首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MOTIVATION: Recent attempts to account for multiple testing in the analysis of microarray data have focused on controlling the false discovery rate (FDR), which is defined as the expected percentage of the number of false positive genes among the claimed significant genes. As a consequence, the accuracy of the FDR estimators will be important for correctly controlling FDR. Xie et al. found that the standard permutation method of estimating FDR is biased and proposed to delete the predicted differentially expressed (DE) genes in the estimation of FDR for one-sample comparison. However, we notice that the formula of the FDR used in their paper is incorrect. This makes the comparison results reported in their paper unconvincing. Other problems with their method include the biased estimation of FDR caused by over- or under-deletion of DE genes in the estimation of FDR and by the implicit use of an unreasonable estimator of the true proportion of equivalently expressed (EE) genes. Due to the great importance of accurate FDR estimation in microarray data analysis, it is necessary to point out such problems and propose improved methods. RESULTS: Our results confirm that the standard permutation method overestimates the FDR. With the correct FDR formula, we show the method of Xie et al. always gives biased estimation of FDR: it overestimates when the number of claimed significant genes is small, and underestimates when the number of claimed significant genes is large. To overcome these problems, we propose two modifications. The simulation results show that our estimator gives more accurate estimation.  相似文献   

2.
Determining the error rate for peptide and protein identification accurately and reliably is necessary to enable evaluation and crosscomparisons of high throughput proteomics experiments. Currently, peptide identification is based either on preset scoring thresholds or on probabilistic models trained on datasets that are often dissimilar to experimental results. The false discovery rates (FDR) and peptide identification probabilities for these preset thresholds or models often vary greatly across different experimental treatments, organisms, or instruments used in specific experiments. To overcome these difficulties, randomized databases have been used to estimate the FDR. However, the cumulative FDR may include low probability identifications when there are a large number of peptide identifications and exclude high probability identifications when there are few. To overcome this logical inconsistency, this study expands the use of randomized databases to generate experiment-specific estimates of peptide identification probabilities. These experiment-specific probabilities are generated by logistic and Loess regression models of the peptide scores obtained from original and reshuffled database matches. These experiment-specific probabilities are shown to very well approximate "true" probabilities based on known standard protein mixtures across different experiments. Probabilities generated by the earlier Peptide_Prophet and more recent LIPS models are shown to differ significantly from this study's experiment-specific probabilities, especially for unknown samples. The experiment-specific probabilities reliably estimate the accuracy of peptide identifications and overcome potential logical inconsistencies of the cumulative FDR. This estimation method is demonstrated using a Sequest database search, LIPS model, and a reshuffled database. However, this approach is generally applicable to any search algorithm, peptide scoring, and statistical model when using a randomized database.  相似文献   

3.
Summary In a microarray experiment, one experimental design is used to obtain expression measures for all genes. One popular analysis method involves fitting the same linear mixed model for each gene, obtaining gene‐specific p‐values for tests of interest involving fixed effects, and then choosing a threshold for significance that is intended to control false discovery rate (FDR) at a desired level. When one or more random factors have zero variance components for some genes, the standard practice of fitting the same full linear mixed model for all genes can result in failure to control FDR. We propose a new method that combines results from the fit of full and selected linear mixed models to identify differentially expressed genes and provide FDR control at target levels when the true underlying random effects structure varies across genes.  相似文献   

4.
The paper is concerned with expected type I errors of some stepwise multiple test procedures based on independent p‐values controlling the so‐called false discovery rate (FDR). We derive an asymptotic result for the supremum of the expected type I error rate(EER) when the number of hypotheses tends to infinity. Among others, it will be shown that when the original Benjamini‐Hochberg step‐up procedure controls the FDR at level α, its EER may approach a value being slightly larger than α/4 when the number of hypotheses increases. Moreover, we derive some least favourable parameter configuration results, some bounds for the FDR and the EER as well as easily computable formulae for the familywise error rate (FWER) of two FDR‐controlling procedures. Finally, we discuss some undesirable properties of the FDR concept, especially the problem of cheating.  相似文献   

5.
Sabatti C  Service S  Freimer N 《Genetics》2003,164(2):829-833
We explore the implications of the false discovery rate (FDR) controlling procedure in disease gene mapping. With the aid of simulations, we show how, under models commonly used, the simple step-down procedure introduced by Benjamini and Hochberg controls the FDR for the dependent tests on which linkage and association genome screens are based. This adaptive multiple comparison procedure may offer an important tool for mapping susceptibility genes for complex diseases.  相似文献   

