首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study was carried out to investigate the potential effects of ELF (extremely low frequency) electric field exposure on generating free radicals in guinea pigs. For this purpose, we determined thiobarbituric acid reactive substances (TBARS) levels, one of the byproducts of lipid peroxidation, the changes of the activities of superoxide dismutase (SOD), as an antioxidant enzyme, and gamma-Glutamyl transferase (GGT) as the key enzyme in GSH metabolism. Moreover, in order to investigate electric field effects on functions of organs, we measured the alanine aminotransferase (ALT) activity, alkaline phosphatase (ALP) activity, lactate dehydrogenase (LDH) activity, total cholesterol (TC), LDL cholesterol, HDL cholesterol, VLDL cholesterol, triglycerides (TG), urea, uric acid, creatin, glucose, and blood-urea nitrogen (BUN) in serum of guinea pigs exposed to different intensities and directions electric fields. In this study we have found that vertical and horizontal application of ELF electric fields in the range of 1.35, 1.5, and 1.8 kV/m increased TBARS and SOD levels as compared to the controls (p < 0.05) and to applied electric fields of 0.3, 0.6, 0.8, and 1 kV/m. On the other hand, other serum levels of some biochemical parameters that were also investigated did not undergo statistically significant changes (p > 0.05).  相似文献   

2.
A laboratory facility specifically designed for controlled human exposure to 60-Hz electric (0 to 16 kV/m) and magnetic (0 to 32 A/m, B = 0 to 40 microT) fields has been constructed. The facility presents uniform fields under controlled temperature and humidity. Special control systems allow collection of physiological data during, as well as before and after, exposure to electric fields at strengths to 16 kV/m under verified double-blind control. Exposure to continuous or intermittent fields is possible in the facility. The capability of obtaining physiological data during actual exposure to constant or intermittent, 60-Hz fields, and of doing so without either the subject or the experimenter being aware of actual field conditions, is a critical factor in valid experimentation.  相似文献   

3.
Calculated electric-field strengths averaged over the body surfaces of grounded humans, swine, rats, horses, and cattle exposed to vertical, uniform, power-frequency electric fields are presented. To produce the same average fields over the body surfaces of grounded animals, as that experienced by a grounded man exposed to an unperturbed vertical field of 10 kV/m, the following unperturbed fields are required: swine, 19 kV/m; rat, 37 kV/m; horse, 18 kV/m; cow, 18 kV/m.  相似文献   

4.
The effect of power-frequency electric fields on invertebrate movement and behavior was studied. Data was obtained in the vicinity of an operating 500-kV powerline, and from underneath a simulated powerline (where the electric field could be controlled). Electric fields greater than 8-10 kV/m affected the behavior of flying insects; small insects could not fly, and large insects avoided the high-field region. Electric fields lowered both the activity of mosquitoes (to attack the host) and insect flower attendance. The prevalence of most non-flying insect species was not altered by the electric field, probably because of screening of the electric fields by vegetation and the ability of the insects to migrate. The existing Soviet safety standards for high-voltage powerlines seem sufficient to protect invertebrates.  相似文献   

5.
Summary Three recent investigations of the possible effects of 60 Hz electric fields on rats have yielded apparently contradictory results. While one group of investigators reported that chronic exposure to a 15 kV/m field caused several biological effects, the other two groups did not find these effects at 25 kV/m and 100 kV/m, respectively. A re-examination of the data from the 15 kV/m experiments indicates that the reported effects were probably artifacts due to improper statistical analysis and to a cage design which resulted in transient electric shocks (spark discharges) to the exposed rats. Hence, the results of all three investigations are consistent with a lack of biological effects from chronic exposure to 15–100 kV/m electric fields.This paper is based on work partially performed under contract with the U.S. Department of Energy at The University of Rochester Department of Radiation Biology and Biophysics and has been assigned Report No. UR-3490-1538Operated by The University of Chicago for the U.S. Department of Energy under Contract No. EY-76-C-02-0069  相似文献   

