首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Hispidol, an aurone, isolated from Glycine max Merrill, was found to potently and selectively inhibit an isoform of recombinant human monoamine oxidase-A (MAO-A), with an IC50 value of 0.26?µM, and to inhibit MAO-B, but with lower potency (IC50?=?2.45?µM). Hispidol reversibly and competitively inhibited MAO-A with a Ki value of 0.10?µM with a potency much greater than toloxatone (IC50?=?1.10?µM), a marketed drug. It also reversibly and competitively inhibited MAO-B (Ki?= 0.51?µM). Sulfuretin, an analog of hispidol, effectively inhibited MAO-A (IC50?=?4.16?µM) but not MAO-B (IC50?>?80?µM). A comparison of their chemical structures showed that the 3′-hydroxyl group of sulfuretin might reduce its inhibitory activities against MAO-A and MAO-B. Flexible docking simulation revealed that the binding affinity of hispidol for MAO-A (?9.1?kcal/mol) was greater than its affinity for MAO-B (?8.7?kcal/mol). The docking simulation showed hispidol binds to the major pocket of MAO-A or MAO-B. The findings suggest hispidol is a potent, selective, reversible inhibitor of MAO-A, and that it be considered a novel lead compound for development of novel reversible inhibitors of MAO-A.  相似文献   

2.
Chelerythrine, an isoquinoline alkaloid isolated from the herbaceous perennial Chelidonium majus, was found to potently and selectively inhibit an isoform of recombinant human monoamine oxidase-A (MAO-A) with an IC50 value of 0.55?µM. Chelerythrine was a reversible competitive MAO-A inhibitor (Ki?=?0.22?µM) with a potency much greater than toloxatone (IC50?=?1.10?µM), a marketed drug. Other isoquinoline alkaloids tested did not effectively inhibit MAO-A or MAO-B. A structural comparison with corynoline suggested the 1- and/or 2-methoxy groups of chelerythrine increase its inhibitory activity against MAO-A. Molecular docking simulations revealed that the binding affinity of chelerythrine for MAO-A (?9.7?kcal/mol) was greater than that for MAO-B (?4.6?kcal/mol). Docking simulation implied that Cys323 and Tyr444 of MAO-A are key residues for hydrogen-bond interaction with chelerythrine. Our findings suggest chelerythrine is one of the most reversible selective and potent natural inhibitor of MAO-A, and that it be regarded a potential lead compound for the design of novel reversible MAO-A inhibitors.  相似文献   

3.
A series of C7-substituted chromone (1-benzopyran-4-one) derivatives were synthesized and evaluated as inhibitors of recombinant human monoamine oxidase (MAO) A and B. The chromones are structurally related to a series of C7-functionalized coumarin (1-benzopyran-2-one) derivatives which has been reported to act as potent MAO inhibitors. The results of the current study document that the chromones are highly potent reversible inhibitors of MAO-B with IC50 values ranging from 0.008 to 0.370 μM. While the chromone derivatives also exhibit affinities for MAO-A, with IC50 values ranging from 0.495 to 8.03 μM, they are selective for the MAO-B isoform. Structure–activity relationships (SAR) show that 7-benzyloxy substitution of chromone is suitable for MAO-B inhibition with tolerance for a variety of substituents and substitution patterns on the benzyloxy ring. It may be concluded that 7-benzyloxychromones are appropriate lead compounds for the design of reversible and selective MAO-B inhibitors. With the aid of modeling studies, potential binding orientations and interactions of selected chromone derivatives in the MAO-A and -B active sites are examined.  相似文献   