6.
MOTIVATION: Statistical methods based on controlling the false discovery rate (FDR) or positive false discovery rate (pFDR) are now well established in identifying differentially expressed genes in DNA microarray. Several authors have recently raised the important issue that FDR or pFDR may give misleading inference when specific genes are of interest because they average the genes under consideration with genes that show stronger evidence for differential expression. The paper proposes a flexible and robust mixture model for estimating the local FDR which quantifies how plausible each specific gene expresses differentially. RESULTS: We develop a special mixture model tailored to multiple testing by requiring the P-value distribution for the differentially expressed genes to be stochastically smaller than the P-value distribution for the non-differentially expressed genes. A smoothing mechanism is built in. The proposed model gives robust estimation of local FDR for any reasonable underlying P-value distributions. It also provides a single framework for estimating the proportion of differentially expressed genes, pFDR, negative predictive values, sensitivity and specificity. A cervical cancer study shows that the local FDR gives more specific and relevant quantification of the evidence for differential expression that can be substantially different from pFDR. AVAILABILITY: An R function implementing the proposed model is available at http://www.geocities.com/jg_liao/software  相似文献   

7.
Scanning the genome for association between markers and complex diseases typically requires testing hundreds of thousands of genetic polymorphisms. Testing such a large number of hypotheses exacerbates the trade-off between power to detect meaningful associations and the chance of making false discoveries. Even before the full genome is scanned, investigators often favor certain regions on the basis of the results of prior investigations, such as previous linkage scans. The remaining regions of the genome are investigated simultaneously because genotyping is relatively inexpensive compared with the cost of recruiting participants for a genetic study and because prior evidence is rarely sufficient to rule out these regions as harboring genes with variation of conferring liability (liability genes). However, the multiple testing inherent in broad genomic searches diminishes power to detect association, even for genes falling in regions of the genome favored a priori. Multiple testing problems of this nature are well suited for application of the false-discovery rate (FDR) principle, which can improve power. To enhance power further, a new FDR approach is proposed that involves weighting the hypotheses on the basis of prior data. We present a method for using linkage data to weight the association P values. Our investigations reveal that if the linkage study is informative, the procedure improves power considerably. Remarkably, the loss in power is small, even when the linkage study is uninformative. For a class of genetic models, we calculate the sample size required to obtain useful prior information from a linkage study. This inquiry reveals that, among genetic models that are seemingly equal in genetic information, some are much more promising than others for this mode of analysis.  相似文献   

8.
An interval quantitative trait locus (QTL) mapping method for complex polygenic diseases (as binary traits) showing QTL by environment interactions (QEI) was developed for outbred populations on a within-family basis. The main objectives, within the above context, were to investigate selection of genetic models and to compare liability or generalized interval mapping (GIM) and linear regression interval mapping (RIM) methods. Two different genetic models were used: one with main QTL and QEI effects (QEI model) and the other with only a main QTL effect (QTL model). Over 30 types of binary disease data as well as six types of continuous data were simulated and analysed by RIM and GIM. Using table values for significance testing, results show that RIM had an increased false detection rate (FDR) for testing interactions which was attributable to scale effects on the binary scale. GIM did not suffer from a high FDR for testing interactions. The use of empirical thresholds, which effectively means higher thresholds for RIM for testing interactions, could repair this increased FDR for RIM, but such empirical thresholds would have to be derived for each case because the amount of FDR depends on the incidence on the binary scale. RIM still suffered from higher biases (15-100% over- or under-estimation of true values) and high standard errors in QTL variance and location estimates than GIM for QEI models. Hence GIM is recommended for disease QTL mapping with QEI. In the presence of QEI, the model including QEI has more power (20-80% increase) to detect the QTL when the average QTL effect is small (in a situation where the model with a main QTL only is not too powerful). Top-down model selection is proposed in which a full test for QEI is conducted first and then the model is subsequently simplified. Methods and results will be applicable to human, plant and animal QTL mapping experiments.  相似文献   

