首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
2.
3.
The death of chondrocytes and the loss of extracellular matrix are the central features in cartilage degeneration during Osteoarthritis (OA) pathogenesis. The mechanism by which chondrocytes are removed in OA cartilage are still not totally defined, although previous reports support the presence of apoptotic as well as non apoptotic signals. In addition, in 2004 Roach and co-workers suggested the term “Chondroptosis” to design the type of cell death present in articular cartilage, which include the presence of some apoptotic and autophagic processes. To identify the mechanisms, as well as the chronology by which chondrocytes are eliminated during OA pathogenesis, we decided to evaluate apoptosis (by active caspase 3 and TUNEL signal) and autophagy (by LC3II molecule and cytoplasmic vacuolization) using Immunohistochemistry and Western blot techniques in an animal OA model. During OA pathogenesis, chondrocytes exhibit modifications in their death process in each zone of the cartilage. At early stages of OA, the death of chondrocytes starts with apoptosis in the superficial and part of the middle zones of the cartilage, probably as a consequence of a constant mechanical damage in the joint. As the degenerative process progresses, high incidence of active caspase 3 as well as LC3II expression are observed in the same cell, which indicate a combination of both death processes. In contrast, in the deep zone, due the abnormal subchondral bone ossification during the OA pathogenesis, apoptosis is the only mechanism observed.  相似文献   

4.
Human chondrocyte senescence and osteoarthritis   总被引:3,自引:0,他引:3  
Martin JA  Buckwalter JA 《Biorheology》2002,39(1-2):145-152
Although osteoarthritis (OA) is not an inevitable consequence of aging, a strong association exists between age and increasing incidence of OA. We hypothesized that this association is due to in vivo articular cartilage chondrocyte senescence which causes an age-related decline in the ability of the cells to maintain articular cartilage, that is, increasing age increases the risk of OA because chondrocytes lose their ability to replace their extracellular matrix. To test this hypothesis, we measured senescence markers in human articular cartilage chondrocytes from 27 donors ranging in age from one to 87 years. The markers included expression of the senescence-associated enzyme beta-galactosidase, mitotic activity measured by 3H-thymidine incorporation, and telomere length. beta-galactosidase expression increased with age (r=0.84, p=0.0001) while mitotic activity and mean telomere length declined (r=-0.774, p=0.001 and r=-0.71, p=0.0004, respectively). Decreasing telomere length was strongly correlated with increasing expression of beta-galactosidase and decreasing mitotic activity. These findings help explain the previously reported age related declines in chondrocyte synthetic activity and responsiveness to anabolic growth factors and indicate that in vivo articular cartilage chondrocyte senescence is responsible, at least in part, for the age related increased incidence of OA. The data also imply that people vary in their risk of developing OA because of differences in onset of chondrocyte senescence; and, the success of chondrocyte transplantation procedures performed to restore damaged articular surfaces in older patients could be limited by the inability of older chondrocytes to form new cartilage. New efforts to prevent the development or progression of OA might include strategies that delay the onset of chondrocyte senescence or replace senescent cells.  相似文献   

5.
Osteoarthritis (OA) is characterized by cartilage attrition, subchondral bone remodeling, osteophyte formation and synovial inflammation. Perturbed homeostasis caused by inflammation, oxidative stress, mitochondrial dysfunction and proapoptotic/antiapoptotic dysregulation is known to impair chondrocyte survival in joint microenvironments and contribute to OA pathogenesis. However, the molecular mechanisms underlying the programmed cell death (apoptosis) of chondral cells are not yet well defined. The present study was conducted to evaluate apoptosis of chondrocytes from knee articular cartilage of patients with OA. The aim of this study was to investigate and compare the apoptosis through the expression of caspase-3 in tissue explants, in cells cultured in monolayer, and in cells encapsulated in a hydrogel (PEGDA) scaffold. Chondrocytes were also studied following cell isolation and encapsulation in poly(ethylene glycol) diacrylate (PEGDA) hydrogels. Specifically, articular cartilage specimens were assessed by histology (Hematoxlyn and Eosin) and histochemistry (Safranin-O and Alcian Blue). The effector of apoptosis caspase-3 was studied through immunohistochemistry, immunocytochemistry and immunofluorescence. DNA strand breaks were evaluated in freshly isolated chondrocytes from human OA cartilage using the TUNEL assay, and changes in nuclear morphology of apoptotic cells were detected by staining with Hoechst 33258. The results showed an increased expression of caspase-3 in tissue explants, in pre-confluent cells and after four passages in culture, and a decreased expression of caspase-3 comparable to control cartilage in cells encapsulated in hydrogels (PEGDA) after 5 weeks in culture. The freshly isolated chondrocytes were TUNEL positive. The chondrocytes after 5 weeks of culture in hydrogels (PEGDA) showed the formation of new hyaline cartilage with increased cell growth, cellular aggregations and extracellular matrix (ECM) production. This is of particular relevance to the use of OA cells and tissue engineering in the therapeutic approach to patients.  相似文献   

