首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Short‐rotation coppice (SRC) has great potential for supplying biomass‐based heat and energy, but little is known about SRC's ecological footprint, particularly its impact on the water cycle. To this end, we quantified the water use of a commercial scale poplar (Populus) SRC plantation in East Flanders (Belgium) at tree and stand level, focusing primarily on the transpiration component. First, we used the AquaCrop model and eddy covariance flux data to analyse the different components of the stand‐level water balance for one entire growing season. Transpiration represented 59% of evapotranspiration (ET) at stand scale over the whole year. Measured ET and modelled ET were lower as compared to the ET of reference grassland, suggesting that the SRC only used a limited amount of water. Secondly, we compared leaf area scaled and sapwood area scaled sap flow (Fs) measurements on individual plants vs. stand scale eddy covariance flux data during a 39‐day intensive field campaign in late summer 2011. Daily stem diameter variation (?D) was monitored simultaneously with Fs to understand water use strategies for three poplar genotypes. Canopy transpiration based on sapwood area or leaf area scaling was 43.5 and 50.3 mm, respectively, and accounted for 74%, respectively, 86%, of total ecosystem ET measured during the intensive field campaign. Besides differences in growth, the significant intergenotypic differences in daily ?D (due to stem shrinkage and swelling) suggested different water use strategies among the three genotypes which were confirmed by the sap flow measurements. Future studies on the prediction of SRC water use, or efforts to enhance the biomass yield of SRC genotypes, should consider intergenotypic differences in transpiration water losses at tree level as well as the SRC water balance at stand level.  相似文献   

2.
For avoiding competition with food production, marginal land is economically and environmentally highly attractive for biomass production with short‐rotation coppices (SRCs) of fast‐growing tree species such as poplars. Herein, we evaluated the environmental impacts of technological, agronomic, and environmental aspects of bioenergy production from hybrid poplar SRC cultivation on marginal land in southern Germany. For this purpose, different management regimes were considered within a 21‐year lifetime (combining measurements and modeling approaches) by means of a holistic Life Cycle Assessment (LCA). We analyzed two coppicing rotation lengths (7 × 3 and 3 × 7 years) and seven nitrogen fertilization rates and included all processes starting from site preparation, planting and coppicing, wood chipping, and heat production up to final stump removal. The 7‐year rotation cycles clearly resulted in higher biomass yields and reduced environmental impacts such as nitrate (NO3) leaching and soil nitrous oxide (N2O) emissions. Fertilization rates were positively related to enhanced biomass accumulation, but these benefits did not counterbalance the negative impacts on the environment due to increased nitrate leaching and N2O emissions. Greenhouse gas (GHG) emissions associated with the heat production from poplar SRC on marginal land ranged between 8 and 46 kg CO2‐eq. GJ?1 (or 11–57 Mg CO2‐eq. ha?1). However, if the produced wood chips substitute oil heating, up to 123 Mg CO2‐eq. ha?1 can be saved, if produced in a 7‐year rotation without fertilization. Dissecting the entire bioenergy production chain, our study shows that environmental impacts occurred mainly during combustion and storage of wood chips, while technological aspects of establishment, harvesting, and transportation played a negligible role.  相似文献   

3.
The aim of this study was to evaluate the biomass production potential for the Spanish Iberian Peninsula using the Populus spp. ‘I‐214’ clone under several management regimes and land availability scenarios, and to determine its future contribution to Spanish energy demands. Empirical models were fitted to the data from a network of 144 plots located at 12 sites in the continental Mediterranean climatic regions of the Iberian Peninsula, in which yield was related to climate and soil, as well as to plantation management variables. Four models were developed considering average maximum temperature of the hottest month (TMAXH, °C), length of drought (A, months), intensity of drought (K, unitless) and soil pH. Predictions were made for the irrigated agricultural land (IAL), where the value of the independent variables were within the validity range, and for two management scenarios. Energy production capacity was evaluated by considering the alternatives for transforming poplar SRC biomass: heat, bio‐ethanol and electricity. The results indicated a mean productivity for the Spanish Iberian peninsula of between 15.3 and 10.9 Mg ha?1 yr?1 for the standard management scenario and the poorly irrigated and weeded management scenario respectively. Two IAL scenarios were considered for the calculation of biomass production potential: all IAL for which it was possible to make predictions is made available for poplar SRC (TP, maximum hypothetical production capacity), and another in which only unproductive IAL is available for poplar SRC (RP, production capacity without constricting agricultural production). The TP scenario contributes up to 6.8–9.6% of total energy demands, and the RP scenario 0.7–0.9%, depending on plantation management.  相似文献   