6.
A measure of taste-aversion (TA) learning was used in three experiments to 1) determine whether exposure to intense 60-Hz electric fields can produce TA learning in male Sprague-Dawley rats, and 2) establish a dose-response function for the behavior in question. In Experiment 1, four groups of eight rats each were distributed into one of two exposures (69 ± 5 kV/m or 133 ± 10 kV/m) or into one of two sham-exposure groups. Conditioning trials paired 0.1% sodium saccharin in water with 3 h of exposure to a 60-Hz electric field. Following five conditioning trials, a 20-min, two-bottle preference test between water and saccharin-flavored water failed to reveal TA conditioning in exposed groups. In Experiment 2, four groups of eight rats each (34 ± 2 kV/m or 133 ± 10 kV/m and two sham-exposed groups) were treated as before. Electric-field exposure had no effect on TA learning. Experiment 3 tested for a possible synergy between a minimal dose (for TA learning) of cyclophosphamide (6 mg/kg) and 5 h of exposure to 133 ± 10 kV/m electric fields in a dark environment under conditions otherwise similar to those of Experiments 1 and 2. The results indicated no TA learning as reflected in the relative consumption of saccharin.  相似文献   

7.
Honeybee colonies exposed under a 765-kV, 60-Hz transmission line at 7 kV/m show the following sequence of effects: 1) increased motor activity with transient increase in hive temperature; 2) abnormal propolization; 3) impaired hive weight gain; 4) queen loss and abnormal production of queen cells; 5) decreased sealed brood; and 6) poor winter survival. When colonies were exposed at 5 different E fields (7, 5.5, 4.1, 1.8, and 0.65–0.85 kV/m) at incremental distances from the line, different thresholds for biologic effects were obtained. Hive net weights showed significant dose-related lags at the following exposures: 7 kV/m, one week; 5.5 kV/m, 2 weeks; and 4.1 kV/m, 11 weeks. The two lowest exposure groups had normal weight after 25 weeks. Abnormal propolization of hive entrances did not occur below 4.1 kV/m. Queen loss occurred in 6 of 7 colonies at 7 kV/m and 1 of 7 at 5.5 kV/m, but not below. Foraging rates were significantly lower only at 7 and 5.5 kV/m. Hive weight impairment and abnormal propolization occur at lower E-field intensity than other effects and limit the “biological effects corridor” of the transmission line to approximately 23 m beyond a ground line projection of each outer phase wire. Intrahive E fields of 15–100 kV/m were measured with a displacement current sensor. Step-potential-induced currents up to 0.5 μA were measured in an electrically equivalent bee model placed on the honeycomb in a hive exposed at 7 kV/m. At 1.8 kV/m body currents were a few nanoamperes, or two orders of magnitude lower, and these colonies showed no effects. E-field versus electric shock mechanisms are discussed.  相似文献   

8.
White-footed mice, Peromyscus leucopus, were exposed to 60-Hz electric fields to study the relationship between field strength and three measures of the transient arousal response previously reported to occur with exposures at 100 kV/m. Five groups of 12 mice each were given a series of four 1-h exposures, separated by an hour, with each group exposed at one of the following field strengths: 75, 50, 35, 25, and 10 kV/m; 8 additional mice were sham-exposed with no voltage applied to the field generator. All mice were experimentally naive before the start of the experiment, and all exposures occurred during the inactive (lights-on) phase of the circadian cycle. The first exposure produced immediate increases in arousal measures, but subsequent exposures had no significant effect on any measure. These arousal responses were defined by significant increases of gross motor activity, carbon dioxide production, and oxygen consumption, and were frequently recorded with field strengths of 50 kV/m or higher. Significant arousal responses rarely occurred with exposures at lower field strengths. Responses of mice exposed at 75 and 50 kV/m were similar to previously described transient arousal responses in mice exposed to 100-kV/m electric fields. Less than half of the mice in each of the field strength groups below 50 kV/m showed arousal responses based on Z (standard) scores, but the arousals of the mice that did respond were similar to those of mice exposed at higher field strengths. Polynomial regression was used to calculate the field strength producing the greatest increases for each of the arousal measures. The results show that the amplitude of the transient arousal response is related to the strength of the electric field, but different measures of arousal may have different relationships to field strength.  相似文献   