6.
富血小板血浆(platelet-rich plasma,PRP)由于富含多种活性生长因子,能够刺激软骨细胞增殖,促进软骨前体细胞增殖、迁移、向软骨细胞分化,促进胶原蛋白合成以及抑制软骨的炎性反应和退变,提供有利于组织修复的内环境,延缓病情进展。近年来PRP注射治疗已成为治疗与骨关节炎(osteoarthritis,OA)相关疾病的新型选择,并且疗效显著。为了进一步提高其效用,PRP注射治疗不仅在关节腔内进行,还可在软骨下骨内进行注射。软骨下骨的病变会加速软骨损耗,故有必要将软骨下骨也当作OA众多发病机制和病理过程的关键因素之一。根据PRP的生物特效以及PRP注射治疗在膝骨关节炎(knee osteoarthritis,KOA)中应用的研究进展进行了综述,同时对软骨下骨内PRP注射治疗KOA的研究进行了展望,以期为KOA的治疗提供更加有效的方法。  相似文献   

7.
Invited review: the mitochondrion in osteoarthritis   总被引:3,自引:0,他引:3  
In a variety of tissues, cumulative oxidative stress, disrupted mitochondrial respiration, and mitochondrial damage promote aging, cell death, and ultimately, functional failure and degeneration. Because articular cartilage chondroyctes are highly glycolytic, mitochondrially mediated pathogenesis has not been previously applied in models for pathogenesis of osteoarthritis (OA), a cartilage degenerative disease that increases markedly in aging. However, chondrocyte mitochondria respire in vitro and they demonstrate swelling and changes in number in situ in the course of OA. Normal chondrocyte mitochondrial function is hypothesized to critically support adenosine triphosphate (ATP) reserves in functional stressed chondrocytes during OA evolution. In this model, disruption of chondrocyte respiration by nitric oxide, a mediator markedly up-regulated in OA cartilage, is centrally involved in chondrocyte functional compromise. Furthermore, mitochondrial dysfunction can mediate several specific pathogenic pathways implicated in OA. These include oxidative stress, inadequacy of chondrocyte biosynthetic and growth responses, up-regulated chondrocyte cytokine-induced inflammation and matrix catabolism, increased chondrocyte apoptosis, and pathologic cartilage matrix calcification. In addition, the direct, sublethal impairment of chondrocyte mitochondrial ATP synthesis in vitro decreases matrix synthesis and increases matrix calcification ('disease in a dish'). The weight of evidence reviewed herein strongly supports chondrocyte mitochondrial impairment as a mediator of the establishment and progression of OA.  相似文献   

8.
Preclinical osteoarthritis (OA) models are often employed in studies investigating disease-modifying OA drugs (DMOADs). In this study we present a comprehensive, longitudinal evaluation of OA pathogenesis in a rat model of OA, including histologic and biochemical analyses of articular cartilage degradation and assessment of subchondral bone sclerosis. Male Sprague-Dawley rats underwent joint destabilization surgery by anterior cruciate ligament transection and partial medial meniscectomy. The contralateral joint was evaluated as a secondary treatment, and sham surgery was performed in a separate group of animals (controls). Furthermore, the effects of walking on a rotating cylinder (to force mobilization of the joint) on OA pathogenesis were assessed. Destabilization-induced OA was investigated at several time points up to 20 weeks after surgery using Osteoarthritis Research Society International histopathology scores, in vivo micro-computed tomography (CT) volumetric bone mineral density analysis, and biochemical analysis of type II collagen breakdown using the CTX II biomarker. Expression of hypertrophic chondrocyte markers was also assessed in articular cartilage. Cartilage degradation, subchondral changes, and subchondral bone loss were observed as early as 2 weeks after surgery, with considerable correlation to that seen in human OA. We found excellent correlation between histologic changes and micro-CT analysis of underlying bone, which reflected properties of human OA, and identified additional molecular changes that enhance our understanding of OA pathogenesis. Interestingly, forced mobilization exercise accelerated OA progression. Minor OA activity was also observed in the contralateral joint, including proteoglycan loss. Finally, we observed increased chondrocyte hypertrophy during pathogenesis. We conclude that forced mobilization accelerates OA damage in the destabilized joint. This surgical model of OA with forced mobilization is suitable for longitudinal preclinical studies, and it is well adapted for investigation of both early and late stages of OA. The time course of OA progression can be modulated through the use of forced mobilization.  相似文献   

