首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BackgroundThe objective of this study is to determine the impact of intensity modulated proton therapty (IMPT) optimization techniques on the proton dose comparison of commercially available magnetic resonance for calculating attenuation (MRCA T) images, a synthetic computed tomography CT (sCT) based on magnetic resonance imaging (MRI) scan against the CT images and find out the optimization technique which creates plans with the least dose differences against the regular CT image sets.Material and methodsRegular CT data sets and sCT image sets were obtained for 10 prostate patients for the study. Six plans were created using six distinct IMPT optimization techniques including multi-field optimization (MFO), single field uniform dose (SFUD) optimization, and robust optimization (RO) in CT image sets. These plans were copied to MRCA T, sCT datasets and doses were computed. Doses from CT and MRCA T data sets were compared for each patient using 2D dose distribution display, dose volume histograms (DVH), homogeneity index (HI), conformation number (CN) and 3D gamma analysis. A two tailed t-test was conducted on HI and CN with 5% significance level with a null hypothesis for CT and sCT image sets.ResultsAnalysis of ten CT and sCT image sets with different IMPT optimization techniques shows that a few of the techniques show significant differences between plans for a few evaluation parameters. Isodose lines, DVH, HI, CN and t-test analysis shows that robust optimizations with 2% range error incorporated results in plans, when re-computed in sCT image sets results in the least dose differences against CT plans compared to other optimization techniques. The second best optimization technique with the least dose differences was robust optimization with 5% range error.ConclusionThis study affirmatively demonstrates the impact of IMPT optimization techniques on synthetic CT image sets dose comparison against CT images and determines the robust optimization with 2% range error as the optimization technique which gives the least dose difference when compared to CT plans.  相似文献   

2.
By studying 211 females by currently available radiation techniques, such as X-ray study, ultrasonography, and magnetic resonance imaging mammography (MRIM), the authors consider that the specificity of contrast-enhanced MRIM (CE MRIM) is greater than that of MRIM without administering magnetic resonance contrast agents (MRCA). CE MRIM reveals clinically suspicious early-stage breast lesions and defines the stage of a tumorous process, the patients being unexposed to ionizing irradiation. CE MRIM as an auxiliary technique becomes one of the most informative ones, particularly in girls, early reproductive-age females with developed glandular tissue, and pregnant females. In the authors' opinion, the total algorithm of a breast study in this group of patients in specialized medical centers where trained physicians work should differ from the generally accepted algorithm: instead of applying X-ray mammography (XRM) as a basic method of primary diagnosis, ultrasound mammography using Doppler color mapping, followed by MRIM or XRM should be employed.  相似文献   

3.
K Minagawa  Y Kasuya  S Baba  G Knapp  J P Skelly 《Steroids》1986,47(2-3):175-188
Identification of 6 beta-hydroxydexamethasone as a major urinary metabolite of dexamethasone in man has been accomplished by nuclear magnetic resonance spectroscopy and gas chromatography-mass spectrometry. Mass fragmentographic measurements revealed that more than 30% of the intravenously or orally administered dexamethasone dose was excreted in the 24-h urine as 6 beta-hydroxydexamethasone, while only a small fraction of the dose was excreted as unchanged dexamethasone and its glucuronic acid conjugate.  相似文献   

4.
Auditory detection is essential for survival and reproduction of vertebrates, yet the genetic changes underlying the evolution and diversity of hearing are poorly documented. Recent discoveries concerning prestin, which is responsible for cochlear amplification by electromotility, provide an opportunity to redress this situation. We identify prestin genes from the genomes of 14 vertebrates, including three fishes, one amphibian, one lizard, one bird, and eight mammals. An evolutionary analysis of these sequences and 34 previously known prestin genes reveals for the first time that this hearing gene was under positive selection in the most recent common ancestor (MRCA) of tetrapods. This discovery might document the genetic basis of enhanced high sound sensibility in tetrapods. An investigation of the adaptive gain and evolution of electromotility, an important evolutionary innovation for the highest hearing ability of mammals, detects evidence for positive selections on the MRCA of mammals, therians, and placentals, respectively. It is suggested that electromotility determined by prestin might initially appear in the MRCA of mammals, and its functional improvements might occur in the MRCA of therian and placental mammals. Our patch clamp experiments further support this hypothesis, revealing the functional divergence of voltage-dependent nonlinear capacitance of prestin from platypus, opossum, and gerbil. Moreover, structure-based cdocking analyses detect positively selected amino acids in the MRCA of placental mammals that are key residues in sulfate anion transport. This study provides new insights into the adaptation and functional diversity of hearing sensitivity in vertebrates by evolutionary and functional analysis of the hearing gene prestin.  相似文献   

