首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Questions: How do changes in forest management, i.e. in disturbance type and frequency, influence species diversity, abundance and composition of the seed bank? How does the relationship between seed bank and vegetation change? What are the implications for seed bank dynamics? Location: An ancient Quercus petraea — Carpinus betulus forest in conversion from coppice‐with‐standards to regular Quercus high forest near Montargis, France. Methods: Seed bank and vegetation were sampled in six replicated stand types, forming a chronosequence along the conversion pathway. The stand types represented mid‐successional stages of stands in transition from coppice‐with‐standards (to high forest (16 plots) and early‐ and mid‐successional high forest stands (32 plots). Results: Seed bank density and species richness decreased with time since last disturbance. Adjusting for seed density effects obscured species richness differences between stand types, but species of later seres were nested subsets of earlier seres, implying concomitant shifts in species richness and composition with time since disturbance. Later seres were characterized by species with low seed weight and high seed longevity. Seed banks of early seres were more similar to vegetation than to later seres. Conclusions: Abandonment of the coppice‐with‐standards regime altered the seed bank characteristics, as well as its relationship with vegetation. Longer management cycles under high forest yield impoverished seed banks. For their persistence, seed bank species will increasingly rely on management of permanently open areas in the forest landscape. Thus, revegetation at the beginning of new high‐forest cycles may increasingly depend on inflow from seed sources.  相似文献   

2.
Question: How do pre‐fire conditions (community composition and environmental characteristics) and climate‐driven disturbance characteristics (fire severity) affect post‐fire community composition in black spruce stands? Location: Northern boreal forest, interior Alaska. Methods: We compared plant community composition and environmental stand characteristics in 14 black spruce stands before and after multiple, naturally occurring wildfires. We used a combination of vegetation table sorting, univariate (ANOVA, paired t‐tests), and multivariate (detrended correspondence analysis) statistics to determine the impact of fire severity and site moisture on community composition, dominant species and growth forms. Results: Severe wildfires caused a 50% reduction in number of plant species in our study sites. The largest species loss, and therefore the greatest change in species composition, occurred in severely burned sites. This was due mostly to loss of non‐vascular species (mosses and lichens) and evergreen shrubs. New species recruited most abundantly to severely burned sites, contributing to high species turnover on these sites. As well as the strong effect of fire severity, pre‐fire and post‐fire mineral soil pH had an effect on post‐fire vegetation patterns, suggesting a legacy effect of site acidity. In contrast, pre‐fire site moisture, which was a strong determinant of pre‐fire community composition, showed no relationship with post‐fire community composition. Site moisture was altered by fire, due to changes in permafrost, and therefore post‐fire site moisture overrode pre‐fire site moisture as a strong correlate. Conclusions: In the rapidly warming climate of interior Alaska, changes in fire severity had more effect on post‐fire community composition than did environmental factors (moisture and pH) that govern landscape patterns of unburned vegetation. This suggests that climate change effects on future community composition of black spruce forests may be mediated more strongly by fire severity than by current landscape patterns. Hence, models that represent the effects of climate change on boreal forests could improve their accuracy by including dynamic responses to fire disturbance.  相似文献   

3.
Question: Are trees sensitive to climatic variability, and do tree species differ in their responses to climatic variability? Does sensitivity of forest communities to climatic variability depend on stand composition? Location: Mixed young forest at Walker Branch Watershed near Oak Ridge, East Tennessee, USA. Methods: Using a long‐term dataset (1967–2006), we analyzed temporal forest dynamics at the tree and species level, and community dynamics for forest stands that differed in initial species composition (i.e., chestnut oak, oak–hickory, pine, and yellow poplar stands). Using summer drought and growing season temperature as defined climate drivers, we evaluated relationships between forest dynamics and climate across levels of organization. Results: Over the four‐decade study period, forest communities underwent successional change and substantially increased in biomass. Variation in summer drought and growing season temperature contributed to temporal biomass dynamics for some tree species, but not for others. Stand‐level responses to climatic variability were related to the responses of component species, except in pine stands. Pinus echinata, the dominant species in pine stands, decreased over time due to periodic outbreaks of pine bark beetle (Dendroctonus frontalis). These outbreaks at Walker Branch could not be directly related to climatic conditions. Conclusions: The results indicate that sensitivity of developing forests to climatic variability is stand type‐dependent, and hence is a function of species composition. However, in the long term, direct effects of climatic variability on forest dynamics may be small relative to autogenic successional processes or climate‐related insect outbreaks. Empirical studies testing for interactions between forest succession and climatic variability are needed.  相似文献   

