首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Microbially produced lipids have attracted attention for their environmental benefits and commercial value. We have combined lipid pathway engineering in Saccharomyces cerevisiae yeast with bioprocess design to improve productivity and explore barriers to enhanced lipid production. Initially, individual gene expression was tested for impact on yeast growth and lipid production. Then, two base strains were prepared for enhanced lipid accumulation and stabilization steps by combining DGAT1, ΔTgl3 with or without Atclo1, which increased lipid content ~?1.8-fold but reduced cell viability. Next, fatty acid (FA) biosynthesis genes Ald6-SEACSL641P alone or with ACC1** were co-expressed in base strains, which significantly improved lipid content (8.0% DCW, 2.6-fold than control), but severely reduced yeast growth and cell viability. Finally, a designed two-stage process convincingly ameliorated the negative effects, resulting in normal cell growth, very high lipid productivity (307 mg/L, 4.6-fold above control) and improved cell viability.  相似文献   

4.
In all eukaryotic organisms, a wide range of morphologies are responsible for critical cellular function and development. In particular, the Rho GTPases, which are highly conserved from yeast to mammals, are key molecules in signaling pathways that control cell polarity processes and cell wall biosynthesis, which are fundamental aspects of morphogenesis. Therefore, using haploinsufficiency deletion mutants of the fission yeast Schizosaccharomyces pombe, we screened the slow-growing mutants and their morphogenesis, specifically focusing on regulation of their Rho GTPases. Based on this screening, we found that the cwf14 mutant of S. pombe exhibited the slow growth and abnormal phenotypes with an elongated cell shape and thicker cell wall when compared with wild-type cells. In particular, cells with the cwf14 deletion showed excessive Rho1 expression. However, the wildtype strain with ectopically expressed Rho1 did not exhibited any significant change in the level of cwf14, suggesting that cwf14 may act on the upstream of Rho1. Furthermore, the cells with a cwf14 deletion also have increased sensitivity to β-glucanase, a cell wall-digesting enzyme, which is also seen in Rho1-overexpressing cells. Overall, our results suggest that the cwf14 plays a key role in fission yeast morphogenesis and cell wall biosynthesis and/or degradation possibly via the regulation of Rho1 expression.  相似文献   

5.
Nuclear envelope morphology protein 1 (NEM1) along with a phosphatidate phosphatase (PAH1) regulates lipid homeostasis and membrane biogenesis in yeast and mammals. We investigated four putative NEM1 homologues (TtNEM1A, TtNEM1B, TtNEM1C and TtNEM1D) in the Tetrahymena thermophila genome. Disruption of TtNEM1B, TtNEM1C or TtNEM1D did not compromise normal cell growth. In contrast, we were unable to generate knockout strain of TtNEM1A under the same conditions, indicating that TtNEM1A is essential for Tetrahymena growth. Interestingly, loss of TtNEM1B but not TtNEM1C or TtNEM1D caused a reduction in lipid droplet number. Similar to yeast and mammals, TtNem1B of Tetrahymena exerts its function via Pah1, since we found that PAH1 overexpression rescued loss of Nem1 function. However, unlike NEM1 in other organisms, TtNEM1B does not regulate ER/nuclear morphology. Similarly, neither TtNEM1C nor TtNEM1D is required to maintain normal ER morphology. While Tetrahymena PAH1 was shown to functionally replace yeast PAH1 earlier, we observed that Tetrahymena NEM1 homologues did not functionally replace yeast NEM1. Overall, our results suggest the presence of a conserved cascade for regulation of lipid homeostasis and membrane biogenesis in Tetrahymena. Our results also suggest a Nem1-independent function of Pah1 in the regulation of ER morphology in Tetrahymena.  相似文献   

6.
7.
Mechanisms for genetic control of cell division cycle (checkpoint control) have been studied in most detail in yeast Saccharomyces cerevisiae. To clarify the role of checkpoint genes RAD9, RAD17, RAD24, and RAD53 in cell radioresistance, double mutants were analyzed for cell sensitivity to ionizing radiation. Double mutants carrying mutations in combination with mutation rad9Δ were shown to manifest the epistatic type of interaction. Our results suggest that checkpoint genes RAD9, RAD17, RAD24, and RAD53 belong to a single epistatic group designated RAD9 and govern the same pathway. Genes RAD9 and RAD53 have a positive effect on sensitivity to γ-radiation, whereas RAD17 and RAD24 have a negative effect. Interactions between mutations may differ when considering their sensitivity to γ-radiation and UV light; mutations rad9Δ and rad24Δ were shown to manifest the additive effect in the first case and epistatic effect in the second.  相似文献   