4.
Hybrid poplar short‐rotation coppices (SRC) provide feedstocks for bioenergy production and can be established on lands that are suboptimal for food production. The environmental consequences of deploying this production system on marginal agricultural land need to be evaluated, including the investigation of common management practices i.e., fertilization and irrigation. In this work, we evaluated (1) the soil‐atmosphere exchange of carbon dioxide, methane, and nitrous oxide (N2O); (2) the changes in soil organic carbon (SOC) stocks; (3) the gross ammonification and nitrification rates; and (4) the nitrate leaching as affected by the establishment of a hybrid poplar SRC on a marginal agricultural land in southern Germany. Our study covered one 3‐year rotation period and 2 years after the first coppicing. We combined field and laboratory experiments with modeling. The soil N2O emissions decreased from 2.2 kg N2O‐N ha?1 a?1 in the year of SRC establishment to 1.1–1.4 kg N2O‐N ha?1 a?1 after 4 years. Likewise, nitrate leaching reduced from 13 to 1.5–8 kg N ha?1 a?1. Tree coppicing induced a brief pulse of soil N2O flux and marginal effects on gross N turnover rates. Overall, the N losses diminished within 4 years by 80% without fertilization (irrespective of irrigation) and by 40% when 40–50 kg N ha?1 a?1 were applied. Enhanced N losses due to fertilization and the minor effect of fertilization and irrigation on tree growth discourage its use during the first rotation period after SRC establishment. A SOC accrual rate of 0.4 Mg C ha?1 a?1 (uppermost 25 cm, P = 0.2) was observed 5 years after the SRC establishment. Overall, our data suggest that SRC cultivation on marginal agricultural land in the region is a promising option for increasing the share of renewable energy sources due to its net positive environmental effects.  相似文献   

5.
Uncertainty in soil carbon (C) fluxes across different land‐use transitions is an issue that needs to be addressed for the further deployment of perennial bioenergy crops. A large‐scale short‐rotation coppice (SRC) site with poplar (Populus) and willow (Salix) was established to examine the land‐use transitions of arable and pasture to bioenergy. Soil C pools, output fluxes of soil CO2, CH4, dissolved organic carbon (DOC) and volatile organic compounds, as well as input fluxes from litter fall and from roots, were measured over a 4‐year period, along with environmental parameters. Three approaches were used to estimate changes in the soil C. The largest C pool in the soil was the soil organic carbon (SOC) pool and increased after four years of SRC from 10.9 to 13.9 kg C m?2. The belowground woody biomass (coarse roots) represented the second largest C pool, followed by the fine roots (Fr). The annual leaf fall represented the largest C input to the soil, followed by weeds and Fr. After the first harvest, we observed a very large C input into the soil from high Fr mortality. The weed inputs decreased as trees grew older and bigger. Soil respiration averaged 568.9 g C m?2 yr?1. Leaching of DOC increased over the three years from 7.9 to 14.5 g C m?2. The pool‐based approach indicated an increase of 3360 g C m?2 in the SOC pool over the 4‐year period, which was high when compared with the ?27 g C m?2 estimated by the flux‐based approach and the ?956 g C m?2 of the combined eddy‐covariance + biometric approach. High uncertainties were associated to the pool‐based approach. Our results suggest using the C flux approach for the assessment of the short‐/medium‐term SOC balance at our site, while SOC pool changes can only be used for long‐term C balance assessments.  相似文献   