9.
Multiple testing (MT) with false discovery rate (FDR) control has been widely conducted in the “discrete paradigm” where p-values have discrete and heterogeneous null distributions. However, in this scenario existing FDR procedures often lose some power and may yield unreliable inference, and for this scenario there does not seem to be an FDR procedure that partitions hypotheses into groups, employs data-adaptive weights and is nonasymptotically conservative. We propose a weighted p-value-based FDR procedure, “weighted FDR (wFDR) procedure” for short, for MT in the discrete paradigm that efficiently adapts to both heterogeneity and discreteness of p-value distributions. We theoretically justify the nonasymptotic conservativeness of the wFDR procedure under independence, and show via simulation studies that, for MT based on p-values of binomial test or Fisher's exact test, it is more powerful than six other procedures. The wFDR procedure is applied to two examples based on discrete data, a drug safety study, and a differential methylation study, where it makes more discoveries than two existing methods.  相似文献   

10.
MOTIVATION: The false discovery rate (FDR) has been widely adopted to address the multiple comparisons issue in high-throughput experiments such as microarray gene-expression studies. However, while the FDR is quite useful as an approach to limit false discoveries within a single experiment, like other multiple comparison corrections it may be an inappropriate way to compare results across experiments. This article uses several examples based on gene-expression data to demonstrate the potential misinterpretations that can arise from using FDR to compare across experiments. Researchers should be aware of these pitfalls and wary of using FDR to compare experimental results. FDR should be augmented with other measures such as p-values and expression ratios. It is worth including standard error and variance information for meta-analyses and, if possible, the raw data for re-analyses. This is especially important for high-throughput studies because data are often re-used for different objectives, including comparing common elements across many experiments. No single error rate or data summary may be appropriate for all of the different objectives.  相似文献   

11.
Human thymocytes at several stages of maturation express Fas, yet resist apoptosis induction through its ligation. A proximal step in apoptotic signaling through Fas is implicated in this resistance, as these cells undergo normal levels of apoptosis induction after exposure to tumor necrosis factor-alpha. We studied the Fas receptors expressed in human thymocytes to search for mechanisms of receptor-mediated inhibition of Fas signaling in these cells. We describe here a unique, membrane-bound form of Fas receptor that contained a complete extracellular domain of Fas but that lacked a death domain due to alternative splicing of exon 7. This Fas decoy receptor (FDR) was shown to have nearly wild-type ability to bind native human Fas ligand and was expressed predominantly at the plasma membrane. Unlike soluble forms of Fas receptor, FDR dominantly inhibited apoptosis induction by Fas ligand in transfected human embryonic kidney cells. Titration of FDR in Fas-expressing cells suggests that FDR may operate through the formation of mixed receptor complexes. FDR also dominantly inhibited Fas-induced apoptosis in Jurkat T cells. In mixing experiments with wild-type Fas, FDR was capable of inhibiting death signaling at molar ratios less than 0.5, and this relative level of FDR:wild type message was observed in at least some thymocytes tested. The data suggest that Fas signal pathways in primary human cells may be regulated by expression of a membrane-bound decoy receptor, analogous to the regulation of tumor necrosis factor-related apoptosis inducing ligand (TRAIL)-induced apoptosis by decoy receptors.  相似文献   

12.
The Newman-Keuls (NK) procedure for testing all pairwise comparisons among a set of treatment means, introduced by Newman (1939) and in a slightly different form by Keuls (1952) was proposed as a reasonable way to alleviate the inflation of error rates when a large number of means are compared. It was proposed before the concepts of different types of multiple error rates were introduced by Tukey (1952a, b; 1953). Although it was popular in the 1950s and 1960s, once control of the familywise error rate (FWER) was accepted generally as an appropriate criterion in multiple testing, and it was realized that the NK procedure does not control the FWER at the nominal level at which it is performed, the procedure gradually fell out of favor. Recently, a more liberal criterion, control of the false discovery rate (FDR), has been proposed as more appropriate in some situations than FWER control. This paper notes that the NK procedure and a nonparametric extension controls the FWER within any set of homogeneous treatments. It proves that the extended procedure controls the FDR when there are well-separated clusters of homogeneous means and between-cluster test statistics are independent, and extensive simulation provides strong evidence that the original procedure controls the FDR under the same conditions and some dependent conditions when the clusters are not well-separated. Thus, the test has two desirable error-controlling properties, providing a compromise between FDR control with no subgroup FWER control and global FWER control. Yekutieli (2002) developed an FDR-controlling procedure for testing all pairwise differences among means, without any FWER-controlling criteria when there is more than one cluster. The empirica example in Yekutieli's paper was used to compare the Benjamini-Hochberg (1995) method with apparent FDR control in this context, Yekutieli's proposed method with proven FDR control, the Newman-Keuls method that controls FWER within equal clusters with apparent FDR control, and several methods that control FWER globally. The Newman-Keuls is shown to be intermediate in number of rejections to the FWER-controlling methods and the FDR-controlling methods in this example, although it is not always more conservative than the other FDR-controlling methods.  相似文献   

