首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new group of 2,3-diarylquinoline derivatives possessing a methylsulfonyl COX-2 pharmacophore at the para-position of the C-2 phenyl ring were synthesized and evaluated as selective COX-2 inhibitors. In vitro COX-1/COX-2 structure–activity relationships were determined by varying the substituents on the C-4 quinoline ring. Among the 2,3-diarylquinolines, 2-(4-(methylsulfonyl) phenyl)-3-phenylquinoline-4-carboxylic acid (8) exhibited the highest potency and selectivity for COX-2 inhibitory activity (COX-2 IC50 = 0.07 μM; selectivity index = 687.1) that was more selective than the reference drug celecoxib (COX-2 IC50 = 0.06 μM; selectivity index = 405). A molecular modeling study where 8 was docked in the binding site of COX-2 indicated that the p-MeSO2 COX-2 pharmacophore group on the C-2 phenyl ring is oriented in the vicinity of the COX-2 secondary pocket (Arg513, Phe518 and Val523) and the carboxylic acid substituent can interact with Ser530. The structure activity data acquired indicate that the size and nature of the C-4 quinoline substituent are important for COX-2 inhibitory activity.  相似文献   

2.
In our lead finding program, a series of 5-thioxo-[1,2,4]triazolo[1,5-a][1,3,5]triazin-7-ones and their 5-thio-alkyl derivatives were designed and synthesized which contained different substituents at ortho-position of 2-phenyl ring attached to the fused ring structure. The preliminary pharmacological evaluation demonstrated that the synthesized compounds exhibited a varying degree of inhibitory activity towards thymidine phosphorylase (TP), comparable to reference compound, 7-Deazaxanthine (7-DX, 2) (IC50 value = 42.63 μM). The study also inferred that the ortho-substituted group at the phenyl ring and 5-thio-alkyl moiety imparted steric hindrance effects in the binding site of the enzyme, leading to a reduced inhibitory response. In addition, compound 3a was identified as a mixed-type inhibitor of TP. Moreover, computational docking study was performed to illustrate the important structural information on the plausible ligand-enzyme binding interactions.  相似文献   

3.
The substituents both at the 6-position of the 5-bromopyrimidinone ring and at the 5′-position of the phenyl ring of 5-bromopyrimidin-4(3H)-ones were explored. 5-Bromo-6-isopropyl-2-(2-propoxy-phenyl)pyrimidin-4(3H)-one was identified as a new scaffold for potent PDE5 inhibitors. The crystal structures of PDE5/2e and PDE5/10a complexes provided a structural basis for the inhibition of 5-bromopyrimidinones to PDE5. In addition, it was also found that there is a great tolerance for the substitution at the 5′-position of the phenyl ring of 5-bormopyrimidinones and the resulted compound 13a has the highest inhibition activity to PDE5 (IC50, 1.7 nM).  相似文献   

4.
A series of methoxylated chalcones with fluoro and trifluoromethyl derivatives were synthesized and investigated for their ability to inhibit human monoamine oxidase A and B. The chemical structures of the compounds have been characterized by means of their 1H NMR, 13C NMR, Mass spectroscopic datas and elemental analysis. The results demonstrate that these compounds are reversible and selective MAO-B inhibitors with a competitive mode of inhibition. The most potent compound (2E)-1-(4-methoxyphenyl)-3-[4-(trifluoromethyl)phenyl] prop-2-en-1-one showed the best activity and higher selectivity towards hMAO-B with Ki and SI values of 0.22 ± 0.01 μM and 0.05 comparable to that standard drug, Selegiline Ki and SI values were found as 0.33 ± 0.03 μM and 0.04, respectively. Molecular docking studies were carried out to further explain the in vitro results of the new compounds, and to identify the hypothetical binding mode for the compounds inside the inhibitor binding cavity of hMAO-B.  相似文献   

