首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Measuring the phylogenetic diversity of communities has become a key issue for biogeography and conservation. However, most diversity indices that rely on interspecies phylogenetic distances may increase with species loss and thus violate the principle of weak monotonicity. Moreover, most published phylogenetic diversity indices ignore the abundance distribution along phylogenetic trees, even though lineage abundances are crucial components of biodiversity. The recently introduced concept of phylogenetic entropy overcomes these limitations, but has not been decomposed across scales, i.e. into α, β and γ components. A full understanding of mechanisms sustaining biological diversity within and between communities needs such decomposition. Here, we propose an additive decomposition framework for estimating α, β and γ components of phylogenetic entropy. Based on simulated trees, we demonstrate its robustness to phylogenetic tree shape and species richness. Our decomposition fulfils the requirements of both independence between components and weak monotonicity. Finally, our decomposition can also be adapted to the partitioning of functional diversity across different scales with the same desirable properties.  相似文献   

2.
Aim To test how far can macroecological hypotheses relating diversity to environmental factors be extrapolated to functional and phylogenetic diversities, i.e. to the extent to which functional traits and evolutionary backgrounds vary among species in a community or region. We use a spatial partitioning of diversity where regional or γ‐diversity is calculated by aggregating information on local communities, local or α‐diversity corresponds to diversity in one locality, and turnover or β‐diversity corresponds to the average turnover between localities and the region. Location France. Methods We used the Rao quadratic entropy decomposition of diversity to calculate local, regional and turnover diversity for each of three diversity facets (taxonomic, phylogenetic and functional) in breeding bird communities of France. Spatial autoregressive models and partial regression analyses were used to analyse the relationships between each diversity facet and environmental gradients (climate and land use). Results Changes in γ‐diversity are driven by changes in both α‐ and β‐diversity. Low levels of human impact generally favour all three facets of regional diversity and heterogeneous landscapes usually harbour higher β‐diversity in the three facets of diversity, although functional and phylogenetic turnover show some relationships in the opposite direction. Spatial and environmental factors explain a large percentage of the variation in the three diversity facets (>60%), and this is especially true for phylogenetic diversity. In all cases, spatial structure plays a preponderant role in explaining diversity gradients, suggesting an important role for dispersal limitations in structuring diversity at different spatial scales. Main conclusions Our results generally support the idea that hypotheses that have previously been applied to taxonomic diversity, both at local and regional scales, can be extended to phylogenetic and functional diversity. Specifically, changes in regional diversity are the result of changes in both local and turnover diversity, some environmental conditions such as human development have a great impact on diversity levels, and heterogeneous landscapes tend to have higher diversity levels. Interestingly, differences between diversity facets could potentially provide further insights into how large‐ and small‐scale ecological processes interact at the onset of macroecological patterns.  相似文献   

3.
Recent developments of molecular tools have revolutionized our knowledge of microbial biodiversity by allowing detailed exploration of its different facets and generating unprecedented amount of data. One key issue with such large datasets is the development of diversity measures that cope with different data outputs and allow comparison of biodiversity across different scales. Diversity has indeed three components: local (α), regional (γ) and the overall difference between local communities (β). Current measures of microbial diversity, derived from several approaches, provide complementary but different views. They only capture the β component of diversity, compare communities in a pairwise way, consider all species as equivalent or lack a mathematically explicit relationship among the α, β and γ components. We propose a unified quantitative framework based on the Rao quadratic entropy, to obtain an additive decomposition of diversity (γ = α + β), so the three components can be compared, and that integrate the relationship (phylogenetic or functional) among Microbial Diversity Units that compose a microbial community. We show how this framework is adapted to all types of molecular data, and we highlight crucial issues in microbial ecology that would benefit from this framework and propose ready‐to‐use R‐functions to easily set up our approach.  相似文献   

