首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bioactivity of synthetic human pancreastatin on exocrine pancreas   总被引:1,自引:0,他引:1  
A biological activities of synthetic human pancreastatin (1-52) and its C-terminal fragment (24-52) were evaluated for the first time in the conscious rats. Both pancreastatins inhibited CCK-stimulated pancreatic secretion in a range of 20-200 pmol/kg/h with the same potency, indicating that the C-terminal portion of this peptide has a full biological activity. The relative molar potency of this substance compared to that of porcine pancreastatin was equivalent. This study suggests that human pancreastatin has the same biological activity as that of porcine, and plays a biological action in the exocrine pancreas.  相似文献   

2.
We have recently found the calcium dependent glycogenolytic effect of pancreastatin on rat hepatocytes and the mobilization of intracellular calcium. To further investigate the mechanism of action of pancreastatin on liver we have studied its effect on guanylate cyclase, adenylate cyclase, and phospholipase C, and we have explored the possible involvement of GTP binding proteins by measuring GTPase activity as well as the effect of pertussis toxin treatment of plasma liver membranes on the pancreastatin stimulated GTPase activity and the production of cyclic GMP and myo-inositol 1,4,5-triphosphate. Pancreastatin stimulated GTPase activity of rat liver membranes about 25% over basal. The concentration dependency curve showed that maximal stimulation was achieved at 10?7 M pancreastatin (EC50 = 3 nM). This stimulation was partially inhibited by treatment of the membranes with pertussis toxin. The effect of pancreastatin on guanylate cyclase and phospholipase C were examined by measuring the production of cyclic GMP and myo-inositol 1,4,5-triphosphate respectively. Pancreastatin increased the basal activity of guanylate cyclase to a maximum of 2.5-fold the unstimulated activity at 30°C, in a time- and dose-dependent manner, reaching the maximal stimulation above control with 10?7 M pancreastatin at 10 min (EC50 = 0.6 nM). This effect was completely abolished when rat liver membranes had been ADP-ribosylated with pertussis toxin. On the other hand, adenylate cyclase activity was not affected by pancreastatin. Phospholipase C activity of rat liver membranes was rapidly stimulated (within 2–5 min) at 30°C by 10?7 M pancreastatin, reaching a maximum at 15 min. The dose response curve showed that with 10?7 M pancreastatin, maximal stimulation was obtained (EC50 = 3 nM). GTP (10?5 M) stimulated the membrane-bound phospholipase C as expected. However, the incubation of rat liver membranes with GTP partially inhibited the stimulation of phospholipase C activity produced by pancreastatin, whereas GTP enhanced the activation of phospholipase C by vasopressin. This inhibition by GTP was dose dependent and 10?5 M GTP obtained the maximal inhibition (about 40%). the inhibitory effect of GTP on the stimulatory effect of pancreastatin on phospholipase C activity was completely abolished when rat liver membranes had previously been ADP-ribosylated with pertussis toxin. The presence of 8-Br-cGMP mimics the effect of GTP, whereas GMP-PNP increased both basal and pancreastatin-stimulated phospholipase C, suggesting a role of the cyclic GMP as a feed-back regulator of the synthesis of myo-inositol 1,4,5-triphosphate. However, the pretreatment of membranes with pertussis toxin did not modify the production of myo-Inositol 1,4,5-triphosphate stimulated by pancreastatin. In conclusion, pancreastatin activates guanylate cyclase activity and phospholipase C involving different pathways, pertussis toxin-sensitive, and -insensitive, respectively. © 1994 Wiley-Liss, Inc.  相似文献   

3.
Pancreastatin, a chromogranin A derived peptide, exerts a glycogenolytic effect on the hepatocyte. This effect is initiated by binding to membrane receptors which are coupled to pertussis toxin insensitive G proteins belonging to the Gq/11 family. We have recently solubilized active pancreastatin receptors from rat liver membranes still functionally coupled to G proteins. Here, we have purified pancreastatin receptors by a two-step procedure. First, pancreastatin receptors with their associated Gq/11 regulatory proteins were purified from liver membranes by lectin absorption chromatography on wheat germ agglutinin immobilized on agarose. A biotinylated rat pancreastatin analog was tested for binding to liver membranes before using it for affinity purification. Unlabeled biotinylated rat pancreastatin competed for 125I-labeled [Tyr0]PST binding to solubilized receptors with a Kd = 0.27 nM, comparable to that of native pancreastatin. The biotinylated analog was immobilized on streptavidin-coated Sepharose beads and used to further affinity purify wheat germ agglutinin eluted receptor material. Specific elution at low pH showed that the receptor protein was purified as an 80-kDa protein in association with a G protein of the q/11 family, as demonstrated by specific immunoblot analysis. The specificity of the receptor band was assessed by chemical cross-linking of the purified material followed by SDS-PAGE and autoradiography. In conclusion, we have purified pancreastatin receptor as a glycoprotein of 80 kDa physically associated with a Gq/11 protein.  相似文献   