9.
Temporomandibular joint (TMJ) osteoarthritis is a common chronic degenerative disease of the TMJ. In order to explore its aetiology and pathological mechanism, many animal models and cell models have been constructed to simulate the pathological process of TMJ osteoarthritis. The main pathological features of TMJ osteoarthritis include chondrocyte death, extracellular matrix (ECM) degradation and subchondral bone remodelling. Chondrocyte apoptosis accelerates the destruction of cartilage. However, autophagy has a protective effect on condylar chondrocytes. Degradation of ECM not only changes the properties of cartilage but also affects the phenotype of chondrocytes. The loss of subchondral bone in the early stages of TMJ osteoarthritis plays an aetiological role in the onset of osteoarthritis. In recent years, increasing evidence has suggested that chondrocyte hypertrophy and endochondral angiogenesis promote TMJ osteoarthritis. Hypertrophic chondrocytes secrete many factors that promote cartilage degeneration. These chondrocytes can further differentiate into osteoblasts and osteocytes and accelerate cartilage ossification. Intrachondral angiogenesis and neoneurogenesis are considered to be important triggers of arthralgia in TMJ osteoarthritis. Many molecular signalling pathways in endochondral osteogenesis are responsible for TMJ osteoarthritis. These latest discoveries in TMJ osteoarthritis have further enhanced the understanding of this disease and contributed to the development of molecular therapies. This paper summarizes recent cognition on the pathogenesis of TMJ osteoarthritis, focusing on the role of chondrocyte hypertrophy degeneration and cartilage angiogenesis.  相似文献   

10.
Systemic application of glucocorticoids is an essential anti-inflammatory and immune-modulating therapy for severe inflammatory or autoimmunity conditions. However, its long-term effects on articular cartilage of patients'' health need to be further investigated. In this study, we studied the effects of dexamethasone (Dex) on the homeostasis of articular cartilage and the progress of destabilization of medial meniscus (DMM)-induced osteoarthritis (OA) in adult mice. Long-term administration of Dex aggravates the proteoglycan loss of articular cartilage and drastically accelerates cartilage degeneration under surgically induced OA conditions. In addition, Dex increases calcium content in calcified cartilage layer of mice and the samples from OA patients with a history of long-term Dex treatment. Moreover, long term usage of Dex results in decrease subchondral bone mass and bone density. Further studies showed that Dex leads to calcification of extracellular matrix of chondrocytes partially through activation of AKT, as well as promotes apoptosis of chondrocytes in calcified cartilage layer. Besides, Dex weakens the stress-response autophagy with the passage of time. Taken together, our data indicate that long-term application of Dex may predispose patients to OA and or even accelerate the OA disease progression development of OA patients.  相似文献   

11.
Osteoarthritis (OA) is a major cause of disability in the adult population. As a progressive degenerative joint disorder, OA is characterized by cartilage damage, changes in the subchondral bone, osteophyte formation, muscle weakness, and inflammation of the synovium tissue and tendon. Although OA has long been viewed as a primary disorder of articular cartilage, subchondral bone is attracting increasing attention. It is commonly reported to play a vital role in the pathogenesis of OA. Subchondral bone sclerosis, together with progressive cartilage degradation, is widely considered as a hallmark of OA. Despite the increase in bone volume fraction, subchondral bone is hypomineralized, due to abnormal bone remodeling. Some histopathological changes in the subchondral bone have also been detected, including microdamage, bone marrow edema-like lesions and bone cysts. This review summarizes basic features of the osteochondral junction, which comprises subchondral bone and articular cartilage. Importantly, we discuss risk factors influencing subchondral bone integrity. We also focus on the microarchitectural and histopathological changes of subchondral bone in OA, and provide an overview of their potential contribution to the progression of OA. A hypothetical model for the pathogenesis of OA is proposed.  相似文献   