4.
Understanding how different biodiversity components are related across different environmental conditions is a major goal in macroecology and conservation biogeography. We investigated correlations among alpha and beta taxonomic (TD), phylogenetic (PD), and functional diversity (FD) in ant communities in the five biogeographic regions most representative of western Europe; we also examined the degree of niche conservatism. We combined data from 349 ant communities composed of 154 total species, which were characterized by 10 functional traits and by phylogenetic relatedness. We computed TD, PD, and FD using the Rao quadratic entropy index, which allows each biodiversity component to be partitioned into α and β diversity within the same mathematical framework. We ran generalized least squares and multiple matrix regressions with randomization to investigate relationships among the diversity components. We used Pagel's λ test to explore niche conservatism in each biogeographic region. At the alpha scale, TD was consistently, positively related to PD and FD, although the strength and scatter of this relationship changed among the biogeographic regions. Meanwhile, PD and FD consistently matched up across regions. Accordingly, we found similar degrees of niche conservatism across regions. Nonetheless, these alpha‐scale relationships had low coefficients of determination. At the beta scale, the three diversity components were highly correlated across all regions (especially TD and FD, as well as PD and FD). Our results imply that the different diversity components, and especially PD and FD, are consistently related across biogeographic regions and analytical scale. However, the alpha‐scale relationships were quite weak, suggesting environmental factors might influence the degree of association among diversity components at the alpha level. In conclusion, conservation programs should seek to preserve functional and phylogenetic diversity in addition to species richness, and this approach should be applied universally, regardless of the biogeographic locations of the sites to be protected.  相似文献   

5.
Questions: Trait differentiation among species occurs at different spatial scales within a region. How does the partitioning of functional diversity help to identify different community assembly mechanisms? Location: Northeastern Spain. Methods: Functional diversity can be partitioned into within‐community (α) and among‐communities (β) components, in analogy to Whittaker's classical α and β species diversity concept. In light of ecological null models, we test and discuss two algorithms as a framework to measure α and β functional diversity (the Rao quadratic entropy index and the variance of trait values). Species and trait (specific leaf area) data from pastures under different climatic conditions in NE Spain are used as a case study. Results: The proposed indices show different mathematical properties but similarly account for the spatial components of functional diversity. For all vegetation types along the climatic gradient, the observed α functional diversity was lower than expected at random, an observation consistent with the hypothesis of trait convergence resulting from habitat filtering. On the other hand, our data exhibited a remarkably higher functional diversity within communities compared to among communities (α?β). In contrast to the high species turnover, there was a limited functional diversity turnover among communities, and a large part of the trait divergence occurred among coexisting species. Conclusions: Partitioning functional diversity within and among communities revealed that both trait convergence and divergence occur in the formation of assemblages from the local species pool. A considerable trait convergence exists at the regional scale in spite of changes in species composition, suggesting the existence of ecological redundancy among communities.  相似文献   

6.
Understanding the spatial distribution of plant diversity and its drivers are major challenges in biogeography and conservation biology. Integrating multiple facets of biodiversity (e.g., taxonomic, phylogenetic, and functional biodiversity) may advance our understanding on how community assembly processes drive the distribution of biodiversity. In this study, plant communities in 60 sampling plots in desert ecosystems were investigated. The effects of local environment and spatial factors on the species, functional, and phylogenetic α‐ and β‐diversity (including turnover and nestedness components) of desert plant communities were investigated. The results showed that functional and phylogenetic α‐diversity were negatively correlated with species richness, and were significantly positively correlated with each other. Environmental filtering mainly influenced species richness and Rao quadratic entropy; phylogenetic α‐diversity was mainly influenced by dispersal limitation. Species and phylogenetic β‐diversity were mainly consisted of turnover component. The functional β‐diversity and its turnover component were mainly influenced by environmental factors, while dispersal limitation dominantly effected species and phylogenetic β‐diversity and their turnover component of species and phylogenetic β‐diversity. Soil organic carbon and soil pH significantly influenced different dimensions of α‐diversity, and soil moisture, salinity, organic carbon, and total nitrogen significantly influenced different dimensions of α‐ and β‐diversity and their components. Overall, it appeared that the relative influence of environmental and spatial factors on taxonomic, functional, and phylogenetic diversity differed at the α and β scales. Quantifying α‐ and β‐diversity at different biodiversity dimensions can help researchers to more accurately assess patterns of diversity and community assembly.  相似文献   