8.
Ubiquitin is a 76-amino acid protein that is highly conserved among higher and lower eukaryotes. The polyubiquitin gene UBI4 encodes a unique precursor protein that contains five ubiquitin repeats organized in a head-to-tail arrangement. Although the involvement of the yeast polyubiquitin gene UBI4 in the stress response was reported long ago, there are no reports regarding the underlying mechanism of this involvement. In this study, we used UBI4-deletion and UBI4-overexpressing yeast strains as models to explore the potential mechanism by which UBI4 protects yeast cells against paraquat-induced oxidative stress. Here, we show that ubi4Δ cells exhibit oxidative stress, an apoptotic phenotype, and a decreased replicative lifespan. Additionally, the reduced resistance of ubi4Δ cells to paraquat that was observed in this study was rescued by overexpression of either the catalase or the mitochondrial superoxide dismutase SOD2. We also demonstrated that only SOD2 overexpression restored the replicative lifespan of ubi4Δ cells. In contrast to the case of ubi4Δ cells, UBI4 overexpression in wild-type yeast increases the yeast’s resistance to paraquat, and this overexpression is associated with large pools of expressed ubiquitin and increased levels of ubiquitinated proteins. Collectively, these findings highlight the role of the polyubiquitin gene UBI4 in apoptosis and implicate UBI4 as a modulator of the replicative lifespan.  相似文献   

9.

Objectives

To improve the production of 2,3-butanediol (2,3-BD) in Klebsiella pneumoniae, the genes related to the formation of lactic acid, ethanol, and acetic acid were eliminated.

Results

Although the cell growth and 2,3-BD production rates of the K. pneumoniae ΔldhA ΔadhE Δpta-ackA strain were lower than those of the wild-type strain, the mutant produced a higher titer of 2,3-BD and a higher yield in batch fermentation: 91 g 2,3-BD/l with a yield of 0.45 g per g glucose and a productivity of 1.62 g/l.h in fed-batch fermentation. The metabolic characteristics of the mutants were consistent with the results of in silico simulation.

Conclusions

K. pneumoniae knockout mutants developed with an aid of in silico investigation could produce higher amounts of 2,3-BD with increased titer, yield, and productivity.
  相似文献   

10.
The ribosome-binding GTPase HflX is required for manganese homeostasis in E. coli. While under normal conditions ?hflX cells behave like wild type E. coli with respect to growth pattern and morphology, deletion of hflX makes E. coli cells extremely sensitive to manganese, characterized by arrested cell growth and filamentation. Here we demonstrate that upon complementation by hflX, manganese stress is relieved. In phenotypic studies done in a manganese-rich environment, ?hflX cells were highly sensitive to antibiotics that bind the penicillin binding protein 3 (PBP3), suggesting that the manganese stress led to impaired peptidoglycan biosynthesis. An irregular distribution of dark bands of constriction along filaments, delocalization of the dark bands from midcell towards poles and subpoles, lack of septum formation and arrested cell division were observed in ?hflX cells under manganese stress. However, chromosome replication and segregation of nucleoids were unaffected under these conditions, as observed from confocal microscopy imaging and FACS studies. We conclude that absence of HflX leads to manganese accumulation in E. coli cells, affecting cell septum formation, probably by modulating the activity of the cell division protein PBP3 (FtsI), a major component of the divisome apparatus. We propose that HflX acts as a gatekeeper, regulating the influx of manganese into the cell.  相似文献   

11.

Key message

Arabidopsis and poplar with modified PAD4, LSD1 and EDS1 genes exhibit successful growth under drought stress. The acclimatory strategies depend on cell division/cell death control and altered cell wall composition.

Abstract

The increase of plant tolerance towards environmental stresses would open much opportunity for successful plant cultivation in these areas that were previously considered as ineligible, e.g. in areas with poor irrigation. In this study, we performed functional analysis of proteins encoded by PHYTOALEXIN DEFICIENT 4 (PAD4), LESION SIMULATING DISEASE 1 (LSD1) and ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) genes to explain their role in drought tolerance and biomass production in two different species: Arabidopsis thaliana and Populus tremula × tremuloides. Arabidopsis mutants pad4-5, lsd1-1, eds1-1 and transgenic poplar lines PAD4-RNAi, LSD1-RNAi and ESD1-RNAi were examined in terms of different morphological and physiological parameters. Our experiments proved that Arabidopsis PAD4, LSD1 and EDS1 play an important role in survival under drought stress and regulate plant vegetative and generative growth. Biomass production and acclimatory strategies in poplar were also orchestrated via a genetic system of PAD4 and LSD1 which balanced the cell division and cell death processes. Furthermore, improved rate of cell division/cell differentiation and altered physical properties of poplar wood were the outcome of PAD4- and LSD1-dependent changes in cell wall structure and composition. Our results demonstrate that PAD4, LSD1 and EDS1 constitute a molecular hub, which integrates plant responses to water stress, vegetative biomass production and generative development. The applicable goal of our research was to generate transgenic plants with regulatory mechanism that perceives stress signals to optimize plant growth and biomass production in semi-stress field conditions.
  相似文献   