13.
False discovery rate (FDR) methodologies are essential in the study of high-dimensional genomic and proteomic data. The R package 'fdrtool' facilitates such analyses by offering a comprehensive set of procedures for FDR estimation. Its distinctive features include: (i) many different types of test statistics are allowed as input data, such as P-values, z-scores, correlations and t-scores; (ii) simultaneously, both local FDR and tail area-based FDR values are estimated for all test statistics and (iii) empirical null models are fit where possible, thereby taking account of potential over- or underdispersion of the theoretical null. In addition, 'fdrtool' provides readily interpretable graphical output, and can be applied to very large scale (in the order of millions of hypotheses) multiple testing problems. Consequently, 'fdrtool' implements a flexible FDR estimation scheme that is unified across different test statistics and variants of FDR. AVAILABILITY: The program is freely available from the Comprehensive R Archive Network (http://cran.r-project.org/) under the terms of the GNU General Public License (version 3 or later). CONTACT: strimmer@uni-leipzig.de.  相似文献   

14.
当两组样本间基因表达的差异程度较低或样本量较少时,采用通常的错误发现率(falsediscovery rate,FDR)控制水平(如5%或10%),可能无法识别足够多的差异表达基因以进行后续的功能富集分析。然而,功能富集分析对差异表达基因中的错误发现具有一定的稳健性。所以,采用较低的FDR控制水平(即允许较高的FDR)识别差异表达基因,可能可以可靠地发现疾病相关功能。本文分析了5套研究乳腺癌转移的基因表达谱,通过其中差异表达信号较强的3套数据,论证了即使差异表达基因的FDR达到25%,功能富集分析的结果仍具有较高的稳健性。然后,在另外2套差异表达信号微弱的数据中,采用25%的FDR控制水平筛选差异表达基因来进行功能富集分析,并与前述3套数据的功能富集结果做比较。结果显示,采用较低的FDR控制水平筛选差异表达基因,仍然可以可靠地识别乳腺癌转移相关功能。分析结果也提示,在乳腺癌转移过程中,一些功能较为宽泛的生物学过程(如细胞分裂、细胞周期和DNA复制等)整体受到了扰动,反映出乳腺癌转移是一种涉及广泛基因表达改变的系统性疾病。  相似文献   

15.
The data from genome-wide association studies (GWAS) in humans are still predominantly analyzed using single-marker association methods. As an alternative to single-marker analysis (SMA), all or subsets of markers can be tested simultaneously. This approach requires a form of penalized regression (PR) as the number of SNPs is much larger than the sample size. Here we review PR methods in the context of GWAS, extend them to perform penalty parameter and SNP selection by false discovery rate (FDR) control, and assess their performance in comparison with SMA. PR methods were compared with SMA, using realistically simulated GWAS data with a continuous phenotype and real data. Based on these comparisons our analytic FDR criterion may currently be the best approach to SNP selection using PR for GWAS. We found that PR with FDR control provides substantially more power than SMA with genome-wide type-I error control but somewhat less power than SMA with Benjamini–Hochberg FDR control (SMA-BH). PR with FDR-based penalty parameter selection controlled the FDR somewhat conservatively while SMA-BH may not achieve FDR control in all situations. Differences among PR methods seem quite small when the focus is on SNP selection with FDR control. Incorporating linkage disequilibrium into the penalization by adapting penalties developed for covariates measured on graphs can improve power but also generate more false positives or wider regions for follow-up. We recommend the elastic net with a mixing weight for the Lasso penalty near 0.5 as the best method.  相似文献   

16.
Controlling the false discovery rate (FDR) has been proposed as an alternative to controlling the genome-wise error rate (GWER) for detecting quantitative trait loci (QTL) in genome scans. The objective here was to implement FDR in the context of regression interval mapping for multiple traits. Data on five traits from an F2 swine breed cross were used. FDR was implemented using tests at every 1 cM (FDR1) and using tests with the highest test statistic for each marker interval (FDRm). For the latter, a method was developed to predict comparison-wise error rates. At low error rates, FDR1 behaved erratically; FDRm was more stable but gave similar significance thresholds and number of QTL detected. At the same error rate, methods to control FDR gave less stringent significance thresholds and more QTL detected than methods to control GWER. Although testing across traits had limited impact on FDR, single-trait testing was recommended because there is no theoretical reason to pool tests across traits for FDR. FDR based on FDRm was recommended for QTL detection in interval mapping because it provides significance tests that are meaningful, yet not overly stringent, such that a more complete picture of QTL is revealed.  相似文献   

