circadian oscillator and several input channels to synchronize the clock, including direct light sensitivity. Avian pineal glands maintain rhythmic activity for days under in vitro conditions. Several physical (light, temperature, and magnetic field) and biochemical (Vasoactive intestinal polypeptide (VIP), norepinephrine, PACAP, etc.) input channels, influencing release of melatonin are also functional in vitro, rendering the explanted avian pineal an excellent model to study the circadian biological clock. Using a perifusion system, we here report that the phase of the circadian melatonin rhythm of the explanted chicken pineal gland can be entrained easily to photoperiods whose length approximates 24 h, even if the light period is extremely short, i.e., 3L:21D. When the length of the photoperiod significantly differs from 24 h, the endogenous MT rhythm becomes distorted and does not follow the light‐dark cycle. When explanted chicken pineal fragments were exposed to various drugs targeting specific components of intracellular signal transduction cascades, only those affecting the cAMP‐protein kinase‐A system modified the MT release temporarily without phase‐shifting the rhythm in MT release. The potential role of cGMP remains to be investigated.  相似文献   

15.
N-Acetyltransferase (NAT) is an enzyme whose rhythmic activity in the pineal gland and retina is thought to be responsible for melatonin circadian rhythms. The enzyme has circadian properties--its rhythm persists in constant conditions, and it is precisely controlled by light and dark. Experiments are reported in which 4-h light or dark pulses were imposed on chicks (Gallus domesticus) over a 24-h period. Pineal NAT profiles were measured during and subsequent to the pulses. The phase of the NAT cycle following pulses was plotted to obtain phase-response curves. Light pulses produced a maximum phase shift (advance of 5 h) 8 h after the expected time of lights-out; dark pulses produced a maximum phase shift (advance of 4 h) 3 h after the expected time of lights-out. Maximum phase delays (-2 h) occurred 1-2 h after the expected lights-out for light pulses and 8 h after expected lights-on for dark pulses.  相似文献   

16.
The pineal gland plays a key role in the control of the daily and seasonal rhythms in most vertebrate species. In mammals, rhythmic melatonin (MT) release from the pineal gland is controlled by the suprachiasmatic nucleus via the sympathetic nervous system. In most non-mammalian species, including birds, the pineal gland contains a self-sustained circadian oscillator and several input channels to synchronize the clock, including direct light sensitivity. Avian pineal glands maintain rhythmic activity for days under in vitro conditions. Several physical (light, temperature, and magnetic field) and biochemical (Vasoactive intestinal polypeptide (VIP), norepinephrine, PACAP, etc.) input channels, influencing release of melatonin are also functional in vitro, rendering the explanted avian pineal an excellent model to study the circadian biological clock. Using a perifusion system, we here report that the phase of the circadian melatonin rhythm of the explanted chicken pineal gland can be entrained easily to photoperiods whose length approximates 24 h, even if the light period is extremely short, i.e., 3L:21D. When the length of the photoperiod significantly differs from 24 h, the endogenous MT rhythm becomes distorted and does not follow the light-dark cycle. When explanted chicken pineal fragments were exposed to various drugs targeting specific components of intracellular signal transduction cascades, only those affecting the cAMP-protein kinase-A system modified the MT release temporarily without phase-shifting the rhythm in MT release. The potential role of cGMP remains to be investigated.  相似文献   

17.
A group of nuclear submariners was studied to examine whether an 18-h routine (6-h on, 12-h off watch) during a 10-week submerged patrol affected the 24-h circadian rhythm in oral temperature, Thayer's activation, Mood 'Activity' (MA) and Mood 'Happiness' (MH). They were observed during three phases of the patrol: Phase 1, the beginning 8-day period; Phase 2, the middle of the voyage; and Phase 3, the last 7-8 day period. The group-synchronized 24-h rhythm in oral temperature disappeared during Phase 3. The group-synchronized 24-h rhythms in Thayer's activation and in MA and MH disappeared during Phases 2 and 3. A group-synchronized 18-h rhythm was not produced in any of the variables in any phase, except MH during Phase 2. Periodicity analysis of the individuals' data showed that a loss of 24-h rhythmicity in oral temperature was due not only to reduced circadian amplitude but also to a dispersion of Time of Peak (TOPs). Loss of 24-h rhythm in 'Activation', 'Happiness', and 'Activity' was predominantly due to a wider dispersion of TOPs. The 18-h routine did appear to exert a small modulating effect on rhythmic activity in the variables examined in this study. Since the sleep/wakefulness cycle was well entrained by the 18-h routine, the submariners experienced a spontaneous internal desynchronization between the activity cycle and the cycles or oral temperature and psychological states. The performance and health consequences of this chronic dyschronism have yet to be explored. We suggest further research to determine the usefulness of an index of synchronization among the physiological and psychological variables, and the relationship of the desynchronizing effects to performance.  相似文献   