6.
The demand for bioenergy has increased the interest in short‐rotation woody crops (SRWCs) in temperate zones. With increased litter input and ceased annual soil cultivation, SRWC plantations may become soil carbon sinks for climate change mitigation. A chronosequence of 26 paired plots was used to study the potential for increasing soil organic carbon (SOC) under SRWC willow and poplar after conversion from cropland (CR) on well‐drained soils. We estimated SOC stocks in SRWC stands and adjacent CR and related the difference to time since conversion, energy crop species, SOC stock of the adjacent CR (proxy for initial SOC of SRWC) and the fine soil percentage (<63 μm) (FS). Soil cores to 40 cm depth were sampled and separated by layers of fixed depths (0–5, 5–10, 10–15, 15–25 and 25–40 cm). Additionally, soils were sampled from soil pits by genetic horizons to 100 cm depth. Comparisons of SOC stocks by equivalent soil masses showed that mean SOC stocks in SRWC were 1.7 times higher than those of CR in the top 5 cm of the soil (P < 0.001). The differences between SRWC and CR remained significant for the plough layer (0–25 cm) by a factor of 1.2 (P = 0.003), while no changes were detectable for the 0–40 cm (P = 0.32), or for the entire 0–100 cm soil layer (P = 0.29). The SOC stock ratio, that is the ratio of SOC stock in SRWC relative to CR, did not change significantly with time since conversion, although there was a tendency to an increase over time for the top 40 cm (P = 0.09). The SOC stock ratio was negatively correlated to SOC in CR and FS percentage, but there was no significant difference between willow and poplar at any depth. Our results suggest that SOC stocks in the plough layer increase after conversion to SRWC.  相似文献   

7.
Short‐rotation woody biomass crops (SRWCs) have been proposed as an alternative feedstock for biofuel production in the northeastern US that leads to the conversion of current open land to woody plantations, potentially altering the soil microbial community structures and hence functions. We used pyrosequencing of 16S and 28S rRNA genes in soil to assess bacterial and fungal populations when ‘marginal’ grasslands were converted into willow (Salix spp.) and hybrid poplar (Populus spp.) plantations at two sites with similar soils and climate history in northern Michigan (Escanaba; ES) and Wisconsin (Rhinelander; RH). In only three growing seasons, the conversion significantly altered both the bacterial and fungal communities, which were most influenced by site and then vegetation. The fungal community showed greater change than the bacterial community in response to land conversion at both sites with substantial enrichment of putative pathogenic, ectomycorrhizal, and endophytic fungi associated with poplar and willow. Conversely, the bacterial community structures shifted, but to a lesser degree, with the new communities dissimilar at the two sites and most correlated with soil nutrient status. The bacterial phylum Nitrospirae increased after conversion and was negatively correlated to total soil nitrogen, but positively correlated to soil nitrate, and may be responsible for nitrate accumulation and the increased N2O emissions previously reported following conversion at these sites. The legacy effect of a much longer grassland history and a second dry summer at the ES site may have influenced the grassland (control) microbial community to remain stable while it varied at the RH site.  相似文献   

8.
Several factors influence land availability for the growth of short rotation coppices (SRC) with fast‐growing tree species, including the nationwide availability of agricultural land, economic efficiency, ecological impacts, political boundaries and environmental protection regulations. In this study, we analysed the growing potential of poplar and willow SRC for bioenergy purposes in Germany without negative ecological impacts or land use conflicts. The potential biomass production using SRC on agricultural land in Germany was assessed taking into account ecological, ethical, political and technical restrictions. Using a geographic information system (GIS), digital site maps, climate data and a digital terrain model, the SRC biomass production potential on cropland and grassland was estimated using water supply and mean temperature during the growing season as parameters. From this analysis, a yield model for SRC was developed based on the analysed growth data and site information of 62 short rotation plantations in Germany and France. To assess the technical, ethical and ecological potential of SRC, restrictions in protected areas, technical constraints and competition with food and feed production were investigated. Our results revealed that approximately 18% (2.12 Mio. ha) of cropland and 54% (2.5 Mio. ha) of grassland in Germany were highly suitable for SRC plantations, providing favourable water supplies and mean temperatures during the growing season. These identified sites produced an average yield of more than 14 tons of dry matter per hectare per year. Due to local climate and soil conditions, the federal states in northern and eastern Germany had the highest theoretical SRC potential for agricultural land. After considering all ecological, ethical, political and technical restrictions, as well as future climate predictions, 5.7% (680 000 ha) of cropland and 33% (1.5 Mio. ha) of grassland in Germany were classified as suitable for biomass production with fast‐growing tree species in SRC.  相似文献   