5.
Nicotinamide adenine dinucleotide (NAD+) synthetase catalyzes the last step in NAD+ biosynthesis. Depletion of NAD+ is bactericidal for both active and dormant Mycobacterium tuberculosis (Mtb). By inhibiting NAD+ synthetase (NadE) from Mtb, we expect to eliminate NAD+ production which will result in cell death in both growing and nonreplicating Mtb. NadE inhibitors have been investigated against various pathogens, but few have been tested against Mtb. Here, we report on the expansion of a series of urea-sulfonamides, previously reported by Brouillette et al. Guided by docking studies, substituents on a terminal phenyl ring were varied to understand the structure–activity-relationships of substituents on this position. Compounds were tested as inhibitors of both recombinant Mtb NadE and Mtb whole cells. While the parent compound displayed very weak inhibition against Mtb NadE (IC50 = 1000 µM), we observed up to a 10-fold enhancement in potency after optimization. Replacement of the 3,4-dichloro group on the phenyl ring of the parent compound with 4-nitro yielded 4f, the most potent compound of the series with an IC50 value of 90 µM against Mtb NadE. Our modeling results show that these urea-sulfonamides potentially bind to the intramolecular ammonia tunnel, which transports ammonia from the glutaminase domain to the active site of the enzyme. This hypothesis is supported by data showing that, even when treated with potent inhibitors, NadE catalysis is restored when treated with exogenous ammonia. Most of these compounds also inhibited Mtb cell growth with MIC values of 19–100 µg/mL. These results improve our understanding of the SAR of the urea-sulfonamides, their mechanism of binding to the enzyme, and of Mtb NadE as a potential antitubercular drug target.  相似文献   

6.
In view of reported xanthine oxidase inhibitory potential of naphthopyrans and flavones, naphthoflavones as hybrids of the two were designed, synthesized and evaluated for in vitro xanthine oxidase inhibitory activity in the present study. The results of the assay revealed that the naphthoflavones possess promising inhibitory potential against the enzyme with IC50 values ranging from 0.62 to 41.2 μM. Structure activity relationship indicated that the nature and placement of substituents on the phenyl ring at 2nd position remarkably influences the inhibitory activity. Substitution of halo and nitro groups at ortho and para position of the phenyl ring (2nd position) remarkably favored the activity. NF-4 with p-fluoro phenyl ring was the most potent inhibitor with IC50 value of 0.62 μM. Enzyme kinetics study was also performed to investigate the inhibition mechanism and it was found that the naphthoflavones displayed mixed type inhibition. The basis of significant inhibition of xanthine oxidase by NF-4 was rationalized by molecular modeling studies.  相似文献   

7.
For finding the novel inhibitor of nuclear factor κB activity, a series of benzimidazole derivatives were rationally designed, synthesized and systematically studied for their in vitro activities against LPS induced NF-κB inhibition in RAW 264.7 cells using the SEAP assay based on the flexible chalcone JSH ((E)-1-(2-hydroxy-6-(isopentyloxy)phenyl)-3-(4-hydroxy phenyl)prop-2-en-1-one) which was previously reported. Although most of the benzimidazole derivatives showed strong inhibitory activity in low micromolar potency, 2-(4-methoxybenzyl)-1H-benzo[d]imidazole (3m; IC50 = 1.7 μM) and 2-(2-methoxybenzyl)-1H-benzo[d]imidazole (3n; IC50 = 2.4 μM) showed the best inhibition. The structure activity relationship revealed that 2-benzylbenzimidazole scaffold with hydrogen bonding acceptor on phenyl ring appears as a pharmacophore.  相似文献   

8.
A series of 2-(substituted) phenyl and 2-indolyl quinoline derivatives (10al) was synthesized by an efficient microwave-assisted, trifluoroacetic acid-catalyzed, solvent-free method. Evaluation of the inhibitory activity led to the identification of two quinoline inhibitors of cholesterol esterase. 2-(1H-Indol-3-yl)-6-nitro-4-phenylquinoline (10l; IC50 = 1.98 μM) was characterized as a mixed-type inhibitor with a pronounced competitive binding mode.  相似文献   