4.
In the liver, pancreastatin exerts a glycogenolytic effect through interaction with specific receptors, followed by activation of phospholipase C and guanylate cyclase. Pancreastatin receptor seems to be coupled to two different G protein systems: a pertussis toxin-insensitive G protein that mediates activation of phospholipase C, and a pertussis toxin sensitive G protein that mediates the cyclic GMP production. The aim of this study was to identify the specific G protein subtypes coupling pancreastatin receptors in rat liver membranes. GTP binding was determined by using gamma-35S-GTP; specific anti-G protein alpha subtype sera were used to block the effect of pancreastatin receptor activation. Activation of G proteins was demonstrated by the incorporation of the photoreactive GTP analogue 8-azido-alpha-32P-GTP into liver membranes and into specific immunoprecipitates of different Galpha subunits from soluble rat liver membranes. Pancreastatin stimulation of rat liver membranes increases the binding of gamma-35S-GTP in a time- and dose-dependent manner. Activation of the soluble receptors still led to the pancreastatin dose-dependent stimulation of gamma-35S-GTP binding. Besides, WGA semipurified receptors also stimulates GTP binding. The binding was inhibited by treatment with anti-Galphaq/11 (85%) and anti-Galphai1,2 (15%) sera, whereas anti-Galphao,i3 serum failed to affect the binding. Finally, pancreastatin stimulates GTP photolabeling of particulate membranes. Moreover, it specifically increased the incorporation of 8-azido-alpha-32P-GTP into Galphaq/11 and Galpha, but not into Galphao,i3 from soluble rat liver membranes. In conclusion, pancreastatin stimulation of rat liver membranes led to the activation of Galphaq/11 and Galphai1,2 proteins. These results suggest that Galphaq/11 and Galphai1,2 may play a functional role in the signaling of pancreastatin receptor by mediating the production of IP3 and cGMP respectively.  相似文献   

5.
We have studied the effects of pancreastatin on insulin and glucagon secretions in vivo in the conscious rat. Rats were prepared with a gastric fistula and with both external jugular veins cannulated. We found that an i.v. infusion of pancreastatin (1 and 10 nmol/kg/h) inhibited the plasma insulin response and increased the plasma glucose response to the intragastric infusion of glucose in a dose-dependent manner. Furthermore, the infusion of pancreastatin increased the plasma glucagon response to the i.v. infusion of arginine in a dose-dependent manner, and it inhibited the plasma insulin response. However, such an infusion of pancreastatin had no effect on the basal plasma glucose level, nor did it have any effect on plasma insulin and glucagon concentrations. Thus, it is suggested that in the rat, the newly discovered pancreastatin is a regulator of islet cell function.  相似文献   

6.
The effect of newly discovered pancreastatin on pancreatic secretion stimulated by a diversion of bile-pancreatic juice (BPJ) from the intestine was examined in the conscious rat. Exogenous pancreastatin infusion (20, 100 and 200 pmol/kg.h) inhibited pancreatic protein and fluid outputs during BPJ diversion in a dose-dependent manner. Pancreastatin did not affect plasma cholecystokinin (CCK) concentrations. Pancreastatin (100 pmol/kg.h) inhibited CCK-stimulated pancreatic secretion, but did not inhibit secretin-stimulated pancreatic secretion. Pancreastatin alone, however, did not affect basal pancreatic secretion. In contrast, pancreastatin (10(-10)-10(-7)M) did not suppress CCK-stimulated amylase release from isolated rat pancreatic acini. These results indicate that pancreastatin has an inhibitory action on exocrine function of the pancreas. This action may not be mediated by direct mechanisms and nor via an inhibition of CCK release. It is suggested that pancreastatin may play a role in the regulation of the intestinal phase of exocrine pancreatic secretion.  相似文献   

