首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
1. The effect of the nootropic drug adafenoxate on monoamine oxidase (MAO) activity in rat brain cortex, striatum, hypothalamus and hippocampus has been studied using the following substrates: tyramine (total MAO), serotonin (MAO A) and beta-phenylethylamine (MAO B). 2. In a series of increased concentrations (from 5 x 10(-4) up to 1 x 10(-5) M) adafenoxate inhibits total MAO, MAO A and MAO B in the brain structures studied. 3. The adafenoxate IC50 values obtained illustrate its inhibitory properties and its lack of selectivity toward MAO in the brain structures isolated. 4. The results of our research prove the participation of MAO in the mechanisms through which adafenoxate affects the brain monoaminergic systems and realises its central effects.  相似文献   

2.
Phenytoin (DPH) is a widely used anticonvulsant drug but a conclusive mode of action is not yet clear. This study was undertaken to assess the effects of chronic administration of DPH on monoamine levels. DPH (50 mg/kg body weight) was administered to adult male Wistar rats by intraperitoneal injections for 45 days and the regional brain levels of norepinephrine (NE), dopamine (DA) and serotonin (5-HT) were assayed using high performance liquid chromatographic (HPLC) method. The experimental rats revealed no behavioral deficits of any kind nor body and brain weight deficits were observed. Increased NE levels were observed after DPH administration in motor cortex (P<0.05), striatum-accumbens (P<0.01) and hippocampus (P<0.01), whereas, NE level was decreased in brain stem (P<0.05). DA levels were increased in striatum-accumbens (P<0.05), hypothalamus (P<0.001) and cerebellum (P<0.001) but decreased in brainstem (P<0.01). In DPH treated rats, 5-HT levels were increased in motor cortex (P<0.001) but decreased in cerebellum (P<0.001) when compared to control group of rats. The present study suggest that chronic administration of DPH induces alterations in monoamine levels in specific brain regions. DPH seems to mediate, its anticonvulsant action by selectively altering the monoamine levels in different brain regions.  相似文献   

3.
Effects of DSP-4 on noradrenaline (NA), 3-methoxy-4-hydroxyphenyl glycol (MHPG), serotonin (5-HT) and 5-hydroxyindole acetic acid (5-HIAA) levels and on beta adrenoceptor binding kinetics (Bmax and KD) in rat hippocampus, cortex and hypothalamus were studied between 24 hours and 14 days after systemic administration. Beta adrenoceptor numbers in hippocampus and cortex, but not in hypothalamus, were significantly increased after DSP-4. No significant changes in KD values were observed in hypothalamus, but significant increases in this parameter were measured in hippocampus and cortex. NA and MHPG levels were significantly decreased in all three brain regions, but MHPG/NA ratios were increased in hippocampus, decreased in cortex and unchanged in hypothalamus. Very prominent increases in 5-HIAA levels were observed in all three brain regions, but only at one day after DSP-4. The greatest increases in 5-HIAA levels occurred in the hippocampus, but this effect of DPS-4 appeared to be slightly diminished by pre-treatment with fluoxetine. In cortex and hippocampus 5-HT levels were slightly, but significantly decreased after DSP-4.  相似文献   

4.
The neuroleptic drug, chlorpromazine (CPZ) has been shown to exert its antipsychotic effect by blocking post synaptic dopamine receptors. However, its effect on steady state levels of monoamines is still in discrepancy. In the present study, CPZ (4 mg/kg body weight) was administered intraperitoneally to adult Wistar rats chronically for 75 days and the levels of norepinephrine (NE), dopamine (DA) and 5-hydroxytryptamine (5-HT) were assayed in various brain regions by high performance liquid chromatography (HPLC). After the experimental period body and brain weights were not statistically different from controls. NE and 5-HT levels were increased only in hippocampus by 15% (p<0.01) and 16% (p<0.01) respectively. DA levels were consistently increased in cortex by 39% (p<0.001), striatum-accumbens by 18% (p<0.01), hippocampus by 27% (p<0.01), hypothalamus by 34% (p<0.001), cerebellum by 36% (p<0.001) and brainstem by 40% (p<0.001) in CPZ treated rats compared to controls. The results suggest that chronic CPZ administration increases DA levels in almost all regions of brain and reflect the ability of CPZ to preferentially interfere with synaptic transmission mediated by DA in brain. It also suggests that this increase in DA might be responsible for certain side effects seen in patients after chronic CPZ treatment.  相似文献   