7.
Environmental filtering and spatial structuring are important ecological processes for the generation and maintenance of biodiversity. However, the relative importance of these ecological drivers for multiple facets of diversity is still poorly understood in highland streams. Here, we examined the responses of three facets of stream macroinvertebrate alpha diversity to local environmental, landscape‐climate and spatial factors in a near‐pristine highland riverine ecosystem. Taxonomic (species richness, Shannon diversity, and evenness), functional (functional richness, evenness, divergence, and Rao's Quadratic entropy), and a proxy of phylogenetic alpha diversity (taxonomic distinctness and variation in taxonomic distinctness) were calculated for macroinvertebrate assemblages in 55 stream sites. Then Pearson correlation coefficient was used to explore congruence of indices within and across the three diversity facets. Finally, multiple linear regression models and variation partitioning were employed to identify the relative importance of different ecological drivers of biodiversity. We found most correlations between the diversity indices within the same facet, and between functional richness and species richness were relatively strong. The two phylogenetic diversity indices were quite independent from taxonomic diversity but correlated with functional diversity indices to some extent. Taxonomic and functional diversity were more strongly determined by environmental variables, while phylogenetic diversity was better explained by spatial factors. In terms of environmental variables, habitat‐scale variables describing habitat complexity and water physical features played the primary role in determining the diversity patterns of all three facets, whereas landscape factors appeared less influential. Our findings indicated that both environmental and spatial factors are important ecological drivers for biodiversity patterns of macroinvertebrates in Tibetan streams, although their relative importance was contingent on different facets of diversity. Such findings verified the complementary roles of taxonomic, functional and phylogenetic diversity, and highlighted the importance of comprehensively considering multiple ecological drivers for different facets of diversity in biodiversity assessment.  相似文献   

8.

Aim

Our aim is to document the dimensions of current squamate reptile biodiversity in the Americas by integrating taxonomic, phylogenetic and functional data, and assessing how this may vary across phylogenetic scales. We also explore the potential underlying mechanisms that may be responsible for the observed geographical diversity patterns.

Location

The Americas.

Time period

Present.

Major taxa

Squamate reptiles.

Methods

We used published data on the distribution, phylogeny, and body size of squamate reptiles to document the current dimensions of their alpha diversity in the Americas. We overlapped species ranges to estimate taxonomic diversity (TD) and calculated phylogenetic diversity (PD) using mean pairwise phylogenetic distance (MPD), speciation rate (DivRate) and Faith's phylogenetic index (PD). We estimated functional diversity (FD) as trait dispersion in the multivariate space using body size and leg development data. We implemented a deconstructive macroecological approach to understand how spatial mismatches between the three facets of diversity vary across phylogenetic scales, and the potential eco-evolutionary mechanisms driving these patterns across space.

Results

We found a strong latitudinal gradient of TD with a large accumulation in tropical regions. PD and FD patterns were largely similar likely due to the high phylogenetic signal in the traits used, and higher values tended to be concentrated in harsh and/or heterogeneous environments. We found differences between major clades within Squamata that display contrasting geographical patterns. Several regions across the continent shared the same spatial mismatches between dimensions across clades, suggesting that similar eco-evolutionary processes are shaping these regional reptile assemblages. However, we also found evidence that non-mutually exclusive processes can operate differently across clades.

Main conclusions

The deconstructive approach implemented here is based on a solid macroecological framework. We can extend this to other taxonomic groups to establish whether there are particularities about how different eco-evolutionary mechanisms shape biodiversity facets in a spatially explicit context.  相似文献   

9.
10.
Anthropogenic conversion of natural to agricultural land reduces aboveground biodiversity. Yet, the overall consequences of land‐use changes on belowground biodiversity at large scales remain insufficiently explored. Furthermore, the effects of conversion on different organism groups are usually determined at the taxonomic level, while an integrated investigation that includes functional and phylogenetic levels is rare and absent for belowground organisms. Here, we studied the Earth's most abundant metazoa—nematodes—to examine the effects of conversion from natural to agricultural habitats on soil biodiversity across a large spatial scale. To this aim, we investigated the diversity and composition of nematode communities at the taxonomic, functional, and phylogenetic level in 16 assemblage pairs (32 sites in total with 16 in each habitat type) in mainland China. While the overall alpha and beta diversity did not differ between natural and agricultural systems, all three alpha diversity facets decreased with latitude in natural habitats. Both alpha and beta diversity levels were driven by climatic differences in natural habitats, while none of the diversity levels changed in agricultural systems. This indicates that land conversion affects soil biodiversity in a geographically dependent manner and that agriculture could erase climatic constraints on soil biodiversity at such a scale. Additionally, the functional composition of nematode communities was more dissimilar in agricultural than in natural habitats, while the phylogenetic composition was more similar, indicating that changes among different biodiversity facets are asynchronous. Our study deepens the understanding of land‐use effects on soil nematode diversity across large spatial scales. Moreover, the detected asynchrony of taxonomic, functional, and phylogenetic diversity highlights the necessity to monitor multiple facets of soil biodiversity in ecological studies such as those investigating environmental changes.  相似文献   