4.
Abstract. Species composition, detritus, and soil data from 97 boreal forest stands along a transect in central Canada were analysed using Correspondence Analysis to determine the dominant environmental/site variables that differentiate these forest stands. Picea mariana stands were densely clustered together on the understorey DCA plot, suggesting a consistent understorey species composition (feather mosses and Ericaceae), whereas Populus tremuloides stands had the most diverse understorey species composition (ca. 30 species, mostly shrubs and herbs). Pinus banksiana stands had several characteristic species of reindeer lichens (Cladina spp.), but saplings and Pinus seedlings were rare. Although climatic variables showed large variation along the transect, the CCA results indicated that site conditions are more important in determining species composition and differentiating the stand types. Forest floor characteristics (litter and humus layer, woody debris, and drainage) appear to be among the most important site variables. Stands of Picea had significantly higher average carbon (C) densities in the combined litter and humus layer (43530 kg‐C.ha‐1) than either Populus (25 500 kg‐C.ha‐1) or Pinus (19 400 kg‐C.ha‐1). The thick surface organic layer in lowland Picea stands plays an important role in regulating soil temperature and moisture, and organic‐matter decomposition, which in turn affect the ecosystem C‐dynamics. During forest succession after a stand‐replacing disturbance (e.g. fires), tree biomass and surface organic layer thickness increase in all stand types as forests recover; however, woody biomass detritus first decreases and then increases after ca. 80 yr. Soil C densities show slight decrease with ages in Populus stands, but increase in other stand types. These results indicate the complex C‐transfer processes among different components (tree biomass, detritus, forest floor, and soil) of boreal ecosystems at various stages of succession.  相似文献   

5.
Conifer forests of the western US are historically well adapted to wildfires, but current warming is creating novel disturbance regimes that may fundamentally change future forest dynamics. Stand‐replacing fires can catalyze forest reorganization by providing periodic opportunities for establishment of new tree cohorts that set the stage for stand development for centuries to come. Extensive research on modern and past fires in the Northern Rockies reveals how variations in climate and fire have led to large changes in forest distribution and composition. Unclear, however, is the importance of individual fire episodes in catalyzing change. We used high‐resolution paleoecologic and paleoclimatic data from Crevice Lake (Yellowstone National Park, Wyoming, USA), to explore the role of fire in driving low‐elevation forest dynamics over the last 2820 yr. We addressed two questions: 1) did low‐elevation forests at Crevice Lake experience abrupt community‐level vegetation changes in response to past fire events? 2) Did the interaction of short‐term disturbance events (fire) and long‐term climate change catalyze past shifts in forest composition? Over the last 2820 yr, we found no evidence for abrupt community‐level vegetation transitions at Crevice Lake, and no evidence that an interaction of climate and fire produced changes in the relative abundance of dominant plant taxa. In part, this result reflects limitations of the datasets to detect past event‐specific responses and their causes. Nonetheless, the relative stability of the vegetation to fires over the last 2820 yr provides a local baseline for assessing current and future ecological change. Observations of climate–fire–vegetation dynamics in recent decades suggest that this multi‐millennial‐scale baseline may soon be exceeded.  相似文献   