4.
The validity of the chalcone scaffold for the design of inhibitors of monoamine oxidase has previously been illustrated. In a systematic attempt to investigate the effect of heterocyclic substitution on the monoamine oxidase inhibitory properties of this versatile scaffold, a series of furanochalcones were synthesized. The results demonstrate that these furan substituted phenylpropenones exhibited moderate to good inhibitory activities towards MAO-B, but showed weak or no inhibition of the MAO-A enzyme. The most active compound, 2E-3-(5-chlorofuran-2-yl)-1-(3-chlorophenyl)prop-2-en-1-one, exhibited an IC50 value of 0.174 μM for the inhibition of MAO-B and 28.6 μM for the inhibition of MAO-A. Interestingly, contrary to data previously reported for chalcones, these furan substituted derivatives acted as reversible inhibitors, while kinetic analysis revealed a competitive mode of binding.  相似文献   

5.
Thirteen Psychotria alkaloids were evaluated regarding their interactions with acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and monoamine oxidases A and B (MAO-A and MAO-B), which are enzymatic targets related with neurodegenerative diseases. Two quaternary β-carboline alkaloids, prunifoleine and 14-oxoprunifoleine, inhibited AChE, BChE and MAO-A with IC50 values corresponding to 10 and 3.39 μM for AChE, 100 and 11 μM for BChE, and 7.41 and 6.92 μM for MAO-A, respectively. Both compounds seem to behave as noncompetitive AChE inhibitors and time-dependent MAO-A inhibitors. In addition, the monoterpene indole alkaloids (MIAs) angustine, vallesiachotamine lactone, E-vallesiachotamine and Z-vallesiachotamine inhibited BChE and MAO-A with IC50 values ranging from 3.47 to 14 μM for BChE inhibition and from 0.85 to 2.14 μM for MAO-A inhibition. Among the tested MIAs, angustine is able to inhibit MAO-A in a reversible and competitive way while the three vallesiachotamine-like alkaloids display a time-dependent inhibition on this target. Docking calculations were performed in order to understand the binding mode between the most active ligands and the selected targets. Taken together, our findings established molecular details of AChE, BChE and MAO-A inhibition by quaternary β-carboline alkaloids and MIAs from Psychotria, suggesting these secondary metabolites are scaffolds for the development of multifunctional compounds against neurodegeneration.  相似文献   

6.
Osthenol (6), a prenylated coumarin isolated from the dried roots of Angelica pubescens, potently and selectively inhibited recombinant human monoamine oxidase-A (hMAO-A) with an IC50 value of 0.74?µM and showed a high selectivity index (SI?>?81.1) for hMAO-A versus hMAO-B. Compound 6 was a reversible competitive hMAO-A inhibitor (Ki?=?0.26?µM) with a potency greater than toloxatone (IC50?=?0.93?µM), a marketed drug. Isopsoralen (3) and bakuchicin (1), furanocoumarin derivatives isolated from Psoralea corylifolia L., showed slightly higher IC50 values (0.88 and 1.78?µM, respectively) for hMAO-A than 6, but had low SI values (3.1 for both). Other coumarins tested did not effectively inhibit hMAO-A or hMAO-B. A structural comparison suggested that the 8-(3,3-dimethylallyl) group of 6 increased its inhibitory activity against hMAO-A compared with the 6-methoxy group of scopoletin (4). Molecular docking simulations revealed that the binding affinity of 6 for hMAO-A (?8.5?kcal/mol) was greater than that for hMAO-B (?5.6?kcal/mol) and that of 4 for hMAO-A (?7.3?kcal/mol). Docking simulations also implied that 6 interacted with hMAO-A at Phe208 and with hMAO-B at Ile199 by carbon hydrogen bondings. Our findings suggest that osthenol, derived from natural products, is a selective and potent reversible inhibitor of MAO-A, and can be regarded a potential lead compound for the design of novel reversible MAO-A inhibitors.  相似文献   