11.
群落分类多样性和功能多样性的海拔格局研究, 是了解生物多样性空间分布现状、揭示多样性维持和变化机制的重要途径。当前对水生昆虫分类多样性和功能多样性沿海拔梯度分布格局, 及其尺度依赖性依旧缺乏深入研究。本文基于2013-2018年在云南澜沧江流域500-3,900 m海拔梯度共149个溪流点位的水生昆虫群落调查数据, 利用线性或二次回归模型探索并比较了局部尺度(点位尺度)和不同区域尺度(100 m、150 m、200 m、250 m海拔段)的分类多样性指数(物种丰富度指数、Simpson多样性指数和物种均匀度指数)和功能多样性指数(树状图功能多样性指数(dbFD)、Rao二次熵指数(RaoQ)和功能均匀度指数(FEve))的海拔格局。结果表明, 在局部尺度, 物种丰富度指数和dbFD指数沿海拔梯度均无显著分布特征, Simpson多样性指数、RaoQ指数、物种均匀度指数和FEve指数沿海拔梯度呈现U型或者单调递减趋势。在区域尺度, 随着区域海拔带宽度的增加, 物种丰富度指数沿海拔呈不显著的单调递减格局, 但dbFD指数沿海拔分布由U型转变为单调递减趋势; Simpson多样性指数和RaoQ指数沿海拔梯度由显著U型趋势转变为无显著分布特征; 物种均匀度指数沿海拔梯度无显著分布特征, 但FEve指数呈显著增加的海拔格局。综上, 群落分类多样性指数和功能多样性指数沿海拔梯度分布存在局部和区域尺度的空间差异, 但区域尺度下二者海拔格局随海拔带宽度的增加存在一定程度的一致性。  相似文献   

12.
One of the oldest challenges in ecology is to understand the processes that underpin the composition of communities. Historically, an obvious way in which to describe community compositions has been diversity in terms of the number and abundances of species. However, the failure to reject contradictory models has led to communities now being characterized by trait and phylogenetic diversities. Our objective here is to demonstrate how species, trait and phylogenetic diversity can be combined together from large to local spatial scales to reveal the historical, deterministic and stochastic processes that impact the compositions of local communities. Research in this area has recently been advanced by the development of mathematical measures that incorporate trait dissimilarities and phylogenetic relatedness between species. However, measures of trait diversity have been developed independently of phylogenetic measures and conversely most of the phylogenetic diversity measures have been developed independently of trait diversity measures. This has led to semantic confusions particularly when classical ecological and evolutionary approaches are integrated so closely together. Consequently, we propose a unified semantic framework and demonstrate the importance of the links among species, phylogenetic and trait diversity indices. Furthermore, species, trait and phylogenetic diversity indices differ in the ways they can be used across different spatial scales. The connections between large‐scale, regional and local processes allow the consideration of historical factors in addition to local ecological deterministic or stochastic processes. Phylogenetic and trait diversity have been used in large‐scale analyses to determine how historical and/or environmental factors affect both the formation of species assemblages and patterns in species richness across latitude or elevation gradients. Both phylogenetic and trait diversity have been used at different spatial scales to identify the relative impacts of ecological deterministic processes such as environmental filtering and limiting similarity from alternative processes such as random speciation and extinction, random dispersal and ecological drift. Measures of phylogenetic diversity combine phenotypic and genetic diversity and have the potential to reveal both the ecological and historical factors that impact local communities. Consequently, we demonstrate that, when used in a comparative way, species, trait and phylogenetic structures have the potential to reveal essential details that might act simultaneously in the assembly of species communities. We highlight potential directions for future research. These might include how variation in trait and phylogenetic diversity alters with spatial distances, the role of trait and phylogenetic diversity in global‐scale gradients, the connections between traits and phylogeny, the importance of trait rarity and independent evolutionary history in community assembly, the loss of trait and phylogenetic diversity due to human impacts, and the mathematical developments of biodiversity indices including within‐species variations.  相似文献   