6.
Aim To evaluate the hypothesis that topographic features of high‐elevation mountain environments govern spatial distribution and climate‐driven dynamics of the forest. Location Upper mountain forest stands (elevation range 1800–2600 m) in the mountains of southern Siberia. Methods Archive maps, satellite and on‐ground data from1960 to 2002 were used. Data were normalized to avoid bias caused by uneven distribution of topographic features (elevation, azimuth and slope steepness) within the analysed area. Spatial distribution of forest stands was analysed with respect to topography based on a digital elevation model (DEM). Results Spatial patterns in mountain forests are anisotropic with respect to azimuth, slope steepness and elevation. At a given elevation, the majority of forests occupied slopes with greater than mean slope values. As the elevation increased, forests shifted to steeper slopes. The orientation of forest azimuth distribution changed clockwise with increase in elevation (the total shift was 120°), indicating a combined effect of wind and water stress on the observed forest patterns. Warming caused changes in the forest distribution patterns during the last four decades. The area of closed forests increased 1.5 times, which was attributed to increased stand density and tree migration. The migration rate was 1.5 ± 0.9 m year–1, causing a mean forest line shift of 63 ± 37 m. Along with upward migration, downward tree migration onto hill slopes was observed. Changes in tree morphology were also noted as widespread transformation of the prostrate forms of Siberian pine and larch into erect forms. Main conclusions The spatial pattern of upper mountain forests as well as the response of forests to warming strongly depends on topographic relief features (elevation, azimuth and slope steepness). With elevation increase (and thus a harsher environment) forests shifted to steep wind‐protected slopes. A considerable increase in the stand area and increased elevation of the upper forest line was observed coincident with the climate warming that was observed. Warming promotes migration of trees to areas that are less protected from winter desiccation and snow abrasion (i.e. areas with lower values of slope steepness). Climate‐induced forest response has significantly modified the spatial patterns of high‐elevation forests in southern Siberia during the last four decades, as well as tree morphology.  相似文献   

7.
High rates of species extinction have been predicted for the next century as a consequence of climate change. Although species range shifts have been widely reported, evidence of changes in species frequency linked to recent climate change is scarce. Moreover, studies have mainly focused on mountainous ecosystems and species. There is thus a clear lack of understanding of the recent changes in species frequencies linked to climate change across their whole range. Using a large forest vegetation‐plot database, we investigated changes in cold and warm‐demanding forest plant species frequencies between the periods 1914–1987 and 1997–2013 in French lowlands and highlands. Changes in frequencies were assessed for 185 lowland (warm‐demanding), 135 sub‐montane (intermediate) and 104 montane (cold‐demanding) forest plant species. Observed changes were compared to predicted changes derived from species distribution model predictions. The frequency of montane and sub‐montane species strongly declined, whereas the frequency of lowland species remained steady in lowland areas. In highlands, the frequency of lowland, sub‐montane and montane species increased, remained steady and decreased, respectively. Predicted and observed trends of changes in the frequency of forest plant species were in agreement. These results clearly show that cold‐demanding species are currently declining in lowlands that correspond to their warm range margins, whereas warm‐demanding species are expanding in highlands that correspond to their cold range margins. These trends can be seen as early signs of future regional extinction and reshuffling of the spatial presence of species due to climate warming.  相似文献   