5.
Urea functions as a key osmolyte in the urinary concentrating mechanism of the inner medulla. The urea transporter UT-A1 is upregulated by antidiuretic hormone, facilitating faster equilibration of urea between the lumen and interstitium of the inner medullary collecting duct, resulting in the formation of more highly concentrated urine. New methods in dynamic nuclear polarization, providing ~50,000-fold enhancement of nuclear magnetic resonance signals in the liquid state, offer a novel means to monitor this process in vivo using magnetic resonance imaging. In this study, we detected significant signal differences in the rat kidney between acute diuretic and antidiuretic states, using dynamic (13)C magnetic resonance imaging following a bolus infusion of hyperpolarized [(13)C]urea. More rapid medullary enhancement was observed under antidiuresis, consistent with known upregulation of UT-A1.  相似文献   

6.
7.
Brain activity during rest is spatially coherent over functional connectivity networks called resting-state networks. In resting-state functional magnetic resonance imaging, independent component analysis yields spatially distributed network representations reflecting distinct mental processes, such as intrinsic (default) or extrinsic (executive) attention, and sensory inhibition or excitation. These aspects can be related to different treatments or subjective experiences. Among these, exhaustion is a common psychological state induced by prolonged mental performance. Using repeated functional magnetic resonance imaging sessions and spatial independent component analysis, we explored the effect of several hours of sustained cognitive performances on the resting human brain. Resting-state functional magnetic resonance imaging was performed on the same healthy volunteers in two days, with and without, and before, during and after, an intensive psychological treatment (skill training and sustained practice with a flight simulator). After each scan, subjects rated their level of exhaustion and performed an N-back task to evaluate eventual decrease in cognitive performance. Spatial maps of selected resting-state network components were statistically evaluated across time points to detect possible changes induced by the sustained mental performance. The intensive treatment had a significant effect on exhaustion and effort ratings, but no effects on N-back performances. Significant changes in the most exhausted state were observed in the early visual processing and the anterior default mode networks (enhancement) and in the fronto-parietal executive networks (suppression), suggesting that mental exhaustion is associated with a more idling brain state and that internal attention processes are facilitated to the detriment of more extrinsic processes. The described application may inspire future indicators of the level of fatigue in the neural attention system.  相似文献   

8.
Both functional and also more recently resting state magnetic resonance imaging have become established tools to investigate functional brain networks. Most studies use these tools to compare different populations without controlling for potential differences in underlying brain structure which might affect the functional measurements of interest. Here, we adapt a simulation approach combined with evaluation of real resting state magnetic resonance imaging data to investigate the potential impact of partial volume effects on established functional and resting state magnetic resonance imaging analyses. We demonstrate that differences in the underlying structure lead to a significant increase in detected functional differences in both types of analyses. Largest increases in functional differences are observed for highest signal-to-noise ratios and when signal with the lowest amount of partial volume effects is compared to any other partial volume effect constellation. In real data, structural information explains about 25% of within-subject variance observed in degree centrality – an established resting state connectivity measurement. Controlling this measurement for structural information can substantially alter correlational maps obtained in group analyses. Our results question current approaches of evaluating these measurements in diseased population with known structural changes without controlling for potential differences in these measurements.  相似文献   