9.
Short‐rotation woody cropping (SRWC) refers to silvicultural systems designed to produce woody biomass using short harvest cycles (1–15 years), intensive silvicultural techniques, high‐yielding varieties, and often coppice regeneration. Recent emphasis on alternatives to fossil fuels has spurred interest in producing SRWC on privately owned and intensively managed forests of North America. We examined potential bird and small mammal response at the stand level to conversion of existing, intensively managed forests to SRWCs using meta‐analysis of existing studies. We found 257 effect sizes for birds (243 effect sizes) and mammals (14 effect sizes) from 8 studies involving Populus spp. plantations. Diversity and abundance of bird guilds were lower on short‐rotation plantations compared with reference woodlands, while abundance of individual bird species was more variable and not consistently higher or lower on SRWC plantations. Shrub‐associated birds were more abundant on SRWC plantations, but forest‐associated and cavity‐nesting birds were less abundant. Effects on birds appeared to decrease with age of the SRWC plantation, but plantation age was also confounded with variation in the type of reference forest used for comparison. Both guilds and species of mammals were less abundant on SRWC plantations. These conclusions are tentative because none of these studies directly compared SRWC plantations to intensively managed forests. Plantations of SRWCs could contribute to overall landscape diversity in forest‐dominated landscapes by providing shrubby habitat structure for nonforest species. However, extensive conversion of mature or intensively managed forests to SRWC would likely decrease overall diversity, especially if they replace habitat types of high conservation value.  相似文献   

10.
The effects of soil compaction and mechanical damage to stools at harvesting on the growth and biomass production of short rotation coppice (SRC) of willow (Salix viminalis L.) were monitored on clay loam (CL) and sandy loam (SL) soils. Moderate compaction, more typical of current harvesting situations did not reduce biomass yields significantly. Even heavy compaction only reduced stem biomass production by about 12% overall; effects were statistically significant only in the first year of the experiment on sandy loam. Heavy compaction increased soil strength and bulk density down to 0.4 m depth and reduced soil available water and root growth locally. Soil loosening treatments designed to alleviate the effects of heavy compaction did not markedly improve the growth of willow on compacted plots. Hence the focus fell on harvesting. Extensive mechanical damage to stools caused a 9% and 21% reduction in stem dry mass on the clay loam and sandy loam soils as a result of fewer stems being produced. The particularly severe effect on the sandy loam soil probably resulted from a combination of dry conditions in the year of treatment, root damage and soil compaction under stools and might have been aggravated by the young age of the plants (1 year) at the time of treatment.  相似文献   

11.
12.
The productivity of short‐rotation coppice (SRC) plantations with poplar (Populus spp.) strongly depends on soil water availability, which limits the future development of its cultivation, and makes the study of the transpirational water loss particularly timely under the ongoing climate change (more frequent drought and floods). This study assesses the transpiration at different scales (leaf, tree and stand) of four poplar genotypes belonging to different species and from a different genetic background grown under an SRC regime. Measurements were performed for an entire growing season during the third year of the third rotation in a commercial scale multigenotype SRC plantation in Flanders (Belgium). Measurements at leaf level were performed on specific days with a contrasted evaporative demand, temperature and incoming shortwave radiation and included stomatal conductance, stem and leaf water potential. Leaf transpiration and leaf hydraulic conductance were obtained from these measurements. To determine the transpiration at the tree level, single‐stem sap flow using the stem heat balance (SHB) method and daily stem diameter variations were measured during the entire growing season. Sap flow‐based canopy transpiration (Ec), seasonal dry biomass yield, and water use efficiency (WUE; g aboveground dry matter/kg water transpired) of the four poplar genotypes were also calculated. The genotypes had contrasting physiological responses to environmental drivers and to soil conditions. Sap flow was tightly linked to the phenological stage of the trees and to the environmental variables (photosynthetically active radiation and vapor pressure deficit). The total Ec for the 2016 growing season was of 334, 350, 483 and 618 mm for the four poplar genotypes, Bakan, Koster, Oudenberg and Grimminge, respectively. The differences in physiological traits and in transpiration of the four genotypes resulted in different responses of WUE.  相似文献   