5.
Effects of serotonin uptake inhibitor fluoxetine (F) and it's complexes with glycyrrizhinic acid (GA) in molar proportions 1GA : 1F (FGA-1) and 4GA : 1F (FGA-4) on rat behavior in elevated plus-maze and brain monoamine concentrations were studied. Drugs (25 mg/kg) were administered per os 1 h before investigations. F-treated rats showed increased anxiety and reduced locomotor activity, whereas FGA-1 and FGA-4 had no effects on the behaviors. None of the compounds modified brain tissue serotonin content, but all of them decreased the level of its metabolite 5-hydroxyindole-3-acetic acid level in the hypothalamus, and FGA-4 also decreased it in the cortex. Noradrenaline levels were increased in the hypothalamus of rats treated with F in both combinations with GA. In the striatum, F increased dopamine and its metabolite DOPAC levels, but their ratio (an indicator of the neurotransmitter turnover) was not altered by this drug. Unlike F, FGA-1 significantly activated dopamine turnover in the striatum. The data obtained suggested that application of F in complexes with GA significantly modified the drug behavioral effects and these alterations may be related to specific effects of the pure compound and its complexes on the functions of the brain monoaminergic systems that regulate investigated behavior.  相似文献   

6.
Carbamazepine (25 mg/kg body weight) was administered intraperitoneally to adult male Wistar rats for 45 days and norepinephrine (NE), dopamine (DA) and serotonin (5-HT) levels were simultaneously assayed in discrete brain regions by high performance liquid chromatographic (HPLC) method. Experimental rats displayed no behavioral abnormalities. Body and brain weights were not significantly different from control group of rats. After exposure it was observed that norepinephrine levels were elevated in motor cortex (P<0.01) and cerebellum (P<0.05), while dopamine levels were decreased in these two regions (P<0.001, P<0.05). However, dopamine levels were increased in hippocampus (P<0.01). Serotonin levels were significantly decreased in motor cortex (P<0.001) and hypothalamus (P<0.001) but increased in striatum-accumbens (P<0.001) and brainstem (P<0.001). These results suggest that carbamazepine may mediate its anticonvulsant effect by differential alterations of monoamine levels in discrete brain regions particularly in motor cortex and cerebellum.  相似文献   

7.
8.
Major depression is characterized for symptoms at the psychological, behavioral and physiological levels. The chronic mild stress model has been used as an animal model of depression. The consumption of sweet food, locomotor activity, body weight, lipid and protein oxidation levels and superoxide dismutase and catalase activities in the rat hippocampus, prefrontal cortex and cortex were assessed in rats exposed to chronic mild stress. Our findings demonstrated a decrease on sweet food intake, no effect on locomotor activity, lack of body weight gain, increase in protein (prefrontal, hippocampus, striatum and cortex) and lipidic peroxidation (cerebellum and striatum), and an increase in catalase (cerebellum, hippocampus, striatum, cortex) and a decrease in superoxide dismutase activity (prefrontal, hippocampus, striatum and cortex) in stressed rats. In conclusion, our results support the idea that stress produces oxidants and an imbalance between superoxide dismutase and catalase activities that contributes to stress-related diseases, such as depression.  相似文献   