9.
It is becoming increasingly apparent that precise knowledge of the anatomic features of muscle, aponeurosis, and tendons is necessary for understanding how a muscle-tendon complex generates force and accomplishes length changes. This report presents both anatomic and functional data from the human soleus muscle acquired by using magnetic resonance imaging. The results show a strong relationship between the complex three-dimensional structure of the muscle-tendon system and the intramuscular distribution of tissue velocities during in vivo isometric contractions. The proximal region of the muscle is unipennate, whereas the midregion has a radially bipennate hemicylindrical structure, and the distal region is quadripennate. Tissue velocity mapping shows that the highest velocity regions overlay the aponeuroses connected to the Achilles tendon. These are located on the anterior and posterior surfaces of the muscle. The lowest velocities overlay the aponeuroses connected to the origin of the muscle and are generally located intramuscularly.  相似文献   

10.
High-throughput mouse magnetic resonance imaging (MRI) is seeing rapidly increasing demand in development of therapeutics. Recent advances including higher-field systems, new gradient and radio frequency coils and new pulse sequences, coupled with efficient animal preparation and data handling, allow high-throughput MRI under certain protocols. However, with current shifts from anatomic to functional and molecular imaging, innovative technology is required to meet new throughput demands. The first multiple mouse imaging strategies have provided a glimpse of the future state-of-the-art. However, the successful translation of standard clinical MRI technology to preclinical MRI is required to facilitate next-generation high-throughput MRI.  相似文献   

11.
The cerebral white matter is vulnerable to injury in very preterm infants (born prior to 30 weeks gestation), resulting in a spectrum of lesions. These range from severe forms, including cystic periventricular leukomalacia and periventricular hemorrhagic infarction, to minor focal punctate lesions. Moderate to severe white matter injury in preterm infants has been shown to predict later neurodevelopmental disability, although outcomes can vary widely in infants with qualitatively comparable lesions. Resting state functional connectivity magnetic resonance imaging has been increasingly utilized in neurodevelopmental investigations and may provide complementary information regarding the impact of white matter injury on the developing brain. We performed resting state functional connectivity magnetic resonance imaging at term equivalent postmenstrual age in fourteen preterm infants with moderate to severe white matter injury secondary to periventricular hemorrhagic infarction. In these subjects, resting state networks were identifiable throughout the brain. Patterns of aberrant functional connectivity were observed and depended upon injury severity. Comparisons were performed against data obtained from prematurely-born infants with mild white matter injury and healthy, term-born infants and demonstrated group differences. These results reveal structural-functional correlates of preterm white matter injury and carry implications for future investigations of neurodevelopmental disability.  相似文献   

12.
Diagnostic imaging tests and microbial infections   总被引:1,自引:0,他引:1  
Despite significant advances in the understanding of its pathogenesis, infection remains a major cause of patient morbidity and mortality. While the presence of infection may be suggested by signs and symptoms, imaging tests are often used to localize or confirm its presence. There are two principal imaging test types: morphological and functional. Morphological tests include radiographs, computed tomography (CT), magnetic resonance imaging, and sonongraphy. These procedures detect anatomic, or structural, alterations produced by microbial invasion and host response. Functional imaging tests reflect the physiological changes that are part of this process. Prototypical functional tests are radionuclide procedures such as bone, gallium, labelled leukocyte and fluorodeoxyglucose (FDG)-positron emission tomography (PET) imaging. In-line functional/morphological tomographic imaging systems, PET/CT and single photon emission tomography (SPECT)/CT, have revolutionized diagnostic imaging. These devices consist of a functional imaging device (PET or SPECT) joined together with a CT scanner. The patient undergoes both tests sequentially without leaving the examination table. Images from each study can be viewed separately and as fused images, providing precisely localized anatomic and functional information. It must be noted, however, that none of the current morphological or functional tests, either alone or in combination, are specific for infection and the goal of finding such an imaging test remains elusive.  相似文献   