9.
Eskov  E. K. 《Biophysics》2020,65(3):479-486

Bees, wasps, and ants have no specialized receptors for the perception of an electric field. An appropriate response to naturally occurring electric fields in bees and ants is associated with atmospheric exposure, amplified by the approach of the front of a thunderstorm. The primary transducers of mechanoreceptors that respond to displacement are related to the perception of low-frequency electric fields of high intensity by insects. The non-specific mechanism of perception of electric fields is based on irritation by induced currents that flow in the locations of their contact with each other and/or conductive surfaces. The frequency dependence of the electric field sensitivity is determined mainly by the magnitude of the current induced by it and the intensity of its contact action. The magnitude of the current induced in the outer part of the insect body is non-linearly related to the frequency of the electric field. The region with the highest sensitivity to electric fields is close to 500 Hz, which is consistent with the maximum magnitude of the induced current. At the same time, the threshold of the sensitivity to an electric field in wasps is approximately 0.04 kV/m, while in bees it is 0.45 kV/m. Ants react to the action of an electric field of 7–10 kV/m by slowing their movement. Magnetic fields and ionization, which accompany the generation of an electric field whose intensity reaches 15–20 kV/m, do not stimulate changes in the behavior of insects.

  相似文献   

10.
Air ions and direct current (DC) electric fields have been reported to exert subtle behavioral and biological effects on rodents and humans. These effects often appear inconsistent, yet there have been few attempts to resolve these inconsistencies by experimental replication. Rats exposed to negatively or positively charged air ions over a wide range of concentrations and exposure periods have been reported to show alterations in their level of locomotor activity. In this study, locomotor activity of Sprague-Dawley rats was quantified during exposure to either unipolar air ions and DC fields of the same polarity or DC fields alone. Both polarities were studied. Air ion concentrations were 5.0 X 10(3), DC fields were 3 kV/m, and exposures lasted 2, 18, or 66 h. In one experiment rats were exposed to DC fields of 12 kV/m. No exposure condition exerted any effect on locomotor activity or rearing behavior. In addition, no behavioral perturbations were observed after the onset of any of the exposure conditions, suggesting that the rats may have failed to detect the altered environment.  相似文献   

11.
In vivo effects of Static Electric and ELF Magnetic and Electric fields have been carried out for more than 20 years in the Bioelectromagnetic Laboratory at the Biophysics Department of the Medical Faculty of Gazi University. In this article, the results of in vivo ELF Electric field studies are presented as a review. Static and 50 Hz ELF (Extremely Low Frequency) Electric (E) fields effects on free radical synthesis, antioxidant enzyme level, and collagen synthesis were analyzed on tissues of guinea pigs, such as brain, liver, lung, kidney, spleen, testis, and plasma. Animals were exposed to static and ELF electric fields with intensities ranging from 0.3 kV/m to 1.9 kV/m in vertical and horizontal directions. Exposure periods were 1, 3, 5, 7, and 10 days. Electric fields were generated from a specially designed parallel plate capacitor system. The results indicate that the effects of electric fields on the tissues studied depend significantly on the type and magnitude of electric field and exposure period.  相似文献   

12.
Rats, given the choice, avoid exposure to alternating current (ac) 60-Hz electric fields at intensities ? 75 kV/m. This study investigated the generality of this behavior by studying the response of rats when exposed to high voltage direct current (HV dc) electric fields. Three hundred eighty male Long Evans rats were studied in 9 experiments with 40 rats per experiment and in one experiment with 20 rats to determine 1) if rats avoid exposure to HVdc electric fields of varying field strengths, and 2) if avoidance did occur, what role, if any, the concentration of air ions would have on the avoidance behavior. In all experiments a three-compartment glass shuttlebox was used; either the left or right compartment could be exposed to a combination of HVdc electric fields and air ions while the other compartment remained sham-exposed. The third, center compartment was a transition zone between exposure and sham-exposure. In each experiment, the rats were individually assessed in 1-h sessions where half of the rats (n = 20) had the choice to locomote between the two sides being exposed or sham-exposed, while the other half of the rats'(n = 20) were sham-exposed regardless of their location, except in one experiment where there was no sham-exposed group. The exposure levels for the first six experiments were 80, 55, 42.5, 30, ?36, and ?55 kV/m, respectively. The air ion concentration was constant at 1.4 × 106 ions/cc for the four positive exposure levels and ?1.4 × 106 ions/cc for the two negative exposure levels. Rats having a choice between exposure and non-exposure relative to always sham-exposed control animals significantly reduced the amount of time spent on the exposed side at 80kV/m (P < .002) as they did at both 55 and ?55 kV/m (P < .005). No significant differences between groups were observed at 42.5, 30, or -36 kV/m. To determine what role the air ion concentration might have had on the avoidance behavior at field strengths of 55 kV/m or greater, four additional experiments were conducted. The HVdc exposure level was held constant at either ?55 kV/m (for three experiments) or -55 kV/m (for 1 experiment) while the air ion concentration was varied between experiments at 2.5 × 105 ions/cc, 1.0 × 104 for two of the experiments and was below the measurement limit (< ± 2 × 103 ions/cc) for the other two experiments at 55 and ?55 kV/m. The exposed rats significantly reduced the amount of time spent on the exposed side at 55 and ?55 kV/m, relative to the sham-exposed rats regardless of air ion concentration (all at P < .005). Thus, HVdc electric fields of ? + or ?55 kV/m are sufficient to produce avoidance behavior in rats. Positive or negative air ion concentrations were not significant factors in these avoidance outcomes. © 1993 Wiley-Liss, Inc.  相似文献   