13.
Short‐rotation woody crops (SRWC) such as poplar and willow are an important source of renewable energy. They can be converted into electricity and/or heat using conventional or modern biomass technologies. In recent years many studies have examined the energy and greenhouse gas (GHG) balance of bioenergy production from poplar and willow using various approaches. The outcomes of these studies have, however, generated controversy among scientists, policy makers, and the society. This paper reviews 26 studies on energy and GHG balance of bioenergy production from poplar and willow published between 1990 and 2009. The data published in the reviewed literature gave energy ratios (ER) between 13 and 79 for the cradle‐to‐farm gate and between 3 and 16 for cradle‐to‐plant assessments, whereas the intensity of GHG emissions ranged from 0.6 to 10.6 g CO2 Eq MJbiomass?1 and 39 to 132 g CO2 Eq kWh?1. These values vary substantially among the reviewed studies depending on the system boundaries and methodological assumptions. The lack of transparency hampers meaningful comparisons among studies. Although specific numerical results differ, our review revealed a general consensus on two points: SRWC yielded 14.1–85.9 times more energy than coal (ERcoal~0.9) per unit of fossil energy input, and GHG emissions were 9–161 times lower than those of coal (GHGcoal~96.8). To help to reduce the substantial variability in results, this review suggests a standardization of the assumptions about methodological issues. Likewise, the development of a widely accepted framework toward a reliable analysis of energy in bioenergy production systems is most needed.  相似文献   

14.
Sustained interest in producing renewable energy from dedicated woody biomass crops, such as shrub willow (Salix spp.), through short rotation coppice (SRC) has resulted in a substantial amount of published research on SRC over the past few decades. One area of constant focus has been the nutritional requirements for optimal growth and yield. Inconsistency in the results of individual research trials has likely been a driver of repeated experimentation. This review is intended to provide a quantitative examination of the effect of fertilization treatments on willow biomass yield in field conditions. Data from the literature were collected and summarized to test for significant sources of variation in willow biomass nitrogen (N) pools of common SRC genotypes used in North American and European research programs. A meta‐analysis was conducted on studies comparing synthetic or organic sources of N willow fertilization to an unfertilized control treatment to test for yield response. Overall, the majority of responses to fertilization were positive, although variation by species, N source material, and crop age were found. While no clear pattern in N dosage response was observed, the level of yield response was correlated with geographic and climatic variables. Nitrogen export levels were fairly predictable, and the synthesis presented here can be used to refine current guidelines. Environmental and economic aspects are also considered.  相似文献   

15.
Willow biomass produced in short rotation coppice systems can potentially be used as biomass feedstock in Europe, the United States and Canada. However, most researchers focus on data from the first harvest rotation only, whereas multiple rotations have been rarely investigated. The aim of this study was to evaluate the effect of cultivar (5), planting density (12,000–96,000 cuttings/ha) and harvest rotation (annual, biennial, triennial) on willow biomass yields during 12 consecutive years in northern Poland. Every experimental factor and the interactions between factors significantly impacted willow yields. Biomass yield was highest in the triennial harvest rotation (13.3 Mg ha?1 year?1), 15.9% lower in the biennial rotation and 26.9% lower in the annual rotation. The highest average yield (14.6 Mg ha?1 year?1) was noted at a planting density of 24,000 cuttings/ha, and yields were 9.3%–46.0% lower at the remaining densities. Cultivar UWM 095 had the highest average yield (13.0 Mg ha?1 year?1), whereas the yield of the remaining cultivars was 4.6%–32.4% lower. During the 12‐year period, yields were higher after the first harvest in annual, biennial and triennial harvest rotations. This above implies that high biomass yields can be obtained after the first harvest rotation if willows are cultivated on fertile soils at higher planting density, well managed and coppiced after the first year. However, yields are unlikely to be higher in successive harvest rotations, and they can even be lower, but more stable than in the first harvest rotation.  相似文献   