17.
Guo W  Fung WK  Shi N  Guo J 《Human heredity》2005,60(3):177-180
Admixture linkage disequilibrium (ALD), a phenomenon created by gene flow between genetically distinct populations, has for some time been used as a tool in gene mapping. It is therefore important to analyze the pattern of ALD over generations. In this study we explore two models of admixture: the gradual admixture (GA) model, in which admixture occurs at a variable rate in every generation; and the immediate admixture (IA) model, a special case of the GA model, in which admixture occurs in a single generation. In the case of ALD, the well-known formula of linkage disequilibrium (Delta(t)=(1-r)t Delta(0)) is not applicable under these two models. We note the effect of a random mating population (RMP) to the gametic frequencies from the parental population to the offspring population, and provide the correct formula for ALD.  相似文献   

18.
Although many statistical methods have been proposed for identifying differentially expressed genes, the optimal approach has still not been resolved. Therefore, it is necessary to develop more efficient methods of finding differentially expressed genes while accounting for noise and false discovery rate (FDR). We propose a method based on multi-resolution wavelet transformation analysis combined with SAM for identifying differentially expressed genes by adjusting the Δ and computing the FDR. This method was applied to a microarray expression dataset from adenoma patients and normal subjects. The number of differentially expressed genes gradually reduced with an increasing Δ value, and the FDR was reduced after wavelet transformation. At a given Δ value, the FDR was also reduced before and after wavelet transformation. In conclusion, a greater number and quality of differentially expressed genes were detected using the method when compared to non-transformed data, and the FDRs were notably more controlled and reduced.  相似文献   

19.
Estimating false discovery rates (FDRs) of protein identification continues to be an important topic in mass spectrometry–based proteomics, particularly when analyzing very large datasets. One performant method for this purpose is the Picked Protein FDR approach which is based on a target-decoy competition strategy on the protein level that ensures that FDRs scale to large datasets. Here, we present an extension to this method that can also deal with protein groups, that is, proteins that share common peptides such as protein isoforms of the same gene. To obtain well-calibrated FDR estimates that preserve protein identification sensitivity, we introduce two novel ideas. First, the picked group target-decoy and second, the rescued subset grouping strategies. Using entrapment searches and simulated data for validation, we demonstrate that the new Picked Protein Group FDR method produces accurate protein group-level FDR estimates regardless of the size of the data set. The validation analysis also uncovered that applying the commonly used Occam’s razor principle leads to anticonservative FDR estimates for large datasets. This is not the case for the Picked Protein Group FDR method. Reanalysis of deep proteomes of 29 human tissues showed that the new method identified up to 4% more protein groups than MaxQuant. Applying the method to the reanalysis of the entire human section of ProteomicsDB led to the identification of 18,000 protein groups at 1% protein group-level FDR. The analysis also showed that about 1250 genes were represented by ≥2 identified protein groups. To make the method accessible to the proteomics community, we provide a software tool including a graphical user interface that enables merging results from multiple MaxQuant searches into a single list of identified and quantified protein groups.  相似文献   

20.
Chen L  Storey JD 《Genetics》2006,173(4):2371-2381
Linkage analysis involves performing significance tests at many loci located throughout the genome. Traditional criteria for declaring a linkage statistically significant have been formulated with the goal of controlling the rate at which any single false positive occurs, called the genomewise error rate (GWER). As complex traits have become the focus of linkage analysis, it is increasingly common to expect that a number of loci are truly linked to the trait. This is especially true in mapping quantitative trait loci (QTL), where sometimes dozens of QTL may exist. Therefore, alternatives to the strict goal of preventing any single false positive have recently been explored, such as the false discovery rate (FDR) criterion. Here, we characterize some of the challenges that arise when defining relaxed significance criteria that allow for at least one false positive linkage to occur. In particular, we show that the FDR suffers from several problems when applied to linkage analysis of a single trait. We therefore conclude that the general applicability of FDR for declaring significant linkages in the analysis of a single trait is dubious. Instead, we propose a significance criterion that is more relaxed than the traditional GWER, but does not appear to suffer from the problems of the FDR. A generalized version of the GWER is proposed, called GWERk, that allows one to provide a more liberal balance between true positives and false positives at no additional cost in computation or assumptions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号