7.
A series of N-(2-morpholinoethyl)nicotinamide (113) and N-(3-morpholinopropyl)nicotinamide derivatives (1426) have been designed, synthesized and evaluated in vitro for their monoamine oxidase (MAO) A and B inhibitory activity and selectivity. Most of these synthesized compounds proved to be potent, and selective inhibitors of MAO-A rather than of MAO-B. 5-Chloro-6-hydroxy-N-(2-morpholinoethyl)nicotinamide (13) displayed the highest MAO-A inhibitory potency (IC50 = 0.045 μM) and a good selectivity. 2-Bromo-N-(2-morpholinoethyl)nicotinamide (3) was the most potent MAO-B inhibitor with the IC50 value of 0.32 μM, but it was not selective. Molecular dockings of compound 13 were performed in order to give structural insights regarding the MAO-A selectivity.  相似文献   

8.
Monoamine oxidase (MAO) plays an essential role in the catabolism of neurotransmitter amines. The two isoforms of this enzyme, MAO-A and -B, are considered to be drug targets for the therapy of depression and neurodegenerative diseases, respectively. Based on a recent report that the phthalimide moiety may be a useful scaffold for the design of potent MAO-B inhibitors, the present study examines a series of 5-sulfanylphthalimide analogues as potential inhibitors of both human MAO isoforms. The results document that 5-sulfanylphthalimides are highly potent and selective MAO-B inhibitors with all of the examined compounds possessing IC50 values in the nanomolar range. The most potent inhibitor, 5-(benzylsulfanyl)phthalimide, exhibits an IC50 value of 0.0045 μM for the inhibition of MAO-B with a 427-fold selectivity for MAO-B compared to MAO-A. We conclude that 5-sulfanylphthalimides represent an interesting class of MAO-B inhibitors and may serve as lead compounds for the design of antiparkinsonian therapy.  相似文献   

9.
Based on recent reports that several (E)-8-styrylcaffeinyl analogues are potent reversible inhibitors of monoamine oxidase B (MAO-B), a series of 8-benzyloxycaffeinyl analogues were synthesized and evaluated as inhibitors of baboon liver MAO-B and recombinant human MAO-A and -B. The 8-benzyloxycaffeinyl analogues were found to inhibit reversibly both MAO isoforms with enzyme–inhibitor dissociation constants (Ki values) ranging from 0.14 to 1.30 μM for the inhibition of human MAO-A, and 0.023–0.59 μM for the inhibition of human MAO-B. The most potent MAO-A inhibitor was 8-(3-methylbenzyloxy)caffeine while 8-(3-bromobenzyloxy)caffeine was the most potent MAO-B inhibitor. The analogues inhibited human and baboon MAO-B with similar potencies. A quantitative structure–activity relationship (QSAR) study indicated that the MAO-B inhibition potencies of the 8-benzyloxycaffeinyl analogues are dependent on the Hansch lipophilicity (π) and Hammett electronic (σ) constants of the substituents at C-3 of the benzyloxy ring. Electron-withdrawing substituents with a high degree of lipophilicity enhance inhibition potency. These results are discussed with reference to possible binding orientations of the inhibitors within the active site cavities of MAO-A and -B.  相似文献   

10.
In the present study, a series of fifteen α-tetralone (3,4-dihydro-2H-naphthalen-1-one) derivatives were synthesised and evaluated as inhibitors of recombinant human monoamine oxidase (MAO) A and B. The α-tetralone derivatives examined are structurally related to a series of chromone (1-benzopyran-4-one) derivatives which has previously been shown to act as MAO-B inhibitors. The results document that the α-tetralones are highly potent MAO-B inhibitors with all compounds exhibiting IC50 values in the nanomolar range (<78 nM). Although most compounds are selective inhibitors of MAO-B, the α-tetralones are also potent MAO-A inhibitors with ten compounds exhibiting IC50 values in the nanomolar range (<792 nM). The most potent MAO-B inhibitor, 6-(3-iodobenzyloxy)-3,4-dihydro-2H-naphthalen-1-one, exhibits an IC50 value of 4.5 nM with a 287-fold selectivity for MAO-B over the MAO-A isoform, while the most potent MAO-A inhibitor, 6-(3-cyanobenzyloxy)-3,4-dihydro-2H-naphthalen-1-one, exhibits an IC50 value of 24 nM with a 3.25-fold selectivity for MAO-A. Analyses of the structure–activity relationships for MAO inhibition show that substitution on the C6 position of the α-tetralone moiety is a requirement for MAO-A and MAO-B inhibition, and that a benzyloxy substituent on this position is more favourable for MAO-A inhibition than phenylethoxy and phenylpropoxy substitution. For MAO-B inhibition, alkyl and halogen substituents on the meta and para positions of the benzyloxy ring enhance inhibitory potency. It may be concluded that α-tetralone derivatives are promising leads for design of therapies for Parkinson’s disease and depression.  相似文献   