12.
2,3-Butanediol (2,3-BD) can be produced by fermentation of natural resources like Miscanthus. Bacillus licheniformis mutants, WX-02ΔbudC and WX-02ΔgldA, were elucidated for the potential to use Miscanthus as a cost-effective biomass to produce optically pure 2,3-BD. Both WX-02ΔbudC and WX-02ΔgldA could efficiently use xylose as well as mixed sugars of glucose and xylose to produce optically pure 2,3-BD. Batch fermentation of M. floridulus hydrolysate could produce 21.6 g/L d-2,3-BD and 23.9 g/L meso-2,3-BD in flask, and 13.8 g/L d-2,3-BD and 13.2 g/L meso-2,3-BD in bioreactor for WX-02ΔbudC and WX-02ΔgldA, respectively. Further fed-batch fermentation of hydrolysate in bioreactor showed both of two strains could produce optically pure 2,3-BD, with 32.2 g/L d-2,3-BD for WX-02ΔbudC and 48.5 g/L meso-2,3-BD for WX-02ΔgldA, respectively. Collectively, WX-02ΔbudC and WX-02ΔgldA can efficiently produce optically pure 2,3-BD with M. floridulus hydrolysate, and these two strains are candidates for industrial production of optical purity of 2,3-BD with M. floridulus hydrolysate.  相似文献   

13.
In vertebrates, early developing epidermis is a bilayered epithelium consisting of an outer periderm and the underlying basal epidermis. It eventually develops into a multi-layered epithelium. The mechanisms that control the architecture and homeostasis of early developing bilayered epidermis have remained poorly understood. Recently, we have shown that the function of Myosin Vb, an actin based molecular motor, is essential in peridermal cells for maintenance of plasma membrane homeostasis. Furthermore, our analyses of the goosepimples/myosin Vb mutant unravelled a direct link between plasma membrane homeostasis, cell size maintenance and tissue homeostasis in the developing epidermis. However, it remained unclear whether this link is specific to myosin Vb mutant or this is a general principle. Here we have identified two more genetic conditions, romeharsha mutant and clint1 knockdown, in which membrane homeostasis is perturbed, as evident by increased endocytosis and accumulation of lysosomes. As a consequence, peridermal cells exhibit smaller size and increased proliferation. We further show that decreasing endocytosis in romeharsha mutant and clint1 morphants rescues or mitigates the effect on cell size, cell proliferation and morphological phenotype. Our data confirms generality of the principle by reaffirming the causal link between plasma membrane homeostasis, cell size maintenance and tissue homeostasis.  相似文献   

14.
Yellow stripe-like (YSL) family transporters, belonging to the oligopeptide transporter family, are significant iron transport proteins. In this study, we provided a genome-wide identification and analysis of the YSL gene family in Pyrus bretschneideri. We found eight YSL gene members in pear, clustered into four main groups in the phylogenetic tree. Segmental duplication has played a key role in the expansion of the pear YSL family. The pollen activity analysis indicated that the low concentration of iron ion was beneficial to both pear pollen germination and pollen tube growth. Among the eight YSL genes, PbrYSL4 had particularly high expression in all pear tissues; it was significantly responsive to change in the external iron ion supply in the pollen cultivation in vitro. Moreover, expression of PbrYSL4 in yeast mutant Δccc1 (Ca 2+ -sensitive cross-complementer 1 mutant) made Δccc1 restore growth in high iron medium. These data together suggest that PbrYSL4 was involved in the movement of iron in the pear pollen tube growth.  相似文献   

15.
Sensitivity to the lethal action of the anticancer substance cisplatin was studied in the yeast mutants him1, hsm2, hsm3, and hsm6, deficient for repair of spontaneous and induced mutations. The him1 and hsm3 mutants were as resistant to the agent under study as the wild-type strain. The survival of the double mutant rad2 hsm3 was higher than that of the single mutant rad2. The hsm2 and hsm6 mutants were more cisplatin-sensitive than the wild type. Cisplatin was shown to have high mutagenic and recombinogenic effects on yeast cells.  相似文献   