8.
Global warming has begun to have a major impact on the species composition and functioning of plant and soil communities. However, long‐term community and ecosystem responses to increased temperature are still poorly understood. In this study, we used a well‐established elevational gradient in northern Sweden to elucidate how plant, microbial and nematode communities shift with elevation and associated changes in temperature in three highly contrasting vegetation types (i.e. heath, meadow and Salix vegetation). We found that responses of both the abundance and composition of microbial and nematode communities to elevation differed greatly among the vegetation types. Within vegetation types, changes with elevation of plant, microbial and nematode communities were mostly linked at fine levels of taxonomic resolution, but this pattern disappeared when coarser functional group levels were considered. Further, nematode communities shifted towards more conservative nutrient cycling strategies with increasing elevation in heath and meadow vegetation. Conversely, in Salix vegetation microbial communities with conservative strategies were most pronounced at the mid‐elevation. These results provide limited support for increasing conservative nutrient cycling strategies at higher elevation (i.e. with a harsher climate). Our findings indicate that climate‐induced changes in plant community composition may greatly modify or counteract the impact of climate change on soil communities. Therefore, to better understand and predict ecosystem responses to climate change, it will be crucial to consider vegetation type and its specific interactions with soil communities.  相似文献   

9.
Ecosystem-based forest management strives to develop silvicultural practices that best emulate natural disturbances such as wildfire to conserve biodiversity representative of natural forest ecosystems. Yet, current logging practices alter forest structure and reduce the proportion of old-growth forest and, consequently, can exert long-term effects on the dynamics of forest biota. The stand- and landscape-scale factors driving bird community dynamics in post-disturbance environment remain poorly understood. In this study, we examined bird community dynamics along successional gradients in boreal ecosystems originating from fire and logging in landscapes dominated by old-growth forest. We tested if bird species richness and community compositions in clear-cutting stands became comparable to those in natural stands after 70 years, and identified the relative contributions of stand- and landscape-scale forest attributes in bird community dynamics. Based on records of bird occurrences at 185 field sites in natural and clearcutting stands, we demonstrate that (1) both forest structures and bird communities underwent evident changes along successional gradients in post-clearcutting environment; (2) bird species richness and community composition in 60- to 70-years-old clearcutting stands still differed from those in 50- to 79-years-old natural stands, in spite of the fact that most forest attributes of clearcutting stands became comparable to those of natural stands after 40 years; and (3) landscape disturbances contributed more than stand characteristics in explaining the lack of convergence of mature forest species, residents, and short-distance migrants in post-clearcutting environment. Our study points out that more regards should be paid to improve the landscape configuration of the managed forests, and implies that old-growth forest retention within logged areas, combined with selection cutting and prolonged logging rotations, can better emulate fire and alleviate forest harvesting effects on bird community assemblages typical of natural boreal ecosystem.  相似文献   

10.
Boreal peatlands may be particularly vulnerable to climate change, because temperature regimes that currently constrain biological activity in these regions are predicted to increase substantially within the next century. Changes in peatland plant community composition in response to climate change may alter nutrient availability, energy budgets, trace gas fluxes, and carbon storage. We investigated plant community response to warming and drying in a field mesocosm experiment in northern Minnesota, USA. Large intact soil monoliths removed from a bog and a fen received three infrared warming treatments crossed with three water‐table treatments (n = 3) for five years. Foliar cover of each species was estimated annually. In the bog, increases in soil temperature and decreases in water‐table elevation increased cover of shrubs by 50% and decreased cover of graminoids by 50%. The response of shrubs to warming was distinctly species‐specific, and ranged from increases (for Andromeda glaucophylla) to decreases (for Kalmia polifolia). In the fens, changes in plant cover were driven primarily by changes in water‐table elevation, and responses were species‐ and lifeform‐specific: increases in water‐table elevation increased cover of graminoids – in particular Carex lasiocarpa and Carex livida– as well as mosses. In contrast, decreases in water‐table elevation increased cover of shrubs, in particular A. glaucophylla and Chamaedaphne calyculata. The differential and sometimes opposite response of species and lifeforms to the treatments suggest that the structure and function of both bog and fen plant communities will change – in different directions or at different magnitudes – in response to warming and/or changes in water‐table elevation that may accompany regional or global climate change.  相似文献   