11.
In a previous study we have investigated the monoamine oxidase (MAO) inhibitory properties of a series of 8-sulfanylcaffeine analogues. Among the compounds studied, 8-[(phenylethyl)sulfanyl]caffeine (IC50 = 0.223 μM) was found to be a particularly potent inhibitor of the type B MAO isoform. In an attempt to discover potent MAO inhibitors and to further examine the structure–activity relationships (SAR) of MAO inhibition by 8-sulfanylcaffeine analogues, in the present study a series of 8-[(phenylethyl)sulfanyl]caffeine analogues were synthesized and evaluated as inhibitors of human MAO-A and -B. The results document that substitution on C3 and C4 of the phenyl ring with alkyl groups and halogens yields 8-[(phenylethyl)sulfanyl]caffeine analogues which are potent and selective MAO-B inhibitors with IC50 values ranging from 0.017 to 0.125 μM. The MAO inhibitory properties of a series of 8-sulfinylcaffeine analogues were also examined. The results show that, compared to the corresponding 8-sulfanylcaffeine analogues, the 8-sulfinylcaffeins are weaker MAO-B inhibitors. Both the 8-sulfanylcaffeine and 8-sulfinylcaffeine analogues were found to be weak MAO-A inhibitors. This study also reports the MAO inhibition properties of selected 8-[(phenylpropyl)sulfanyl]caffeine analogues.  相似文献   

12.
A novel series of 2-((5,6-diphenyl-1,2,4-triazin-3-yl)thio)-N-arylacetamides 5a5q have been synthesized and evaluated for their α-glucosidase inhibitory activity. All newly synthesized compounds exhibited potent α-glucosidase inhibitory activity in the range of IC50 = 12.46 ± 0.13–72.68 ± 0.20 μM, when compared to the standard drug acarbose (IC50 = 817.38 ± 6.27 μM). Among the series, compound 5j (12.46 ± 0.13 μM) with strong electron-withdrawing nitro group on the arylacetamide moiety was identified as the most potent inhibitor of α-glucosidase. Molecular docking study was carried out to explore the binding interactions of these compounds with α-glucosidase. Our study identifies a novel series of potent α-glucosidase inhibitors for further investigation.  相似文献   

13.
An ethyl acetate extract the bark of Garcinia xanthochymus exhibited strong inhibition towards α-glucosidase and PTP1B with IC50 values of 0.3 ± 0.1 μg/mL and 2.3 ± 0.4 μg/mL, respectively. Chemical constituents of the extract were therefore examined, and two new compounds, xanthochymusxanthones A (1) and B (2), along with ten known xanthones (312), were isolated. Their structures were determined using spectroscopic methods, mainly 1D and 2D NMR. Inhibitory activity of the isolated compounds was then tested, and subelliptenone F (12) showed significant effect towards α-glucosidase with IC50 value of 4.1 ± 0.3 μM (compared with acarbose, IC50 = 900.0 ± 3.0 μM) whilst xanthochymusxanthone B (2) exhibited remarkable activity towards PTP1B with IC50 value of 8.0 ± 0.6 μM (compared with RK682, IC50 = 4.4 ± 0.3 μM).  相似文献   