18.
Human expeditions to Mars will require adaptation to the 24.65-h Martian solar day-night cycle (sol), which is outside the range of entrainment of the human circadian pacemaker under lighting intensities to which astronauts are typically exposed. Failure to entrain the circadian time-keeping system to the desired rest-activity cycle disturbs sleep and impairs cognitive function. Furthermore, differences between the intrinsic circadian period and Earth's 24-h light-dark cycle underlie human circadian rhythm sleep disorders, such as advanced sleep phase disorder and non-24-hour sleep-wake disorders. Therefore, first, we tested whether exposure to a model-based lighting regimen would entrain the human circadian pacemaker at a normal phase angle to the 24.65-h Martian sol and to the 23.5-h day length often required of astronauts during short duration space exploration. Second, we tested here whether such prior entrainment to non-24-h light-dark cycles would lead to subsequent modification of the intrinsic period of the human circadian timing system. Here we show that exposure to moderately bright light ( approximately 450 lux; approximately 1.2 W/m(2)) for the second or first half of the scheduled wake episode is effective for entraining individuals to the 24.65-h Martian sol and a 23.5-h day length, respectively. Estimations of the circadian periods of plasma melatonin, plasma cortisol, and core body temperature rhythms collected under forced desynchrony protocols revealed that the intrinsic circadian period of the human circadian pacemaker was significantly longer following entrainment to the Martian sol as compared to following entrainment to the 23.5-h day. The latter finding of after-effects of entrainment reveals for the first time plasticity of the period of the human circadian timing system. Both findings have important implications for the treatment of circadian rhythm sleep disorders and human space exploration.  相似文献   

19.
Endogenous rhythms are adaptive responses to predictable changes of the environment, like the day/night cycle. Some researches demonstrated that social cycles can influence the circadian rhythm, while no study investigated the effect of endogenous rhythmicity on the sociability in Vertebrates. This study investigated whether differences in the functioning of the circadian system was associated with social motivation in Japanese quail (Coturnix c. japonica).We compared quail from a line expressing a robust circadian rhythm of feeding activity (R) to quail from a line expressing circadian arrhythmicity of feeding activity (A) under constant darkness. Classic behavioral tests evaluated social motivation of these birds.When socially isolated, the motivation of R quail to re-establish contact with conspecifics appeared stronger than that of A quail. When in the presence of conspecifics, R quail faced a stressful situation (change of environment) more calmly than did A quail. Thus, variation of circadian behavioral rhythmicity is associated with variation in social motivation in Japanese quail. Rhythmic animals appeared to respond more appropriately to environmental challenges than arrhythmic animals.  相似文献   

20.
The site (intra- vs. extraocular) of the circadian clock driving an ocular melatonin rhythm in Japanese quail was investigated by alternately covering the left and right eyes of individual quail, otherwise held in constant light (LL), for 12-hr periods. This procedure exposed each eye to a light-dark (LD) 12:12 light cycle 180 degrees (12 hr) out of phase with the LD 12:12 light cycle experienced by the other eye. This protocol entrained the melatonin rhythm in the left eye of quail 180 degrees out of phase with the rhythm expressed in the right eye. These results are compatible with the hypothesis that an independent light-entrainable circadian pacemaker resides in each eye; they are incompatible with the hypothesis that a single (or functionally single) extraocular pacemaker drives the ocular melatonin rhythm in both eyes. However, the results are also compatible with a model in which two independent extraocular circadian pacemakers, each with an exclusive photic input from one eye, drive the ocular melatonin rhythm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号