12.
13.
Osteoarthritis (OA) is one of the most frequent chronic joint diseases with the increasing life expectancy. The main characteristics of the disease are loss of articular cartilage, subchondral bone sclerosis and synovium inflammation. Physical measures, drug therapy and surgery are the mainstay of treatments for OA, whereas drug therapies are mainly limited to analgesics, glucocorticoids, hyaluronic acids and some alternative therapies because of single therapeutic target of OA joints. Baicalein, a traditional Chinese medicine extracted from Scutellaria baicalensis Georgi, has been widely used in anti-inflammatory therapies. Previous studies revealed that baicalein could alleviate cartilage degeneration effectively by acting on articular chondrocytes. However, the mechanisms involved in baicalein-mediated protection of the OA are not completely understood in consideration of integrality of arthrosis. In this study, we found that intra-articular injection of baicalein ameliorated subchondral bone remodelling. Further studies showed that baicalein could decrease the number of differentiated osteoblasts by inhibiting pre-osteoblasts proliferation and promoting pre-osteoblasts apoptosis. In addition, baicalein impaired angiogenesis of endothelial cells and inhibited proliferation of synovial cells. Taken together, these results implicated that baicalein might be an effective medicine for treating OA by regulating multiple targets.  相似文献   

14.
Chondrocytes, which are the only cell type in the articular cartilage, show substantial morphological and functional differences, depending on their location within the tissue. In OA cartilage, outstanding modifications have been reported concerning their structure and functions. Based on the principle that both structure and function run in a parallel manner, new concepts are arising related to morphological observations. Observations on OA chondrocytes, such as cytoskeleton disruption, development of the secretory machinery (rough endoplasmic reticulum and Golgi complex), and cell death by apoptosis, among others, certainly must be related to the role of chondrocytes in OA pathogenesis. In this degradative process, it has been acknowledged that cell death, matrix degradation and subchondral bone remodelling are the main causes of cartilage breakdown in osteoarthritis. The aim of this review was to correlate and integrate in a logical manner the modifications of chondrocytes with cartilage breakdown during osteoarthritis pathogenesis. Furthermore, we intend to open a debate on cell cycle and mitosis, as well as on signalling molecules that might be involved in the morphofunctional changes in OA chondrocytes, which we propose to name "activation" and "transdifferentiation" of chondrocytes. We expect this analysis to be useful for studying OA pathogenesis in depth, with the aim of finding new strategies for the early diagnosis and therapeutic procedures for this invalidating disease, which is already an important public health problem.  相似文献   

15.
Arthritis is characterised by the proteolytic degradation of articular cartilage leading to a loss of joint function. Articular cartilage is composed of an extracellular matrix of proteoglycans and collagens. We have previously shown that serine proteinases are involved in the activation cascades leading to cartilage collagen degradation. The aim of this study was to use an active-site probe, biotinylated fluorophosphonate, to identify active serine proteinases present on the chondrocyte membrane after stimulation with the pro-inflammatory cytokines IL-1 and oncostatin M (OSM), agents that promote cartilage resorption. Fibroblast activation protein alpha (FAPalpha), a type II integral membrane serine proteinase, was identified on chondrocyte membranes stimulated with IL-1 and OSM. Real-time PCR analysis shows that FAPalpha gene expression is up-regulated by this cytokine combination in both isolated chondrocytes and cartilage explant cultures and is significantly higher in cartilage from OA patients compared to phenotypically normal articular cartilage. Immunohistochemistry analysis shows FAPalpha expression on chondrocytes in the superficial zone of OA cartilage tissues. This is the first report demonstrating the expression of active FAPalpha on the chondrocyte membrane and elevated levels in cartilage from OA patients. Its cell surface location and expression profile suggest that it may have an important pathological role in the cartilage turnover prevalent in arthritic diseases.  相似文献   

16.
17.
Osteoarthritis (OA) is a common degenerative disease characterized by the progressive destruction both articular cartilage and the subchondral bone. The agents that can effectively suppress chondrocyte degradation and subchondral bone loss are crucial for the prevention and treatment of OA. Oxymatrine (OMT) is a natural compound with anti‐inflammatory and antitumour properties. We found that OMT exhibited a strong inhibitory effect on LPS‐induced chondrocyte inflammation and catabolism. To further support our results, fresh human cartilage explants were treated with LPS to establish an ex vivo degradation model, and the results revealed that OMT inhibited the catabolic events of LPS‐stimulated human cartilage and substantially attenuated the degradation of articular cartilage ex vivo. As subchondral bone remodelling is involved in OA progression, and osteoclasts are a unique cell type in bone resorption, we investigated the effects of OMT on osteoclastogenesis, and the results demonstrated that OMT suppresses RANKL‐induced osteoclastogenesis by suppressing the RANKL‐induced NFATc1 and c‐fos signalling pathway in vitro. Further, we found that the anti‐inflammatory and anti‐osteoclastic effects of oxymatrine are mediated via the inhibition of the NF‐κB and MAPK pathways. In animal studies, OMT suppressed the ACLT‐induced cartilage degradation, and TUNEL assays further confirmed the protective effect of OMT on chondrocyte apoptosis. MicroCT analysis revealed that OMT had an attenuating effect on ACLT‐induced subchondral bone loss in vivo. Taken together, these results show that OMT interferes with the vicious cycle associated with OA and may be a potential therapeutic agent for abnormal subchondral bone loss and cartilage degradation in osteoarthritis.  相似文献   