16.
Giant miscanthus (Miscanthus × giganteus Greef and Deuter) and Amur silver grass (Miscanthus sacchariflorus Maxim./Hack) are rhizomatous grasses with a C4 photosynthetic pathway that are widely cultivated as energy crops. For those species to be successfully used in bioenergy generation, their yields have to be maintained at a high level in the long term. The biomass yield (fresh and dry matter [DM] yield) and energy efficiency (energy inputs, energy output, energy gain, and energy efficiency ratio) of giant miscanthus and Amur silver grass were compared in a field experiment conducted in 2007–2017 in North‐Eastern Poland. Both species were characterized by high above‐ground biomass yields, and the productive performance of M. × giganteus was higher in comparison with M. sacchariflorus (15.5 vs. 9.3 Mg DM ha?1 year?1 averaged for 1–11 years of growth). In the first year of the experiment, the energy inputs associated with the production of M. × giganteus and M. sacchariflorus were determined at 70.5 and 71.5 GJ/ha, respectively, and rhizomes accounted for around 78%–79% of total energy inputs. In the remaining years of cultivation, the total energy inputs associated with the production of both perennial rhizomatous grasses reached 13.6–15.7 (M. × giganteus) and 16.9–17.5 GJ ha?1 year?1 (M. sacchariflorus). Beginning from the second year of cultivation, mineral fertilizers were the predominant energy inputs in the production of M. × giganteus (78%–86%) and M. sacchariflorus (80%–82%). In years 2–11, the energy gain of M. × giganteus reached 50 (year 2) and 264–350 GJ ha?1 year?1 (years 3–11), and its energy efficiency ratio was determined at 4.7 (year 2) and 18.6–23.3 (years 3–11). The energy gain and the energy efficiency ratio of M. sacchariflorus biomass in the corresponding periods were determined at 87–234 GJ ha?1 year?1 and 6.1–14.3, respectively. Both grasses are significant and environmentally compatible sources of bioenergy, and they can be regarded as potential energy crops for Central‐Eastern Europe.  相似文献   

17.
The need for renewable energy sources will lead to a considerable expansion in the planting of dedicated fast‐growing biomass crops across Europe. These are commonly cultivated as short‐rotation coppice (SRC), and currently poplar (Populus spp.) is the most widely planted. In this study, we report the greenhouse gas (GHG) fluxes of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) measured using eddy covariance technique in an SRC plantation for bioenergy production. Measurements were made during the period 2010–2013, that is, during the first two rotations of the SRC. The overall GHG balance of the 4 years of the study was an emission of 1.90 (±1.37) Mg CO2eq ha?1; this indicated that soil trace gas emissions offset the CO2 uptake by the plantation. CH4 and N2O contributed almost equally to offset the CO2 uptake of ?5.28 (±0.67) Mg CO2eq ha?1 with an overall emission of 3.56 (±0.35) Mg CO2eq ha?1 of N2O and of 3.53 (±0.85) Mg CO2eq ha?1 of CH4. N2O emissions mostly occurred during one single peak a few months after the site was converted to SRC; this peak comprised 44% of the total N2O loss during the two rotations. Accurately capturing emission events proved to be critical for deriving correct estimates of the GHG balance. The nitrogen (N) content of the soil and the water table depth were the two drivers that best explained the variability in N2O and CH4, respectively. This study underlines the importance of the ‘non‐CO2 GHGs’ on the overall balance. Further long‐term investigations of soil trace gas emissions should monitor the N content and the mineralization rate of the soil, as well as the microbial community, as drivers of the trace gas emissions.  相似文献   