11.
Aim This study investigates how estimated tree aboveground biomass (AGB) of tropical montane rain forests varies with elevation, and how this variation is related to elevational change in floristic composition, phylogenetic community structure and the biogeography of the dominant tree taxa. Location Lore Lindu National Park, Sulawesi, Indonesia. Methods Floristic inventories and stand structural analyses were conducted on 13 plots (each 0.24 ha) in four old‐growth forest stands at 1050, 1400, 1800 and 2400 m a.s.l. (submontane to upper montane elevations). Tree AGB estimates were based on d.b.h., height and wood specific gravity. Phylogenetic diversity and biogeographical patterns were analysed based on tree family composition weighted by AGB. Elevational trends in AGB were compared with other Southeast Asian and Neotropical transect studies (n = 7). Results AGB was invariant from sub‐ to mid‐montane elevation (309–301 Mg ha?1) and increased slightly to 323 Mg ha?1 at upper montane elevation. While tree and canopy height decreased, wood specific gravity increased. Magnoliids accounted for most of the AGB at submontane elevations, while eurosids I (including Fagaceae) contributed substantially to AGB at all elevations. Phylogenetic diversity was highest at upper montane elevations, with co‐dominance of tree ferns, Podocarpaceae, Trimeniaceae and asterids/euasterids II, and was lowest at lower/mid‐montane elevations, where Fagaceae contributed > 50% of AGB. Biogeographical patterns showed a progression from dominant tropical families at submontane to tropical Fagaceae (Castanopsis, Lithocarpus) at lower/mid‐montane, and to conifers and Australasian endemics at upper montane elevations. Cross‐continental comparisons revealed an elevational AGB decrease in transects with low/no presence of Fagaceae, but relatively high AGB in montane forests with moderate to high abundance of this family. Main conclusions AGB is determined by both changes in forest structure and shifts in species composition. In our study, these two factors traded off so that there was no net change in AGB, even though there were large changes in forest structure and composition along the elevational gradient. Southeast Asian montane rain forests dominated by Fagaceae constitute important carbon stocks. The importance of biogeography and species traits for biomass estimation should be considered by initiatives to reduce emissions from deforestation and forest degradation (REDD) and in taxon choice in reforestation for carbon offsetting.  相似文献   

12.
The aim of the present study was to understand the effects of abiotic conditions on seasonal feeding activity of diverse herbivores on the same oak tree species in two different forests. We tracked changes in herbivore feeding activities on an oak tree species (Quercus serrata) in two localities: a low elevation small hillock forest patch (Muan, MN) and a middle elevation mountain forest patch (Mt. Jirisan, JR). A total of five sites were selected in each of two forest localities. Data for leaf expansion, leaf chemical qualities, leaf damage ratio, and numbers of lepidopteran caterpillars were collected during spring (May) and summer (July to August), 2012. Leaf expansion rate was higher at the low hillock forest than the mid‐mountain forest from spring to summer. Nitrogen and carbon content decreased seasonally at both localities. Lepidopteran larval diversity was high in the mid‐mountain forest, and two‐way ANOVA showed that species richness of lepidopteran larvae was significantly affected by the interaction between season and locality. Leaf damage by all herbivores was higher in the low hillock forest than the mid‐mountain forest in spring, but was higher in the mid‐mountain forest in summer. Relative proportion of general herbivores increased from spring to summer in the mid‐mountain forest, but not in the low hillock forest. Canonical Correspondence Analysis (CCA) ordination showed that altitude‐ and season‐related variables were significant species and environment interaction factors. Our data indicate that locality and temperature disproportionally affected the feeding activities of diverse herbivores in two different temperate forests.  相似文献   