13.
Rats were trained to press levers to indicate the presence or absence of 60-Hz vertical electric fields at intensities from 0 to 27 kV/m (rms). The probability of detecting the field increased as the strength of the field increased. The shape of the detection curve (psychometric function) for most subjects (Ss) was similar whether the discriminative stimulus was the electric field or a tone. Two protocols were used to estimate the minimum field intensity necessary to detect the field (Reiz Limen, RL). The RL was estimated to be 13.3 kV/m (rms) when using one protocol (the staircase method) and 7.9 kV/m (rms) when using another protocol (the method of constant stimuli).  相似文献   

14.
The goal of this study was to address some of the factors that contribute to the human ability to detect the presence of weak electric fields generated by direct current (DC) and alternating current (AC) sources. An exposure chamber allowed us to expose a limited surface of the body (forearm and hand) to DC fields of up to 65 kV/m and AC fields up to a maximum of 35 kV/m (frequency 60 Hz). Perception was examined using a staircase procedure and a rating procedure derived from signal detection theory. Sixteen subjects participated in the experiments, and none detected the local DC fields. In contrast, 9/16 subjects were sensitive to local AC electric fields, although detection thresholds (index of sensitivity, d' = 1.0) were widely variable between subjects. When regional exposure was limited to the dorsal forearm, performance was similar to that seen when the forearm and hand were exposed. In contrast, subjects did not reliably detect the AC electric fields when exposure was limited to the hand (either hairy or glabrous skin), although a minority of subjects (3/9) showed some evidence of detecting fields presented to the glabrous palm. Subjects were unable to detect AC electric fields when the hair was removed from the forearm and hand, suggesting that the evoked sensation is mainly dependent on movement of hair located in the exposed region.  相似文献   

15.
This investigation studied the effects of 50-Hz electric and magnetic fields on the pulse rate and blood pressure in humans. Electrocardiograms (ECG) and the blood pressure of 41 male volunteers were recorded using ambulatory methods. Twenty-six subjects were measured in and outside real fields and 15 subjects in and outside `sham' fields. The results of the ECG recordings have been presented earlier. This article deals with the analysis of the blood pressure measurements. Measurement took 3 hrs. First, the subjects spent 1 h outside the fields, then 1 h in real or `sham' fields, followed by 1 h outside the fields. The electric field strength varied from 3.5 to 4.3 kV/m and the magnetic flux density from 1.4 to 6.6 μT. When analysing the blood pressure, which was measured with a non-invasive cuff method, it could not be shown that the fields (<4.3 kV/m and <6.6 μT) affected diastolic or systolic blood pressure. Received: 6 June 1994 / Accepted in revised form: 11 March 1996  相似文献   