9.
M F Sugrue 《Life sciences》1980,26(6):423-429
Changes in rat brain monoamine turnover were studied following the chronic administration of five agents which markedly differ in their patterns of monoamine uptake inhibition. Compounds (10 mg/kg, i.p.) were injected once daily for 14 days and experiments undertaken 24 h after the last injection. Chronic administration of desipramine or mianserin elevated brain MOPEG-SO4 content and the α-MT-induced reduction in brain NA levels was enhanced by chronic desipramine. either antidepressant altered turnover of brain DA or 5-HT. Steady state levels of brain 5-HIAA or striatal levels of DOPAC or HVA were also unchanged. Chronically administered Org 6582, a selective inhibitor of 5-HT uptake, decreased basal and attenuated the probenecid-induced increase iin brain 5-HIAA levels. Chronic Org 6582 had no effect on NA or DA turnover and on the levels of MOPEG-SO4, DOPAC or HVA. Neither maprotiline nor chlorimipramine altered turnover of NA, DA or 5-HT or levels of metabolites. Thus, in contrast to the acute situation, chronically administered desipramine increases rat brain NA turnover. Conversely, acute and chronic Org 6582 administration yield similar findings, viz. a decrease in turnover. These observations suggest that rat brain 5-HT systems are more resistant than NA systems to adaptive changes following a prolonged inhibition of monoamine uptake.  相似文献   

10.
11.
The acute administration of the monoamine oxidase inhibitor iproniazid to rats causes a highly significant suppression of serum prolactin levels at 2 h. At the same time there is a significant rise in the hypothalamic-median eminence concentrations of the biogenic monoamines dopamine, noradrenaline and serotonin. When iproniazid is administered daily to rats for 4 days and the animals are examined on the fifth day brain noradrenaline and serotonin levels are elevated similarly to those seen after acute administration but dopamine concentration is near normal while serum prolactin is significantly elevated. This study thus demonstrates that a quite specific and unexpected change occurs in the regulation of hypothalamic-median eminence dopamine when iproniazid is administered chronically and provides an explanation of previous observations in human subjects where raised serum prolactin levels are observed after chronic therapy with monoamine oxidase inhibitors.  相似文献   

12.
13.
Exposure to chronic mild stress (CMS) is known to induce anhedonia in adult animals, and is associated with induction of depression in humans. However, the behavioral effects of CMS in young animals have not yet been characterized, and little is known about the long-term neurochemical effects of CMS in either young or adult animals. Here, we found that CMS induces anhedonia in adult but not in young animals, as measured by a set of behavioral paradigms. Furthermore, while CMS decreased neurogenesis and levels of brain-derived neurotrophic factor (BDNF) in the hippocampus of adult animals, it increased these parameters in young animals. We also found that CMS altered alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor GluR1 subunit levels in the hippocampus and the nucleus accumbens of adult, but not young animals. Finally, no significant differences were observed between the effects of CMS on circadian corticosterone levels in the different age groups. The substantially different neurochemical effects chronic stress exerts in young and adult animals may explain the behavioral resilience to such stress young animals possess.  相似文献   

14.
目的:研究慢性束缚应激时大鼠脑内糖皮质激素受体的变化以及逍遥散、四君子汤、金匮肾气丸三种中药复方对其影响.方法:制作大鼠束缚应激模型,用特制束缚架连续束缚7 d与21 d,每天3 h用免疫组织化学方法结合图像分析检测中枢(海马CA1区、齿状回、大脑皮质)糖皮质激素受体的变化.结果:慢性束缚应激后,大鼠海马CA1区、大脑皮层和齿状回GR免疫反应阳性细胞平均总面积和阳性细胞数目在慢性应激的早期(7d模型组)明显增多(P<0.05),免疫反应强度明显增强(P<0.01).在慢性应激的后期(21 d模型组),则表现为相关脑区GR免疫反应阳性细胞平均总面积和阳性细胞数目均明显减少(P<0.05),免疫反应强度明显减弱(P<0.01).中药复方各组相关脑区神经元GR免疫反应阳性细胞平均总面积和阳性细胞数目较21 d模型组明显增高,免疫反应强度明显增强,三给药组之间并无明显差异,说明三给药组均能使GR含量保持于较高的状态,同时能保持GR免疫活性,其中又以逍遥散作用为明显.结论:逍遥散、四君子汤和金匮肾气丸明显逆转糖皮质激素受体下降趋势.  相似文献   