13.
Roads are known to act as corridors for dispersal of plant species. With their variable microclimate, role as corridors for species movement and reoccurring disturbance events, they show several characteristics that might influence range dynamics of both native and non‐native species. Previous research on plant species ranges in mountains however seldom included the effects of roads. To study how ranges of native and non‐native species differ between roads and adjacent vegetation, we used a global dataset of plant species composition along mountain roads. We compared average elevation and range width of species, and used generalized linear mixed models (GLMMs) to compile their range optimum and amplitude. We then explored differences between roadside and adjacent plots based on a species’ origin (native vs non‐native) and nitrogen and temperature affinity. Most non‐native species had on average higher elevational ranges and broader amplitudes in roadsides. Higher optima for non‐native species were associated with high nitrogen and temperature affinity. While lowland native species showed patterns comparable to those in non‐native species, highland native species had significantly lower elevational ranges in roadsides compared to the adjacent vegetation. We conclude that roadsides indeed change the elevational ranges of a variety of species. These changes are not limited to the expansion of non‐native species along mountain roads, but also include both upward and downward changes in ranges of native species. Roadsides may thus facilitate upward range shifts, for instance related to climate change, and they could serve as corridors to facilitate migration of alpine species between adjacent high‐elevation areas. We recommend including the effects of mountain roads in species distribution models to fine‐tune the predictions of range changes in a warming climate.  相似文献   

14.
Besides natural tree regeneration itself, the development of the forest understory community is highly indicative of the ecological recovery of forest stands post-harvesting, and therefore of the sustainability of forest management. High mountain forests might show particularly slow recovery of the understory plant community because of harsh environmental conditions. We compared understory community richness and composition among three age classes of forest stands in the subalpine Engelmann Spruce–Subalpine Fir zone in the interior of British Columbia, Canada. Species composition was found to differ significantly between mature stands (>110 years old and never harvested) and both recent clearcuts (5–8 years old) and the oldest clearcuts present in the study area (second growth: 24–28 years old). A non-metric multidimensional scaling (NMDS) ordination revealed no unidirectional return of species composition in harvested stands towards that of mature forest; indeed, plots in recent clearcuts and second growth stands were similar to one another and clearly separated from the mature stands. Indicator Species Analysis revealed that moss species were particularly indicative of mature forest, with four moss species being common in mature stands but absent from both younger stages. Compared to what has been reported for lower elevation coniferous forests, e.g. in the U.S. Pacific Northwest, redevelopment of the understory appears to be slow after harvesting in these high elevation mountain forests. Rotation intervals that consider the natural temporal pattern of species turnover and the occurrence interval of major natural disturbances (here: fire) should provide effective approaches to sustainable forest management of these forests.  相似文献   

15.
Alpine treeline ecotones are considered early-warning monitors of the effects of climate change on terrestrial ecosystems, but it is still unclear how accurately treeline dynamics may track the expected temperature rises. Site-specific abiotic constraints, such as topography and demographic trends may make treelines less responsive to environmental fluctuations. A better understanding on how local processes modulate treelines’ response to warming is thus required. We developed a model of treeline dynamics based on individual data of growth, mortality and reproduction. Specifically, we modeled growth patterns, mortality rates and reproductive size thresholds as a function of temperature and stand structure to evaluate the influence of climate- and stand-related processes on treeline dynamics. In this study, we analyze the dynamics of four Pyrenean mountain pine treeline sites with contrasting stand structures, and subjected to differing rates of climate warming. Our models indicate that Pyrenean treelines could reach basal areas and reproductive potentials similar to those currently observed in high-elevation subalpine forest by the mid twenty-first century. The fastest paces of treeline densification are forecasted by the late twenty-first century and are associated with higher warming rates. We found a common densification response of Pyrenean treelines to climate warming, but contrasting paces arise due to current size structures. Treelines characterized by a multistratified stand structure and subjected to lower mean annual temperatures were the most responsive to climate warming. In monostratified stands, tree growth was less sensitive to temperature than in multistratified stands and trees reached their reproductive size threshold later. Therefore, our simulations highlight that stand structure is paramount in modulating treeline responsiveness to ongoing climate warming. Synthesis. Treeline densification over the twenty-first century is likely to occur at different rates contingent on current stand structure and its effects on individual-level tree growth responses to warming. Accurate projections of future treeline dynamics must thus incorporate site-specific factors other than climate, specifically those related to stand structure and its influence on tree growth.  相似文献   