9.
A series of forty-seven quinoxaline derivatives, 2-(XYZC6H2CHN–NH)-quinoxalines, 1, have been synthesized and evaluated for their activity against four cancer cell lines: potent cytotoxicities were found (IC50 ranging from 0.316 to 15.749 μM). The structure–activity relationship (SAR) analysis indicated that the number, the positions and the type of substituents attached to the aromatic ring are critical for biological activity. The activities do not depend on the electronic effects of the substituents nor on the lypophilicities of the molecules. A common feature of active compounds is an ortho-hydroxy group in the phenyl ring. A potential role of these ortho-hydroxy derivatives is as N,N,O-tridentate ligands complexing with a vital metal, such as iron, and thereby preventing proliferation of cells. The most active compound was (1: X,Y = 2,3-(OH)2, Z = H), which displayed a potent cytotoxicity comparable to that of the reference drug doxorubicin.  相似文献   

10.
The natural product fumagillin 1 and derivatives like TNP-470 2 or beloranib 3 bind to methionine aminopeptidase 2 (MetAP-2) irreversibly. This enzyme is critical for protein maturation and plays a key role in angiogenesis. In this paper we describe the synthesis, MetAP-2 binding affinity and structural analysis of reversible MetAP-2 inhibitors. Optimization of enzymatic activity of screening hit 10 (IC50: 1 μM) led to the most potent compound 27 (IC50: 0.038 μM), with a concomitant improvement in LLE from 2.1 to 4.2. Structural analysis of these MetAP-2 inhibitors revealed an unprecedented conformation of the His339 side-chain imidazole ring being co-planar sandwiched between the imidazole of His331 and the aryl-ether moiety, which is bound to the purine scaffold. Systematic alteration and reduction of H-bonding capability of this metal binding moiety induced an unexpected 180° flip for the triazolo[1,5-a]pyrimdine bicyclic template.  相似文献   

11.
Hsp90 isoform-selective inhibition is highly desired as it can potentially avoid the toxic side-effects of pan-inhibition. The current study developed selective inhibitors of one such isoform, Grp94, predicated on the chimeric and pan-Hsp90 inhibitor, radamide (RDA). Replacement of the quinone moiety of RDA with a phenyl ring (2) was found to be better suited for Grp94 inhibition as it can fully interact with a unique hydrophobic pocket present in Grp94. An extensive SAR for this scaffold showed that substitutions at the 2- and 4-positions (8 and 27, respectively) manifested excellent Grp94 affinity and selectivity. Introduction of heteroatoms into the ring also proved beneficial, with a 2-pyridine derivative (38) exhibiting the highest Grp94 affinity (Kd = 820 nM). Subsequent cell-based assays showed that these Grp94 inhibitors inhibit migration of the metastatic breast cancer cell line, MDA-MB-231, as well as exhibit an anti-proliferative affect against the multiple myeloma cell line, RPMI 8226.  相似文献   