18.
Understanding and predicting the effects of land‐use change to short rotation forestry (SRF) on soil carbon (C) is an important requirement for fully assessing the C mitigation potential of SRF as a bioenergy crop. There is little current knowledge of SRF in the UK and in particular a lack of consistent measured data sets on the direct impacts of land use change on soil C stocks. The ECOSSE model was developed to simulate soil C dynamics and greenhouse gas (GHG) emissions in mineral and organic soils. The ECOSSE model has already been applied spatially to simulate land‐use change impacts on soil C and GHG emissions. However, it has not been extensively evaluated under SRF. Eleven sites comprising 29 transitions in Britain, representing land‐use change from nonwoodland land uses to SRF, were selected to evaluate the performance of ECOSSE in predicting soil C and soil C change in SRF plantations. The modelled C under SRF showed a strong correlation with the soil C measurements at both 0–30 cm (R = 0.93) and 0–100 cm soil depth (R = 0.82). As for the SRF plots, the soil C at the reference sites have been accurately simulated by the model. The extremely high correlation for the reference fields (R ≥ 0.99) shows a good performance of the model spin‐up. The statistical analysis of the model performance to simulate soil C and soil C changes after land‐use change to SRF highlighted the absence of significant error between modelled and measured values as well as the absence of significant bias in the model. Overall, this evaluation reinforces previous studies on the ability of ECOSSE to simulate soil C and emphasize its accuracy to simulate soil C under SRF plantations.  相似文献   

19.
Selecting superior clones is the first step for commercial short‐rotation coppice cultures to provide biomass and bioenergy. Till date, such selection for hybrid Populus clones in middle China is absent. Here we describe the growth, aboveground biomass production and cell wall composition of 27 hybrid poplar clones in Henan, China for two 3‐year rotations. Significant variation in these three characteristics over two triennial rotation coppices among the 27 poplar clones was observed. During two 3‐year rotation coppices, clones ‘276’, ‘02‐17’, and ‘599’ showed relatively higher tree heights and larger basal diameters than those of the other clones. However, the most productive clones were ‘36’ and ‘01‐30’. At the end of the second triennial rotation, the aboveground biomass production reached 18 Mg ha?1 year?1. For the cell wall composition analysis, the cellulose contents of clones ‘01‐243’ and ‘2001’ were relatively high, while the xylose contents of clones ‘01‐30’ and ‘65’ were relatively high. Cluster analysis based on height, basal diameter, biomass, heat value, cellulose content, and survival rate revealed five growth potential classes. Accordingly, clones ‘03‐332’, ‘36’, and ‘599’ exhibited high biomass and growth and had the greatest potential to serve as excellent biomass producers in Henan, China. In addition, the expression patterns of 20 key regulatory genes were analyzed, and an integrated coexpression network was constructed. This field trial provides a comprehensive quantification and evaluation of the agronomic performance of 27 poplar clones in Henan, China. The results of this study and the analytical strategies provide an efficient mechanism for selecting clones that will perform well agronomically in local environments. The expression of key genes and the integrated coexpression network provide the molecular mechanisms of poplar biomass performance.  相似文献   

20.
Biogenic volatile organic compounds (BVOC) emissions from bioenergy crops may differ from those of conventional crops. We compared emission rates of isoprene and a number of monoterpenes from the lignocellulosic bioenergy crops short‐rotation coppice (SRC) willow and Miscanthus, with the conventional crops wheat and oilseed rape. BVOC emission rates were measured via dynamic vegetation enclosure and GC‐MS analysis approximately monthly between April 2010 and August 2012 at a location in England and from SRC willow at two locations in Scotland. The largest BVOC emission rates were measured from willow in England and varied between years. Isoprene emission rates varied between μg g?1 h?1. Of the monoterpenes detected from willow, α‐pinene emission rates were highest (μg g?1 h?1), followed by μg g?1 h?1 for δ‐3‐carene, μg g?1 h?1 for β‐pinene and μg g?1 h?1 for limonene. BVOC emission rates measured in Scotland were much lower. Low emission rates of isoprene and α‐pinene were measured from Miscanthus in 2010 (μg g?1 h?1 and μg g?1 h?1, respectively) but were not detected in subsequent years. Emission rates from wheat of isoprene were negligible but relatively high for monoterpenes (μg g?1 h?1 and μg g?1 h?1 for α‐pinene and limonene, respectively). No significant emission rates of BVOCs were measured from oilseed rape. The measured emission rates followed a clear seasonal trend. Crude extrapolations based solely on data gathered here indicate that isoprene emissions from willow could correspond to 0.004–0.03% (UK) and 0.76–5.5% (Europe) of current global isoprene if 50% of all land potentially available for bioenergy crops is planted with willow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号