7.
Effects of synthetic rat pancreastatin C-terminal fragment on both exocrine and endocrine pancreatic functions were examined in rats, in vivo and in vitro. Pancreastatin (20, 100 pmol, 1 nmol/kg/h) significantly inhibited CCK-8-stimulated pancreatic juice flow and protein output in a dose-related manner, in vivo. The inhibitory effect on bicarbonate output was not statistically significant. Pancreastatin did not significantly inhibit basal pancreatic secretions in vivo, and did not inhibit amylase release from the dispersed acini, in vitro. Insulin release stimulated by intragastric administration of glucose (5 g/kg) was significantly inhibited by pancreastatin (1 nmol/kg/h), in vivo. Plasma glucose concentrations were increased by pancreastatin infusion, but the increase was not statistically significant. Furthermore, pancreastatin inhibited insulin release from isolated islets, in vitro. Synthetic rat C-terminal pancreastatin fragment has bioactivities on both exocrine and endocrine pancreatic functions in rats.  相似文献   

8.
Pancreastatin is a novel 49-amino acid peptide with a C-terminal glycine amide. The peptide was isolated from porcine pancreatic extracts and shows a structural similarity to chromogranin A. The effect of synthetic porcine pancreastatin on blood glucose levels and hepatic glycogen content was investigated in ratsin vivo. Pancreastatin (300 pmol/kg) produced a time-dependent decrease in glycogen content of liver and a slight hyperglycemia. Basal plasma insulin and glucagon levels were not modified by pancreastatin. We suggest that pancreastatin could play a biological role in the glucose metabolism through a glycogenolytic effect.  相似文献   

9.
The effects of porcine pancreastatin on insulin release stimulated by insulinotropic agents, glucagon, cholecystokinin-octapeptide (CCK-8), gastric inhibitory polypeptide (GIP) and L-arginine, were compared to those of bovine chromogranin A (CGA) using the isolated perfused rat pancreas. Pancreastatin significantly potentiated glucagon-stimulated insulin release (first phase: 12.5 +/- 0.9 ng/8 min; second phase: 34.5 +/- 1.6 ng/25 min in controls; 16.5 +/- 1.1 ng/8 min and 44.0 +/- 2.2 ng/25 min in pancreastatin group), whereas CGA was ineffective. The first phase of L-arginine-stimulated insulin release was also potentiated by pancreastatin (6.9 +/- 0.5 ng/5 min in controls, 8.4 +/- 0.6 ng/5 min in pancreastatin group), but not by CGA. Pancreastatin did not affect CCK-8 or GIP-stimulated insulin release. Similarly, CGA did not affect insulin release stimulated by CCK-8 or GIP. These findings suggest that pancreastatin stimulates insulin release in the presence of glucagon. Because pancreastatin can have multiple effects on insulin release, which are dependent upon the local concentration of insulin effectors, pancreastatin may participate in the fine tuning of insulin release from B cells.  相似文献   

10.
The ECL cells in the oxyntic mucosa of rat stomach produce histamine and chromogranin A-derived peptides such as pancreastatin. The cells respond to gastrin via cholecystokinin-2 (CCK2) receptors. A CCK2 receptor blockade was induced by treatment (for up to 8 weeks) with two receptor antagonists, YM022 and YF476. Changes in ECL-cell morphology were examined by immunocytochemistry and electron microscopy, while changes in ECL cell-related biochemical parameters were monitored by measuring serum pancreastatin and oxyntic mucosal pancreastatin, and histamine concentrations, and histidine decarboxylase (HDC) activity. The CCK2 receptor blockade reduced the ECL-cell density only marginally, if at all, but transformed the ECL cells from slender, elongated cells with prominent projections to small, spherical cells without projections. The Golgi complex and the rough endoplasmic reticulum were diminished. Secretory vesicles were greatly reduced in volume density in the trans Golgi area. Circulating pancreastatin concentration and oxyntic mucosal HDC activity were lowered within a few hours. Oxyntic mucosal histamine and pancreastatin concentrations were reduced only gradually. The CCK2 receptor blockade was found to prevent the effects of omeprazole-evoked hypergastrinaemia on the ECL-cell activity and density. In conclusion, gastrin, acting on CCK2 receptors, is needed to maintain the shape, size and activity of the ECL cells, but not for maintaining the ECL-cell population.  相似文献   