18.
Arthritis is characterised by the proteolytic degradation of articular cartilage leading to a loss of joint function. Articular cartilage is composed of an extracellular matrix of proteoglycans and collagens. We have previously shown that serine proteinases are involved in the activation cascades leading to cartilage collagen degradation. The aim of this study was to use an active-site probe, biotinylated fluorophosphonate, to identify active serine proteinases present on the chondrocyte membrane after stimulation with the pro-inflammatory cytokines IL-1 and oncostatin M (OSM), agents that promote cartilage resorption. Fibroblast activation protein alpha (FAPα), a type II integral membrane serine proteinase, was identified on chondrocyte membranes stimulated with IL-1 and OSM. Real-time PCR analysis shows that FAPα gene expression is up-regulated by this cytokine combination in both isolated chondrocytes and cartilage explant cultures and is significantly higher in cartilage from OA patients compared to phenotypically normal articular cartilage. Immunohistochemistry analysis shows FAPα expression on chondrocytes in the superficial zone of OA cartilage tissues. This is the first report demonstrating the expression of active FAPα on the chondrocyte membrane and elevated levels in cartilage from OA patients. Its cell surface location and expression profile suggest that it may have an important pathological role in the cartilage turnover prevalent in arthritic diseases.  相似文献   

19.
Osteoarthritis (OA) is a degenerative chronic disease that affects various tissues surrounding the joints, such as the subchondral bone and articular cartilage. The onset of OA is associated with uncontrolled catabolic and anabolic remodeling processes of the joints, including the cartilage and subchondral bone, to adapt to local biological and biochemical signals. In this study, we determined whether 70% ethanolic (EtOH) extract of Litsea japonica fruit (LJFE) had beneficial effects on the articular cartilage, including structural changes in the tibial subchondral bone, matrix degradation, and inflammatory responses, in OA by using a rat model of monosodium iodoacetate-induced OA. Our results showed that administration of LJFE increased the bone volume and cross-section thickness, but the mean number of objects per slice in this group was lower than that in the OA control (OAC) group. In addition, the LJFE decreased the expression of inflammatory cytokines. Compared to the OAC group, the group treated with high doses of LJFE (100 and 200 mg/kg) showed a more than 80% inhibition of the expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases. Our results suggest that LJFE can be used as a potential anti-osteoarthritic agent.  相似文献   

20.
Apoptosis of articular chondrocytes is associated with the pathogenesis of osteoarthritis (OA). Recently, we demonstrated that hypoxia-inducible factor (HIF)-2α, encoded by Epas1, causes OA cartilage destruction by regulating the expression of various matrix-degrading enzymes. Here, we investigated the involvement of HIF-2α in chondrocyte apoptosis and OA cartilage destruction. HIF-2α levels in human and mouse OA chondrocytes were markedly elevated in association with increased apoptosis of articular chondrocytes. Overexpression or knockdown of HIF-2α alone did not cause chondrocyte apoptosis. However, HIF-2α expression markedly increased chondrocyte apoptosis in the presence of an agonistic anti-Fas (CD95) antibody. HIF-2α enhanced Fas expression and potentiated downstream signaling pathways, increasing the activity of initiator and executioner caspases. Overexpression of HIF-2α in mouse cartilage tissue, either by intra-articular injection of Epas1 adenovirus (Ad-Epas1) or in the context of chondrocyte-specific Epas1 transgenic mice, increased chondrocyte apoptosis and cartilage destruction. In contrast, chondrocyte-specific knockout of Epas1 in mice suppressed DMM (destabilization of the medial meniscus)-induced chondrocyte apoptosis and inhibited OA cartilage destruction. Moreover, Fas-deficient mice exhibited diminished chondrocyte apoptosis and OA cartilage destruction in response to Ad-Epas1 injection or DMM surgery. Taken together, our results demonstrate that HIF-2α potentiates Fas-mediated chondrocyte apoptosis, which is associated with OA cartilage destruction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号