14.
This study shows that the cyclization of l-DMDP thioureas to bicyclic l-DMDP isothioureas improved α-l-rhamnosidase inhibition which was further enhanced by increasing the length of the alkyl chain. The addition of a long alkyl chain, such as decyl or dodecyl, to the nitrogen led to the production of highly potent inhibitors of α-l-rhamnosidase; it also caused broad inhibition spectrum against β-glucosidase and β-galactosidase. In contrast, the corresponding N-benzyl-l-DMDP cyclic isothioureas display selective inhibition of α-l-rhamnosidase; 3′,4′-dichlorobenzyl-l-DMDP cyclic isothiourea (3r) was found to display the most potent and selective inhibition of α-l-rhamnosidase, with IC50 value of 0.22 μM, about 46-fold better than the positive control 5-epi-deoxyrhamnojirimycin (5-epi-DRJ; IC50 = 10 μM) and occupied the active-site of this enzyme (Ki = 0.11 μM). Bicyclic isothioureas of ido-l-DMDP did not inhibit α-l-rhamnosidase. These new mimics of l-rhamnose may affect other enzymes associated with the biochemistry of rhamnose including enzymes involved in progression of tuberculosis.  相似文献   

15.
The objective of this study was to synthesize and evaluate a novel fluorine-18 labeled deuterium substituted analogue of rasagiline (9, [18F]fluororasagiline-D2) as a potential PET radioligand for studies of monoamine oxidase B (MAO-B).The precursor compound (6) and reference standard (7) were synthesized in multi-step syntheses. Radiolabeling of 9 was accomplished by a two-step synthesis, compromising a nucleophilic substitution followed by hydrolysis of the sulfamidate group. The incorporation radiochemical yield from fluorine-18 fluoride was higher than 30%, the radiochemical purity was >99% and the specific radioactivity was >160 GBq/μmol at the time of administration.In vitro compound 7 inhibited the MAO-B activity with an IC50 of 173.0 ± 13.6 nM. The MAO-A activity was inhibited with an IC50 of 9.9 ± 1.1 μM. The fluorine-18 version 9 was characterized in the cynomolgus monkey brain where a high brain uptake was found (275% SUV at 4 min). There was a higher uptake in the striatum and thalamus compared to the cortex and cerebellum. A pronounced blocking effect (50% decrease) was observed in the specific brain regions after administration of l-deprenyl (0.5 mg/kg) 30 min prior to the administration of 9. Radiometabolite studies demonstrated 40% of unchanged radioligand at 90 min post injection.An efficient radiolabeling of 9 was successfully established and in the monkey brain 9 binds to MAO-B rich regions and its binding is blocked by the selective MAO-B compound l-deprenyl. The radioligand 9 is a potential candidate for human PET studies.  相似文献   

16.
In an endeavor to develop efficacious antiprotozoal agents 4-(7-chloroquinolin-4-yl) piperazin-1-yl)pyrrolidin-2-yl)methanone derivatives (514) were synthesized, characterized and biologically evaluated for antiprotozoal activity. The compounds were screened in vitro against the HM1: IMSS strain of Entamoeba histolytica and NF54 chloroquine-sensitive strain of Plasmodium falciparum. Among the synthesized compounds six exhibited promising antiamoebic activity with IC50 values (0.14–1.26 μM) lower than the standard drug metronidazole (IC50 1.80 μM). All nine compounds exhibited antimalarial activity (IC50 range: 1.42–19.62 μM), while maintaining a favorable safety profile to host red blood cells. All the compounds were less effective as an antimalarial and more toxic (IC50 range: 14.67–81.24 μM) than quinine (IC50: 275.6 ± 16.46 μM) against the human kidney epithelial cells. None of the compounds exhibited any inhibitory effect on the viability of Anopheles arabiensis mosquito larvae.  相似文献   