12.
A series of 1,4- and 1,5-diaryl substituted 1,2,3-triazoles was synthesized by either Cu(I)-catalyzed or Ru(II)-catalyzed 1,3-dipolar cycloaddition reactions between 1-azido-4-methane-sulfonylbenzene 9 and a panel of various para-substituted phenyl acetylenes (4-H, 4-Me, 4-OMe, 4-NMe2, 4-Cl, 4-F). All compounds were used in in vitro cyclooxygenase (COX) assays to determine the combined electronic and steric effects upon COX-1 and COX-2 inhibitory potency and selectivity. Structure-activity relationship studies showed that compounds having a vicinal diaryl substitution pattern showed more potent COX-2 inhibition (IC50 = 0.03–0.36 μM) compared to their corresponding 1,3-diaryl-substituted counterparts (IC50 = 0.15 to >10.0 μM). In both series, compounds possessing an electron-withdrawing group (Cl and F) at the para-position of one of the aryl rings displayed higher COX-2 inhibition potency and selectivity as determined for compounds containing electron-donating groups (Me, OMe, NMe2). The obtained data show, that the central carbocyclic or heterocyclic ring system as found in many COX-2 inhibitors can be replaced by a central 1,2,3-triazole unit without losing COX-2 inhibition potency and selectivity. The high COX-2 inhibition potency of some 1,2,3-triazoles having a vicinal diaryl substitution pattern along with their ease in synthesis through versatile Ru(II)-catalyzed click chemistry make this class of compounds interesting candidates for further design and synthesis of highly selective and potent COX-2 inhibitors.  相似文献   

13.
A hitherto unknown class of linear acetylene regioisomers were designed such that a SO2Me or SO2NH2 group was located at the ortho-, meta- or para-position of the acetylene C-1 phenyl ring, and a N-difluoromethyl-1,2-dihydropyridin-2-one moiety was attached via its C-5 position to the C-2 position on an acetylene template (scaffold). All three SO2Me regioisomers, and the 4-SO2NH2 analog, were potent inhibitors of 5-lipoxygenase (5-LOX IC50 = 3.2–3.5 μM range) relative to the reference drug caffeic acid (IC50 = 4.0 μM). The SO2Me regioisomers exhibited weak cyclooxygenease-1 (COX-1) and -2 (COX-2) inhibitory activity with a modest COX-2 selectivity index. The most potent 3-SO2Me, 4-SO2Me and 4-SO2NH2 compounds, with respective ED50 values of 66.1, 68.5 and 86.5 mg/kg po, exhibited comparable oral anti-inflammatory (AI) activity to that of the reference drug ibuprofen (ED50 = 67.4 mg/kg po). The N-difluoromethyl-1,2-dihydropyridin-2-one moiety provides a novel pharmacophore for the design of cyclic hydroxamic mimetics capable of inhibiting 5-LOX for exploitation in the development of 5-LOX inhibitory AI drugs.  相似文献   

14.
A series of novel diaryl substituted pyrazolyl 2,4-thiazolidinediones were synthesized via reaction of appropriate pyrazolecarboxaldehydes with 2,4-thiazolidinedione (TZD) and nitrobenzyl substituted 2,4-thiazolidinedione. The resulting compounds were screened in vitro for pancreatic lipase (PL) inhibitory activity. Two assay protocols were performed viz., methods A and B using p-nitrophenyl butyrate and tributyrin as substrates, respectively. Compound 11e exhibited potent PL inhibitory activity (IC50 = 4.81 µM and Xi50 = 10.01, respectively in method A and B), comparable to that of the standard drug, orlistat (IC50 = 0.99 µM and Xi50 = 3.72). Presence of nitrobenzyl group at N-3 position of TZD and nature of substituent at para position of phenyl ring at C-3 position of pyrazole ring notably affected the PL inhibitory activity of the tested compounds. Enzyme inhibition kinetics of 11e revealed its reversible competitive inhibition, similar to that of orlistat. Molecular docking studies validated the rationale of pharmacophoric design and are in accordance to the in vitro results. Compound 11e exhibited a potential MolDock score of ?153.349 kcal/mol. Further, the diaryl pyrazolyl wing exhibited hydrophobic interactions with the amino acids of the hydrophobic lid domain. Moreover, the carbonyl group at 2nd position of the TZD ring existed adjacent to Ser 152 (≈3 Å) similar to that of orlistat. A 10 ns molecular dynamics simulation of 11ePL complex revealed a stable binding conformation of 11e in the active site of PL (Maximum RMSD  3 Å). The present study identified novel thiazolidinedione based leads with promising PL inhibitory activity. Further development of the leads might result in potent PL inhibitors.  相似文献   