16.
The occupational exposure to electric and magnetic fields during various work tasks at seven 110 kV substations in Finland's Tampere region was studied. The aim was to investigate if the action values (10 kV/m for the E‐field and 500 µT for the B‐field) of the EU Directive 2004/40/EC were exceeded. Electric and magnetic fields were measured during the following work tasks: (1) walking or operating devices on the ground; (2) working from a service platform; (3) working around the power transformer on the ground or using a ladder; and (4) changing a bulb from a man hoist. In work task 2 “working from a service platform” the measured electric field (maximum value 16.6 kV/m) exceeded 10 kV/m in three cases. In the future it is important to study if the limit value (10 mA/m2) of Directive 2004/40/EC is exceeded at 110 kV substations. The occupational 500 µT action value of the magnetic flux density field (B‐field) was not exceeded in any working situation. Bioelectromagnetics 31:252–254, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
The neurophysiologic effects of combined 60-Hz electric (E) and magnetic (B) fields, of magnitudes comparable to those produced by high-voltage powerlines, were investigated in 10 monkeys (Macaca nemestrina). Six animals (experimental group) were each exposed to three different levels of E and B fields: 3 kV/m and 0.1 G, 10 kV/m and 0.3 G, and 30 kV/m and 0.9 G. Field exposures were preceded and followed by sham exposures, during which factors of field generation were present (e.g., heat, vibration, noise, etc.) without E and B fields. Each of the five segments (i.e., the three exposure segments and the initial and final sham exposure segments) lasted 3 weeks. Animals were exposed for 18 h/day (fields on at 1600 h, off at 1000 h). Four other animals (external control group) were given sham exposure for the entire 15-week period. Auditory, visual, and somatosensory evoked potentials were recorded twice a week, during the daily 6-h field-off period. E- and B-field exposure had no effect on the early or mid-latency evoked potential components, suggesting that exposure at these levels has no effect on peripheral or central sensory afferent pathways. However, there was a statistically significant decrease in the amplitudes of late components of the somatosensory evoked potential during the 10kV/m and 0.3 G, and 30 kV/m and 0.9 G exposure levels. This result is possibly related to the opiate antagonist effect of electromagnetic field exposure reported by others.  相似文献   

18.
Rats exposed for 3 weeks to uniform 60-Hz electric fields of 39 kV/m (effective field strength) failed to show normal pineal gland circadian rhythms in serotonin N-acetyl transferase activity and melatonin concentrations. The time required for recovery of the melatonin rhythm after cessation of field exposure was determined to be less than 3 days. The rapid recovery suggests that the overall metabolic competence of the pineal is not permanently compromised by electric-field exposure, and that the circadian rhythm effect may be neuronally mediated.  相似文献   

19.
This study was designed to assess the effect of exposure to long-term extremely low-frequency electric and magnetic fields (ELF-EMF) from a 500 kV transmission line on IL-1 and IL-2 activity in sheep. The primary hypothesis was that the reduction in IL-1 activity observed in our two previous short-term studies (10 months) was due to EMF exposure from this transmission line. To repeat and expand these studies and to characterize the components of EMF responsible for the previously observed reduction in IL-1 activity, the current experiment examined not only the effect of exposure to electric and magnetic fields, but also the magnetic field component alone. In the current study, IL-2 was examined to characterize the effects of EMF exposure on an indicator of T cell responses. 45 Suffolk ewe lambs were randomized into three groups of 15 animals each. One group of animals was placed in the EMF pen, located directly beneath the transmission line. A second group was placed in the shielded MF (magnetic field only) pen, also directly beneath the transmission line. The third group of animals was placed in the control pen located several hundred meters away from the transmission line. During the 27 month exposure period, blood samples were taken from all animals monthly. When the data were analyzed collectively over time, no significant differences between the groups were found for IL-1 or IL-2 activity. In previous studies ewe lambs of 8-10 weeks of age were used as the study animals and significant differences in IL-1 activity were observed after exposure of these animals to EMF at mean magnetic fields of 3.5-3.8 microT (35-38 mG) and mean electric fields of 5.2-5.8 kV/m. At the start of the current study EMF levels were reduced as compared to previous studies. One interpretation of the current data is that magnetic field strength and age of the animals may be important variables in determining whether EMF exposure will affect IL-1 activity.  相似文献   

20.
Results are presented of an investigation on electric and magnetic fields leaking from inductive (magnetic) heaters that are used for thermal processing of high-power electron tubes and lasers in an industrial plant. Measurements of electric and magnetic fields were done using both commercially available and laboratory-developed instrumentation. Isotropic H-field sensors were developed to allow quantitative evaluation of high-intensity magnetic fields. Ten induction heaters with nominal A.C. power ranging from 2.5 kW to 15 kW and operating at frequencies between 300 kHz and 790 kHz were surveyed. Electric field strengths up to 8 kV/m and magnetic field strengths up to 20 A/m were measured.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号