15.
16.
目的:观察二甲双胍对慢性不可预测性温和应激大鼠抑郁行为的影响。方法:40只雄性SD大鼠随机分为4组(n=10):对照组(CON组)、二甲双胍组(MET组)、模型组(CUMS组)、模型+二甲双胍组(CUMS+MET组),采用慢性不可预测性温和应激(CUMS)方法,用3周时间建立大鼠抑郁模型。造模完成后,两个二甲双胍组腹腔注射二甲双胍(100mg/kg),对照组和模型组注射等量的生理盐水,每天1次,连续2周。之后检测大鼠体重增长变化、糖水嗜好、强迫游泳和悬尾不动实验、旷场实验等大鼠行为学的改变,采用尼氏染色观察大鼠海马形态结构变化。结果:与对照组比较,CUMS组大鼠体重增长明显减慢(P<0.05),糖水偏爱率明显降低(P<0.05),强迫游泳和悬尾不动实验中不动时间明显延长(P<0.05),旷场实验中自发活动明显减少(P<0.05),大鼠海马的形态结构有所变化,证实CUMS抑郁模型建立成功。与CUMS组比较,二甲双胍处理后对大鼠的体重无明显影响,但能明显改善CUMS抑郁模型大鼠的糖水摄入、不动时间和自发活动(P<0.05),并能修复CUMS大鼠海马的异常形态结构变化。结论:二甲双胍对CUMS诱导的大鼠抑郁行为具有明显的改善作用,为临床糖尿病并发抑郁症的患者提供新的治疗手段。  相似文献   

17.
18.
Perturbations in brain monoamine systems during stress   总被引:1,自引:0,他引:1  
Monoamines modulate the activity of many neurons and there is evidence that a balanced synthesis of central nervous monoamines is a prerequisite for normal brain functioning. Stress accelerates both release and turnover of brain monoamines and the resulting fluctuations in concentrations affect various parameters within neurotransmitter systems. Acute stress leads to only transient alterations in monoamine systems so that homeostasis can be restored, in contrast, chronic stress accompanied by repetitive and/or prolonged stimulation of monoaminergic neurons can induce a long-lasting imbalance in central nervous neurotransmitter systems. Accordingly, stress-induced changes in brain monoamine systems are suspected to contribute to psychiatric diseases such as depression. The present paper gives a short overview of stress effects on brain monoamines and their receptors.The work presented in this review was in part supported by the German Science Foundation (SFB406, C4 to G.F.). M.J.M. was supported by the DFG grant Fu 174/17–1 and EC Training Through Research (ERBFMBICT 961829).  相似文献   

19.
20.
The effects of acute (3 g/kg i.p. two jours before sacrifice) and chronic (6% in drinking water and libitum for 15 days) ethanol administration to male rats (200 g body weight) on basal levels and release of TxB2n2 and 6-keto-PGF in brain cortex were studied. Also the effects of chronic ethanol (30 days) on the fatty acid composition of brain cortical tissue and liver phospholipids were investigated. Acute treatment reduced basal levels of 6-keto-PGF in brain cortical tissue (rats sacrificed by microwave radiation) and decreased the accumulation of 6-keto-PGF in brain cortex after post-decapitation ischemia (PDI). Basal TxB2 levels were also reduced in brain cortex, but TxB2 release during PDI was enhanced. Chronic treatment (15 days) induced changes of TxB2 and 6-ketoPGF levels and release during PDI in brain cortex less pronounced than those observed after acute treatment. The reduced effectiveness of chronic ethanol on brain vasoactive eicosanoids suggest adaptation processes. After chronic treatment (30 days), the fatty acid composition of brain cortex total phospholipids were not significantly modified. Changes of eicosanoid production after ethanol were thus independent from modifications of the fatty acid precursor pool(s). Ethanol-induced changes in the production of vascular eicosanoids in the CNS may be of relevance to the action of the compound on the CNS and may also have implications for the clinic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号