13.
Morrison DA 《Parassitologia》2005,47(2):205-214
Most known isolates of Toxoplasma gondii belong to one of only three lineages, which are presumed to be clonal. Three models have been proposed for the evolutionary relationship of these lineages to the other extant lineages: Model (a) proposing that all lineages are derived from a most recent common ancestor (MRCA) in the distant past, Model (b) that all lineages are derived from a MRCA in the very recent past, and Model (c) that the clonal lineages share a recent MRCA but are related to the other lineages only in the distant past. Here, I test these models using DNA intron and coding-sequence data for loci at 14 genes, using three different methods to calculate the time of the MRCA. All of the calculations agree that the MRCA of the clonal lineages was > 70% of the age of the MRCA of all lineages, thus favouring Model (a). The MRCA may have existed approximately 150,000 years ago, with the clonal lineages expanding in prevalence approximately 10,000 years ago.  相似文献   

14.
Diabetic cardiomyopathy is a distinct myocardial complication of the catabolic state of untreated insulin-dependent diabetes mellitus in the streptozotocin-induced diabetic rat. Exercise training has long been utilized as an effective adjunct to pharmacotherapy in the management of the diabetic heart. However, the in vivo functional benefit(s) of the training programs on cardiac cycle events in diabetes are poorly understood. In this study, we used three groups of Sprague-Dawley rats (sedentary control, sedentary diabetic, and exercised diabetic) to assess the effects of endurance training on the left ventricular (LV) cardiac cycle events in diabetes. At the end of 9 wk of exercise training, noninvasive cardiac functional evaluation was performed by using high-resolution magnetic resonance imaging (9.4 T). An ECG-gated cine imaging protocol was used to capture the LV cardiac cycle events through 10 equally incremented phases. The cardiac cycle phase volumetric profiles showed favorable functional changes in exercised diabetic group, including a prevention of decreased end-diastolic volume and attenuation of increased end-systolic volume that accompanies sedentary diabetes. The defects in LV systolic flow velocity, acceleration, and jerk associated with sedentary diabetes were restored toward control levels in the trained diabetic animals. This magnetic resonance imaging study confirms the prevailing evidence from earlier in vitro and in vivo invasive procedures that exercise training benefits cardiac function in this model of diabetic cardiomyopathy despite the extreme catabolic state of the animals.  相似文献   

15.
The technological revolution in imaging during recent decades has transformed the way image-guided radiation therapy is performed. Anatomical imaging (plain radiography, computed tomography, magnetic resonance imaging) greatly improved the accuracy of delineating target structures and has formed the foundation of 3D-based radiation treatment. However, the treatment planning paradigm in radiation oncology is beginning to shift toward a more biological and molecular approach as advances in biochemistry, molecular biology, and technology have made functional imaging (positron emission tomography, nuclear magnetic resonance spectroscopy, optical imaging) of physiological processes in tumors more feasible and practical. This review provides an overview of the role of current imaging strategies in radiation oncology, with a focus on functional imaging modalities, as it relates to staging and molecular profiling (cellular proliferation, apoptosis, angiogenesis, hypoxia, receptor status) of tumors, defining radiation target volumes, and assessing therapeutic response. In addition, obstacles such as imaging-pathological validation, optimal timing of post-therapy scans, spatial and temporal evolution of tumors, and lack of clinical outcome studies are discussed that must be overcome before a new era of functional imaging-guided therapy becomes a clinical reality.  相似文献   

16.
Urinary tract obstruction (UTO) results in renal compensatory mechanisms and may progress to irrecoverable functional loss and histologic alterations. The pathophysiology of this progression is poorly understood. We identified urinary metabolite alterations in a rodent model of partial and complete UTO using (1)H nuclear magnetic resonance ((1)H-NMR) spectroscopy. Principal component analysis (PCA) was used for classification and discovery of differentiating metabolites. UTO was associated with elevated urinary levels of alanine, succinate, dimethylglycine (DMG), creatinine, taurine, choline-like compounds, hippurate, and lactate. Decreased urinary levels of 2-oxoglutarate and citrate were noted. The patterns of alteration in partial and complete UTO were similar except that an absence of elevated urinary osmolytes (DMG and hippurate) was noted in complete UTO. This pattern of metabolite alteration indicates impaired oxidative metabolism of the mitochondria in renal proximal tubules and production of renal protective osmolytes by the medulla. Decreased production of osmolytes in complete obstruction better elucidates the pathophysiology of progression from renal compensatory mechanisms to irrecoverable changes. Further confirmation of these potential biomarkers in children with UTO is necessary.  相似文献   