15.
We studied synthetic modifications of N-mercaptoacylamino acid derivatives to develop a new class of leukotriene A4 (LTA4) hydrolase inhibitors. S-(4-Dimethylamino)benzyl-l-cysteine derivative 2a (SA6541) showed inhibitory activity against LTA4 hydrolase (IC50, 270 nM) and selectivity over other metallopeptidases except angiotensin-converting enzyme (ACE, IC50, 520 nM). Modification at the para-substituent of the phenyl ring of compound 2a improved LTA4 hydrolase inhibitory activity as well as selectivity over ACE. Finally, we obtained S-(4-cyclohexyl)benzy-l-cysteine derivatives 11l and 16i as potent and selective LTA4 hydrolase inhibitors.  相似文献   

16.
In continuation of our previous efforts directed towards the development of potent and selective inhibitors of aldose reductase (ALR2), and to control the diabetes mellitus (DM), a chronic metabolic disease, we synthesized novel coumarin-thiazole 6(a–o) and coumarin-oxadiazole 11(a–h) hybrids and screened for their inhibitory activity against aldose reductase (ALR2), for the selectivity against aldehyde reductase (ALR1). Compounds were also screened against ALR1. Among the newly designed compounds, 6c, 11d, and 11g were selective inhibitors of ALR2. Whereas, (E)-3-(2-(2-(2-bromobenzylidene)hydrazinyl)thiazol-4-yl)-2H-chromen-2-one 6c yielded the lowest IC50 value of 0.16 ± 0.06 μM for ALR2. Moreover, compounds (E)-3-(2-(2-benzylidenehydrazinyl)thiazol-4-yl)-2H-chromen-2-one (6a; IC50 = 2.94 ± 1.23 μM for ARL1 and 0.12 ± 0.05 μM for ARL2) and (E)-3-(2-(2-(1-(4-bromophenyl)ethylidene)hydrazinyl)thiazol-4-yl)-2H-chromen-2-one (6e; IC50 = 1.71 ± 0.01 μM for ARL1 and 0.11 ± 0.001 μM for ARL2) were confirmed as dual inhibitors. Furthermore, compounds 6i, 6k, 6m, and 11b were found to be selective inhibitors for ALR1, among which (E)-3-(2-(2-((2-amino-4-chlorophenyl)(phenyl)methylene)hydrazinyl)thiazol-4-yl)-2H-chromen-2-one (6m) was most potent (IC50 = 0.459 ± 0.001 μM). Docking studies performed using X-ray structures of ALR1 and ALR2 with the given synthesized inhibitors showed that coumarinyl thiazole series lacks the carboxylate function that could interact with the anionic binding site being a common ALR1/ALR2 inhibitors trait. Molecular docking study with dual inhibitor 6e also suggested plausible binding modes for the ALR1 and ALR2 enzymes. Hence, the results of this study revealed that coumarinyl thiazole and oxadiazole derivatives could act as potential ALR1/ALR2 inhibitors.  相似文献   

17.
A series of benzoxazinones 128 were synthesized via reaction of anthranilic acid with various substituted benzoyl chlorides in the presence of triethylamine in chloroform. Compounds 118 showed a good inhibition of α-chymotrypsin with IC50 ± SEM values between 6.5 and 341.1 μM. Preliminary structure-activity relationships studies indicated that the presence of substituents on benzene ring reduces the inhibitory potential of benzoxazinone. Also the increased inhibitory potential due to fluoro group at phenyl substituent was observed followed by chloro and bromo substituents. Compounds with strong electron donating or withdrawing groups on phenyl substituent, showed a good inhibitory potential at ortho > meta > para position. Kinetics studies showed diverse types of inhibition, except uncompetitive-type inhibition. The Ki values ranged between 4.7 and 341.2 μM. Interestingly, most of these compounds were non-cytotoxic to 3T3 cell line at 30 μM, except compounds 6, 14 and 15. Competitive inhibitors of chymotrypsin are like to inhibit other α-chymotrypsin-like serine proteases due to structural and functional similarities between them. The inhibitors identified during the current study deserve to be further studied for their therapeutic potential against abnormalities mediated by chymotrypsin or other serine protease.  相似文献   