16.
Abstract. We examined epiphytic macrolichen communities in Pseudotsuga menziesii (Douglas‐fir) forests across the western Oregon landscape for relationships to environmental gradients, stand age and structure, and commercial thinning. We used a retrospective, blocked design through the Coast and the western Cascade ranges of Oregon. Each of our 17 blocks consisted of a young, unthinned stand (age 50–110 yr); an adjacent, thinned stand of equivalent age; and an old‐growth stand (age > 200 yr). We found 110 epiphytic macrolichen taxa in the stands. Forage‐providing alectorioid lichens and the nitrogen‐fixing cyanolichen Lobaria oregana associated strongly with old‐growth stands and remnant old trees in younger stands (unthinned + thinned). Relative to unthinned stands, thinned stands had a slightly higher abundance of alectorioid lichens and a greater presence of Hypogymnia imshaugii. However, thinned stands hosted a lower landscape‐level (γ) diversity, lacking many species that occurred infrequently in the unthinned stands. Patterns in the lichen community composition correlated strongly with climatic gradients; the greatest variation in composition was between the Coast and Cascade ranges. The difference in communities between mountain ranges was greatest among stands 70–110 yr old, suggesting a difference in lichen successional dynamics between the ranges.  相似文献   

17.
Background: Boreal forest understory plant communities are known to be resilient to fire – the species composition of stands after a fire is quite similar to the pre-fire composition. However, we know little about recovery of individual plants within particular locations in forest stands (i.e. plot-level changes) since we usually do not have pre-fire data for plots.

Aims: We wanted to determine whether species recruited into the same or different locations in a Pinus banksiana stand that experienced a severe wildfire.

Methods: We used pre-existing permanent plots to evaluate the cover of understory after an unplanned wildfire.

Results: Across the entire stand nine of 47 species showed a significant change in cover. The largest change in a plant functional group was in the mosses, with all species present before fire being eliminated. There was no change in species diversity or total cover. At the plot level, species composition showed a much greater change. An average of 47% of the species present in a plot before the fire were absent in the same plot after the fire, and the total species turnover in plots was 88% of the species present before the fire. The plots showed a similar shift in species composition.

Conclusions: These results confirm that boreal forest communities show a high degree of resilience to fire, but within a forest stand species will be found in different locations following fire, potentially exposing them to a different set of biotic and abiotic conditions in these new locations.  相似文献   

18.
Aim Predictions of ecosystem responses to climate warming are often made using gap models, which are among the most effective tools for assessing the effects of climate change on forest composition and structure. Gap models do not generally account for broad‐scale effects such as the spatial configuration of the simulated forest ecosystems, disturbance, and seed dispersal, which extend beyond the simulation plots and are important under changing climates. In this study we incorporate the broad‐scale spatial effects (spatial configurations of the simulated forest ecosystems, seed dispersal and fire disturbance) in simulating forest responses to climate warming. We chose the Changbai Natural Reserve in China as our study area. Our aim is to reveal the spatial effects in simulating forest responses to climate warming and make new predictions by incorporating these effects in the Changbai Natural Reserve. Location Changbai Natural Reserve, north‐eastern China. Method We used a coupled modelling approach that links a gap model with a spatially explicit landscape model. In our approach, the responses (establishment) of individual species to climate warming are simulated using a gap model (linkages ) that has been utilized previously for making predictions in this region; and the spatial effects are simulated using a landscape model (LANDIS) that incorporates spatial configurations of the simulated forest ecosystems, seed dispersal and fire disturbance. We used the recent predictions of the Canadian Global Coupled Model (CGCM2) for the Changbai Mountain area (4.6 °C average annual temperature increase and little precipitation change). For the area encompassed by the simulation, we examined four major ecosystems distributed continuously from low to high elevations along the northern slope: hardwood forest, mixed Korean pine hardwood forest, spruce‐fir forest, and sub‐alpine forest. Results The dominant effects of climate warming were evident on forest ecosystems in the low and high elevation areas, but not in the mid‐elevation areas. This suggests that the forest ecosystems near the southern and northern ranges of their distributions will have the strongest response to climate warming. In the mid‐elevation areas, environmental controls exerted the dominant influence on the dynamics of these forests (e.g. spruce‐fir) and their resilience to climate warming was suggested by the fact that the fluctuations of species trajectories for these forests under the warming scenario paralleled those under the current climate scenario. Main conclusions With the spatial effects incorporated, the disappearance of tree species in this region due to the climate warming would not be expected within the 300‐year period covered by the simulation. Neither Korean pine nor spruce‐fir was completely replaced by broadleaf species during the simulation period. Even for the sub‐alpine forest, mountain birch did not become extinct under the climate warming scenario, although its occurrence was greatly reduced. However, the decreasing trends characterizing Korean pine, spruce, and fir indicate that in simulations beyond 300 years these species could eventually be replaced by broadleaf tree species. A complete forest transition would take much longer than the time periods predicted by the gap models.  相似文献   