11.
The presumptive C-terminal nonapeptide of rat pancreastatin was synthesised based upon the sequence of rat chromogranin A (CGA) analogous to that of porcine pancreastatin as contained within porcine CGA. Antisera were produced which were used to determine the qualitative and quantitative distribution of pancreastatin-like immunoreactivity in rat tissues by immunocytochemistry and radioimmunoassay respectively. Pancreastatin-like immunoreactivity was most abundant in pituitary, adrenal, gastric corpus and thyroid with considerably lower levels detected in the remainder of the gastroentero-pancreatic system and brain. Immunoreactivity was localised exclusively in endocrine cells and the relative abundance of immunoreactive cells paralleled the levels obtained radioimmunometrically. Chromatographic characterisation of pancreastatin-like immunoreactivity revealed molecular heterogeneity. Immunoreactive peptides of similar size to synthetic rat pancreastatin were present in gastrointestinal tissues and thyroid. These data indicate a tissue specific processing of CGA in the rat.  相似文献   

12.
The identification of pancreastatin in pancreatic extracts prompted the investigation of its effects on islet cell function. However, in most of the investigations to date, pig pancreastatin was tested in heterologous species. Since there is great interspecies variability in the amino acid sequence of pancreastatin, we have investigated the influence of rat pancreastatin on insulin, glucagon and somatostatin secretion in a homologous animal model, namely the perfused rat pancreas. During 5.5 mM glucose infusion, pancreastatin (40 nM) inhibited insulin secretion (ca. 40%, P less than 0.025) as well as the insulin responses to 10 mM arginine (ca. 50%, P less than 0.025) and to 1 nM vasoactive intestinal polypeptide (ca. 50%; P less than 0.05). Pancreastatin failed to significantly modify glucagon or somatostatin release under any of the above experimental conditions. In addition, a lower pancreastatin concentration (15.7 nM) markedly suppressed the insulin release evoked by 11 mM glucose (ca. 85%, P less than 0.05). Our present observations reinforce the concept that pancreastatin is an effective inhibitor of insulin secretion, influencing the B-cell function directly and not through an A-cell or D-cell paracrine effect.  相似文献   

13.
Histamine in the rat stomach resides in enterochromaffin-like (ECL) cells and mast cells. The ECL cells are peptide-hormone-producing endocrine cells known to release histamine and chromogranin-A-derived peptides (such as pancreastatin) in response to gastrin. Ischemia (induced by clamping of the celiac artery or by gastric submucosal microinfusion of the vasoconstrictor endothelin) mobilizes large amounts of ECL-cell histamine in a burst-like manner. This report examines the ECL-cell response to ischemia and compares it with that induced by gastrin in rats. Arterial clamping (30 min) and gastric submucosal microinfusion (3 h) of endothelin, vasopressin, or adrenaline caused ischemia, manifested as a raised lactate/pyruvate ratio and mucosal damage. Whereas microinfusion of gastrin released both histamine and pancreastatin, ischemia mobilized histamine only. The mucosal concentrations of histamine and pancreastatin, the number and immunostaining intensity of the ECL cells, and the ultrastructure of the ECL cells were unchanged following ischemia. The long-term effects of ischemia and reperfusion (60-90 min) on gastric mucosa were examined in rats treated with the proton pump inhibitor omeprazole for 4 days. The activity of the ECL cells was suppressed (reflected in low histamine-forming capacity) but returned to normal within 1 week, illustrating the ability of the ECL cells to recover. We suggest that ischemia mobilizes cytosolic ECL-cell histamine without affecting the storage of histamine (and pancreastatin) in the secretory organelles and without causing lasting ECL-cell impairment.  相似文献   

14.
Pancreastatin is a novel peptide, isolated from porcine pancreatic extracts, which has been shown to inhibit glucose-induced insulin release "in vitro". To achieve further insight into the influence of pancreastatin on pancreatic hormone secretion, we have studied the effects of this peptide on unstimulated insulin, glucagon and somatostatin output, as well as on the responses of these hormones to glucose and to tolbutamide in the perfused rat pancreas. Pancreastatin strongly inhibited unstimulated insulin release as well as the insulin responses to glucose and to tolbutamide. It did not significantly affect glucagon or somatostatin output under any of the above-mentioned conditions. These findings suggest that pancreastatin inhibits B-cell secretory activity directly, and not through an A-cell or D-cell paracrine effect.  相似文献   