17.
As part of our ongoing efforts to develop reversible inhibitors of LSD1, we identified a series of 4-(pyrrolidin-3-yl)benzonitrile derivatives that act as successful scaffold-hops of the literature inhibitor GSK-690. The most active compound, 21g, demonstrated a Kd value of 22 nM and a biochemical IC50 of 57 nM. In addition, this compound displayed improved selectivity over the hERG ion channel compared to GSK-690, and no activity against the related enzymes MAO-A and B. In human THP-1 acute myeloid leukaemia cells, 21g was found to increase the expression of the surrogate cellular biomarker CD86. This work further demonstrates the versatility of scaffold-hopping as a method to develop structurally diverse, potent inhibitors of LSD1.  相似文献   

18.
It has recently been reported that nitrile containing compounds frequently act as potent monoamine oxidase B (MAO-B) inhibitors. Modelling studies suggest that this high potency inhibition may rely, at least in part, on polar interactions between nitrile functional groups and polar moieties within the MAO-B substrate cavity. In an attempt to identify potent and selective inhibitors of MAO-B and to contribute to the known structure–activity relationships of MAO inhibition by nitrile containing compounds, the present study examined the MAO inhibitory properties of series of novel sulfanylphthalonitriles and sulfanylbenzonitriles. The results document that the evaluated compounds are potent and selective MAO-B inhibitors with most homologues possessing IC50 values in the nanomolar range. In general, the sulfanylphthalonitriles exhibited higher binding affinities for MAO-B than the corresponding sulfanylbenzonitrile homologues. Among the compounds evaluated, 4-[(4-bromobenzyl)sulfanyl]phthalonitrile is a particularly promising inhibitor since it displayed a high degree of selectivity (8720-fold) for MAO-B over MAO-A, and potent MAO-B inhibition (IC50 = 0.025 μM). Based on these observations, this structure may serve as a lead for the development of therapies for neurodegenerative disorders such as Parkinson’s disease.  相似文献   

19.
In the present study a series of fifteen 2-heteroarylidene-1-indanone derivatives were synthesised and evaluated as inhibitors of recombinant human monoamine oxidase (MAO) A and B. These compounds are structurally related to series of heterocyclic chalcone derivatives which have previously been shown to act as MAO-B specific inhibitors. The results document that the 2-heteroarylidene-1-indanones are in vitro inhibitors of MAO-B, displaying IC50 values of 0.0044–1.53 μM. Although with lower potencies, the derivatives also inhibit the MAO-A isoform with IC50 values as low as 0.061 μM. An analysis of the structure-activity relationships for MAO-B inhibition indicates that substitution with the methoxy group on the A-ring leads to a significant enhancement in MAO-B inhibition compared to the unsubstituted homologues while the effect of the heteroaromatic substituent on activity, in decreasing order is: 5-bromo-2-furan > 5-methyl-2-furan > 2-pyridine  2-thiophene > cyclohexyl > 3-pyridine  2-furan. It may therefore be concluded that 2-heteroarylidene-1-indanone derivatives are promising leads for the design of MAO inhibitors for the treatment of Parkinson’s disease and possibly other neurodegenerative disorders.  相似文献   

20.
A series of (1H-1,2,3-triazol-4-yl)methoxybenzaldehyde derivatives containing an anthraquinone moiety were synthesized and identified as novel xanthine oxidase inhibitors. Among them, the most promising compounds 1h and 1k were obtained with IC50 values of 0.6 μM and 0.8 μM, respectively, which were more than 10-fold potent compared with allopurinol. The Lineweaver-Burk plot revealed that compound 1h acted as a mixed-type xanthine oxidase inhibitor. SAR analysis showed that the benzaldehyde moiety played a more important role than the anthraquinone moiety for inhibition potency. The basis of significant inhibition of xanthine oxidase by 1h was rationalized by molecular modeling studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号