19.
A global change-induced biome shift in the Montseny mountains (NE Spain)   总被引:12,自引:0,他引:12  
Shifts in plant species and biome distribution in response to warming have been described in past climate changes. However, reported evidence of such shifts under current climate change is still scarce. By comparing current and 1945 vegetation distribution in the Montseny mountains (Catalonia, NE Spain), we report here a progressive replacement of cold‐temperate ecosystems by Mediterranean ecosystems. Beech (Fagus sylvatica) forest has shifted altitudinally upwards by ca. 70 m at the highest altitudes (1600–1700 m). Both the beech forests and the heather (Calluna vulgaris) heathlands are being replaced by holm oak (Quercus ilex) forest at medium altitudes (800–1400 m). This beech replacement has been observed to occur through a progressive isolation and degradation of beech stands. In ‘isolated’ (small and surrounded by holm oaks) beech stands, beech trees are 30% more defoliated, beech recruitment is 41% lower, and holm oak recruitment is three times higher than in ‘continental’ (large and continuous) beech stands. The progressively warmer conditions, complemented by the land use changes (mainly the cessation of traditional land management) are the apparent causes, providing a paradigmatic example of global change affecting distributions of plant species and biomes.  相似文献   

20.
Land-use history and large-scale disturbances interact to shape secondary forest structure and composition. How introduced species respond to disturbances such as hurricanes in post-agriculture forest recovery is of particular interest. To examine the effects of hurricane disturbance and previous land use on forest dynamics and composition, we revisited 37 secondary forest stands in former cattle pastures across Puerto Rico representing a range of exposure to the winds of Hurricane Georges in 1998. Stands ranged from 21 to>80 yr since agricultural abandonment and were measured 9 yr posthurricane. Stem density decreased as stands aged, while basal area and species richness tended to increase. Hurricane disturbance exerted contrasting effects on stand structure, contingent on stand age. In older stands, the basal area of large trees fell, shifting to a stand structure characteristic of younger stands, while the basal area of large trees tended to rise in younger stands with increasing hurricane disturbance. These results demonstrate that large-scale natural disturbances can alter the successional trajectory of secondary forest stands recovering from human land use, but stand age, precipitation and soil series were better predictors of changes in stand structure across all study sites. Species composition changed substantially between census intervals, but neither age nor hurricane disturbance consistently predicted species composition change. However, exposure to hurricane winds tended to decrease the abundance of the introduced tree Spathodea campanulata, particularly in smaller size classes. In all sites the abundance of the introduced tree Syzygium jambos showed a declining trend, again most strongly in smaller size classes, suggesting natural thinning through succession.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号