18.
Based on crystallographic overlays of the known inhibitors TMC125 and R221239 complexed in RT, we designed a novel series of 4-phenoxy-6-(phenylamino)pyridin-2(1H)-one derivatives as HIV NNRTIs by molecular hybridization approach. The biological testing results indicated that 2-pyridone scaffold of these inhibitors was indispensable for their anti-HIV-1 activity, and substitution of halogen at the 3-position of the 2-pyridone ring would decrease the anti-HIV activity. Four most potent compounds had anti-HIV-1 IIIB activities at low micromolar concentrations (EC50 = 0.15–0.84 μM), comparable to that of nevirapine and delavidine. Some compounds were selected to test their anti-HIV-1 RT inhibitory action and to perform molecular modeling studies to predict the binding mode of these 2-pyridone derivatives.  相似文献   

19.
Here we report on the design and synthesis of several heterocyclic analogues belonging to the 5/7-{[2-(4-aryl-piperazin-1-yl)-ethyl]-propyl-amino}-5,6,7,8-tetrahydro-naphthalen-2-ol series of molecules. Compounds were subjected to [3H]spiperone binding assays, carried out with HEK-293 cells expressing either D2 or D3 dopamine receptors, in order to evaluate their inhibition constant (Ki) at these receptors. Results indicate that N-substitution on the piperazine ring can accommodate various substituted indole rings. The results also show that in order to maintain high affinity and selectivity for the D3 receptor the heterocyclic ring does not need to be connected directly to the piperazine ring as the majority of compounds included here are linked either via an amide or a methylene linker to the heterocyclic moiety. The enantiomers of the most potent racemic compound 10e exhibited differential activity with (?)-10e (Ki; D2 = 47.5 nM, D3 = 0.57 nM) displaying higher affinity at both D2 and D3 receptors compared to its enantiomer (+)-10e (Ki; D2 = 113 nM, D3 = 3.73 nM). Additionally, compound (?)-10e was more potent and selective for the D3 receptor compared to either 7-OH-DPAT or 5-OH-DPAT. Among the bioisosteric derivatives, the indazole derivative 10g and benzo[b]thiophene derivative 10i exhibited the highest affinity for D2 and D3 receptors. In the functional GTPγS binding study, one of the lead molecules, (?)-15, exhibited potent agonist activity at both D2 and D3 receptors with preferential affinity at D3.  相似文献   

20.
Three novel series of diaryl heterocyclic derivatives bearing the 2-oxo-5H-furan, 2-oxo-3H-1,3-oxazole, and 1H-pyrazole moieties as the central heterocyclic ring were synthesized and their in vitro inhibitory activities on COX-1 and COX-2 isoforms were evaluated using a purified enzyme assay. The 2-oxo-5H-furan derivative 6b was identified as potent COX inhibitor with selectivity toward COX-1 (COX-1 IC50 = 0.061 μM and COX-2 IC50 = 0.325 μM; selectivity index (SI) = 0.19). Among the 1H-pyrazole derivatives, 11b was found to be a potent COX-2 inhibitor, about 38 times more potent than Rofecoxib (COX-2 IC50 = 0.011 μM and 0.398 μM, respectively), but showed no selectivity for COX-2 isoform. Compound 11c demonstrated strong and selective COX-2 inhibitory activity (COX-1 IC50 = 1 μM, COX-2 IC50 = 0.011 μM; SI = ~92). Molecular docking studies of compounds 6b and 11bd into the binding sites of COX-1 and COX-2 allowed to shed light on the binding mode of these novel COX inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号