17.
Resting state brain networks (RSNs) are spatially distributed large-scale networks, evidenced by resting state functional magnetic resonance imaging (fMRI) studies. Importantly, RSNs are implicated in several relevant brain functions and present abnormal functional patterns in many neuropsychiatric disorders, for which stress exposure is an established risk factor. Yet, so far, little is known about the effect of stress in the architecture of RSNs, both in resting state conditions or during shift to task performance. Herein we assessed the architecture of the RSNs using functional magnetic resonance imaging (fMRI) in a cohort of participants exposed to prolonged stress (participants that had just finished their long period of preparation for the medical residence selection exam), and respective gender- and age-matched controls (medical students under normal academic activities). Analysis focused on the pattern of activity in resting state conditions and after deactivation. A volumetric estimation of the RSNs was also performed. Data shows that stressed participants displayed greater activation of the default mode (DMN), dorsal attention (DAN), ventral attention (VAN), sensorimotor (SMN), and primary visual (VN) networks than controls. Importantly, stressed participants also evidenced impairments in the deactivation of resting state-networks when compared to controls. These functional changes are paralleled by a constriction of the DMN that is in line with the pattern of brain atrophy observed after stress exposure. These results reveal that stress impacts on activation-deactivation pattern of RSNs, a finding that may underlie stress-induced changes in several dimensions of brain activity.  相似文献   

18.
Y. X. Fu 《Genetics》1996,144(2):829-838
The number of segregating sites in a sample of DNA sequences and the age of the most recent common ancestor (MRCA) of the sequences in the sample are positively correlated. The value of the former can be used to estimate the value of the latter. Using the coalescent approach, we derive in this paper the joint probability distribution of the number of segregating sites and the age of the MRCA of a sample under the neutral Wright-Fisher model. From this distribution, we are able to compute the likelihood function of the number of segregating sites and the posterior probability of the age of the MRCA of a sample. Three point estimators and one interval estimator of the age of the MRCA are developed; their relationships and properties are investigated. The estimation of the age of the MRCA of human Y chromosomes from a sample of no variation is discussed.  相似文献   

19.
The objective of this study was to test the feasibility and reproducibility of in vivo high-resolution mechanical imaging of the asymptomatic human kidney. Hereby nine volunteers were examined at three different physiological states of urinary bladder filling (a normal state, urinary urgency, and immediately after urinary relief). Mechanical imaging was performed of the in vivo kidney using three-dimensional multifrequency magnetic resonance elastography combined with multifrequency dual elastovisco inversion. Other than in classical elastography, where the storage and loss shear moduli are evaluated, we analyzed the magnitude |G?| and the phase angle φ of the complex shear modulus reconstructed by simultaneous inversion of full wave field data corresponding to 7 harmonic drive frequencies from 30 to 60 Hz and a resolution of 2.5 mm cubic voxel size.  相似文献   

20.
Magnetotactic bacteria benefit from their ability to form cellular magnetic dipoles by assembling stable single-domain ferromagnetic particles in chains as a means to navigate along Earth's magnetic field lines on their way to favorable habitats. We studied the assembly of nanosized membrane-encapsulated magnetite particles (magnetosomes) by ferromagnetic resonance spectroscopy using Magnetospirillum gryphiswaldense cultured in a time-resolved experimental setting. The spectroscopic data show that 1), magnetic particle growth is not synchronized; 2), the increase in particle numbers is insufficient to build up cellular magnetic dipoles; and 3), dipoles of assembled magnetosome blocks occur when the first magnetite particles reach a stable single-domain state. These stable single-domain particles can act as magnetic docks to stabilize the remaining and/or newly nucleated superparamagnetic particles in their adjacencies. We postulate that docking is a key mechanism for building the functional cellular magnetic dipole, which in turn is required for magnetotaxis in bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号