15.
A protein with pancreastatin-like immunoreactivity has been isolated and purified from liver metastasis of a patient with insulinoma. NH2-terminal residue analysis, in conjunction with the use of antibodies that are specific for the C-terminal amide peptide of porcine pancreastatin, identified this protein as a 186-amino-acid protein corresponding to human chromogranin A-116-301 (the fragment corresponding to the positions from 116 to 301 of human chromogranin A). Digestion of this protein with trypsin yielded a 48-amino-acid peptide with the retention of full pancreastatin activity. Serum from patient with insulinoma contains a peptide specie(s) that comigrates with the 48-amino-acid pancreastatin, suggesting that this peptide might be a physiologically important circulation form of pancreastatin in humans. A sensitive radioimmunoassay was established using antibody developed against a synthetic 29-amino-acid peptide amide of pancreastatin. Immunocytochemical staining revealed that a major population of human pancreatic islet cells were immunoreactive to the antiserum but with varying intensity of staining. Pancreastatin-like immunoreactivity was not observed in exocrine acinar cells.  相似文献   

16.
S Lindskog  B Ahrén 《Hormone research》1988,29(5-6):237-240
The effects of the two intrapancreatic peptides galanin and pancreastatin on basal and stimulated insulin and glucagon secretion in the mouse were compared. It was found that at 2 min after intravenous injection of galanin or pancreastatin (4.0 nmol/kg), basal plasma glucagon and glucose levels were slightly elevated. Galanin was more potent than pancreastatin to elevate basal plasma glucagon levels: they increased from 60 +/- 15 to 145 +/- 19 pg/ml (p less than 0.01) after galanin compared to from 35 +/- 5 to 55 +/- 8 pg/ml (p less than 0.05) after pancreastatin. Plasma insulin levels were lowered by galanin (p less than 0.05), but not by pancreastatin. CCK-8 (6.3 nmol/kg) or terbutaline (3.6 mumol/kg) markedly increased the plasma insulin levels. Galanin (4.0 nmol/kg) completely abolished the insulin response to CCK-8 (p less than 0.001), but pancreastatin (4.0 nmol/kg) was without effect. Galanin inhibited the insulin response to terbutaline by approximately 60% (p less than 0.01), but pancreastatin inhibited the insulin response to terbutaline by approximately 35% only (p less than 0.05). CCK-8 and terbutaline did both elevate plasma glucagon levels by moderate potencies: neither pancreastatin nor galanin could affect these responses. Thus, in the mouse, galanin and pancreastatin both inhibit basal and stimulated insulin secretion, and stimulate basal glucagon secretion. Galanin is thereby more potent than pancreastatin. The study also showed that galanin potently inhibits insulin secretion stimulated by the octapeptide of cholecystokin and by the beta 2-adrenoceptor agonist terbutaline, and that pancreastatin inhibits terbutaline-induced insulin secretion.  相似文献   

17.
The effects of the 33-49 C-terminal fragment of pancreastatin on glycogen content, glycemia, insulinemia and glucagonemia were studied in the rat in vivo. It was found that after intramesenteric vein injection of the peptide, the glycogen content of liver decreased compared with control group injected with saline-1 < % BSA. Blood glucose levels were increased by the C-terminal fragment of pancreastatin. This study shows that the 33-49 C-terminal fragment of pancreatasin could play a role in glucose metabolism not mediated by insulin or glucagon.  相似文献   

18.
In the anaesthetized dog, porcine pancreastatin (98 pmol/min) was infused for 10 min into the pancreaticoduodenal artery either alone or during infusion of glucose. Blood was sampled from the pancreaticoduodenal vein. We found that pancreastatin inhibited pancreatic insulin output only under normoglycaemic conditions. Furthermore, pancreastatin significantly stimulated pancreatic glucagon and somatostatin outputs both during normo- and hyperglycaemic conditions. Our results show that pancreastatin has the capability to affect directly the three pancreatic hormone secretions in dogs.  相似文献   

19.
It has been characterized that cell line QGP-1 derived from human non-functioning pancreatic islet cell tumor produces human pancreastatin. Exponentially growing cultures produced 5.7 fmol of pancreastatin/10(6) cells/hr. Human pancreastatin immunoreactivities in plasma and tumor after xenografting with QGP-1 into nude mouse were 92.7 fmol/ml and 160.2 pmol/g wet weight, respectively. Immunocytochemical study revealed both chromogranin A and pancreastatin immunoreactive cells in the tumor. Gel filtrations of culture medium and tumor extract identified heterogenous molecular forms of PST-LI which eluted as large and smaller molecular species. These results suggest that plasma pancreastatin levels may be useful as a tumor marker of endocrine tumor of the pancreas, and the pancreastatin producing cell line may be useful for studies of the mechanism of secretions and processing of chromogranin A and pancreastatin.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号