16.
Carbon fluxes through main pathways of glucose utilization in Escherichia coli cells-glycolysis, pentose phosphate pathway (PPP), and Enther-Doudoroff pathway (EDP)—were studied. Their ratios were analyzed in E. coli strains MG1655, MG1655Δ(edd-eda), MG1655Δ(zwf, edd-eda), and MG1655Δ(pgi, edd-eda). It was shown that the carbon flux through glycolysis was the main route of glucose utilization, averaging ca. 80%. Inactivation of EDP did not affect growth parameters. Nevertheless, it altered carbon fluxes through the tricarboxylic acid cycles and energy metabolism in the cell. Inactivation of PPP decreased growth rate to a lesser degree than glycolysis inactivation.  相似文献   

17.

Introduction

ClpXP protease is an important proteolytic system in Salmonella enterica serovar typhimurium (S. typhimurium). Inactivation of ClpXP by deletion of clpP resulted in overproduction of RpoS and a growth defect phenotype. Only one report has indicated that deleting rpoS can restore the growth of a S. typhimurium clpP mutant to the wild-type level. Whether overproduction of RpoS is responsible for the growth deficiency resulting from clpP disruption and how ClpXP affects the cell metabolism of S. typhimurium remain to be elucidated.

Objectives

The aim of this study is to investigate the effect of ClpXP on cell metabolism of S. typhimurium and explore the possible co-effect of RpoS associated with ClpXP in cell metabolism.

Method

We constructed a clpP rpoS double deletion mutant TT-19 (ΔclpP ΔrpoS TT-1) using a two-step phage transduction technique. We then compared the metabolite fingerprints of Salmonella rpoS deletion mutant TT-14 (ΔrpoS TT-1), clpP deletion mutant TT-16 (ΔclpP TT-1), and clpP rpoS double deletion mutant TT-19 (ΔclpP ΔrpoS TT-1) with those of the wild-type strain TT-1 by using gas chromatography coupled with mass spectrometry (GC–MS).

Results

Deletion of rpoS recovered only a part of the growth of Salmonella clpP mutant. Further metabolome analysis indicated that clpP disruption changed the levels of 16 extra- and 19 intracellular substances, while the extracellular concentrations of 4 compounds (serine, l-5-oxoproline, l-glutamic acid, and l-tryptophan) and intracellular concentrations of 10 compounds (l-isoleucine, glycine, serine, l-methionine, l-phenylalanine, malic acid, citric acid, urea, putrescine, and 6-hydroxypurine) returned to their wild-type levels when rpoS was also deleted.

Conclusion

ClpXP affects the cell metabolism of S. typhimurium partially in an RpoS-dependent manner.
  相似文献   

18.
19.
Phosphatidate phosphatases (PAH) play a central role in lipid metabolism and intracellular signaling. Herein, we report the presence of a low-molecular-weight PAH homolog in the single-celled ciliate Tetrahymena thermophila. In vitro phosphatase assay showed that TtPAH2 belongs to the magnesium-dependent phosphatidate phosphatase (PAP1) family. Loss of function of TtPAH2 did not affect the growth of Tetrahymena. Unlike other known PAH homologs, TtPAH2 did not regulate lipid droplet number and ER morphology. TtPAH2 did not rescue growth and ER/nuclear membrane defects of the pah1? yeast cells, suggesting that the phosphatidate phosphatase activity of the protein is not sufficient to perform these cellular functions. Surprisingly, TtPAH2 complemented the respiratory defect in the pah1? yeast cells indicating a specific role of TtPAH2 in respiration. Overall, our results indicate that TtPAH2 possesses the minimal function of PAH protein family in respiration. We suggest that the amino acid sequences absent from TtPAH2 but present in all other known PAH homologs are critical for lipid homeostasis and membrane biogenesis.  相似文献   

20.
Synchronization of cell division in yeast cultures of Saccharomyces cerevisiae is widely used in studies on regulation of eukaryotic gene expression and biochemical processes at different stages of the cell cycle. In this study, we compared the efficacy of modern widely used methodologies to achieve and assess the degree of synchronization of cell division in yeast. Based on the literature and our own data, we propose practical recommendations for synchronization of cell divisions in S. cerevisiae using chemical reagents (alpha-factor, hydroxyurea, nocodazole), and a genetic cell-cycle block (temperature-sensitive mutation cdc28-4).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号