13.
Restoration of degraded environments is essential to mitigate adverse impacts of human activities on ecosystems. Plant–plant interactions may provide effective means for restoring degraded arid lands, but little is understood about these impacts. In this regard, we analyzed the effects of two dominant nurse plants (i.e., Artemisia sieberi and Stipa arabica) on taxonomic, functional, and phylogenetic diversity across different ages of land abandonment (i.e., control, recent, and old ages) in a limestone mine site in Iran. In addition, we considered two spatial scales: i) the plot scale (i.e., under 1m2 plots) and ii) the vegetation‐patch scale (i.e., under the canopies of nurse plants), to assess nurse plant effects, land abandonment ages, and their relative importance on biodiversity facets by performing Kruskal–Wallis H test and variation partitioning analysis. Our results indicated an increase in taxonomic, functional, and phylogenetic diversity at the plot scale, when considering the presence of nurse plants under old ages of land abandonment. Such significant differences were consistent with the positive effects of Artemisia patches on taxonomic diversity and Stipa patches on functional and phylogenetic diversity. In addition, we found a larger contribution from nurse plants than land abandonment age on biodiversity variation at both spatial scales studied. Therefore, these results indicate the importance of plant–plant interactions in restoring vegetation, with their effects on the presence of beneficiary species and their functional and phylogenetic relatedness depending on the nurse life forms under the stress‐gradient hypothesis.  相似文献   

14.
《植物生态学报》2014,38(5):405
功能多样性-生产力关系研究结果支持质量比假说和多样性假说, 但对于这两种假说的适用条件尚有争议。通过对吉林省西部草甸和沼泽植物群落的地上生物量、2个物种多样性指标(物种丰富度和Shannon-Weaver指数)、7种植物性状的两类功能多样性指标(群落权重均值和Rao二次熵), 以及土壤环境因子进行调查测量, 研究了群落功能多样性与生产力的关系。结果表明: 1)功能多样性与生产力的关系比物种多样性与生产力的关系更为密切; 2)功能群落权重均值解释生产力变异的能力好于Rao二次熵, 即优势物种对群落生产力的影响作用更大; 3)水淹条件影响着功能多样性与生产力的关系, 以群落权重均值为基础的质量比假说适于解释草甸群落功能多样性与生产力的关系, 而以Rao二次熵为基础的多样性假说适于解释有强烈环境筛(水淹)的沼泽群落功能多样性与生产力的关系。  相似文献   

15.
功能多样性-生产力关系研究结果支持质量比假说和多样性假说, 但对于这两种假说的适用条件尚有争议。通过对吉林省西部草甸和沼泽植物群落的地上生物量、2个物种多样性指标(物种丰富度和Shannon-Weaver指数)、7种植物性状的两类功能多样性指标(群落权重均值和Rao二次熵), 以及土壤环境因子进行调查测量, 研究了群落功能多样性与生产力的关系。结果表明: 1)功能多样性与生产力的关系比物种多样性与生产力的关系更为密切; 2)功能群落权重均值解释生产力变异的能力好于Rao二次熵, 即优势物种对群落生产力的影响作用更大; 3)水淹条件影响着功能多样性与生产力的关系, 以群落权重均值为基础的质量比假说适于解释草甸群落功能多样性与生产力的关系, 而以Rao二次熵为基础的多样性假说适于解释有强烈环境筛(水淹)的沼泽群落功能多样性与生产力的关系。  相似文献   

16.

Key message

We present and highlight a partitioning procedure based on the Rao quadratic entropy index to assess temporal in situ inter-annual varietal and genetic changes of crop diversity.

Abstract

For decades, Western-European agroecosystems have undergone profound changes, among which a reduction of crop genetic diversity. These changes have been highlighted in numerous studies, but no unified partitioning procedure has been proposed to compute the inter-annual variability in both varietal and genetic diversity. To fill this gap, we tested, adjusted and applied a partitioning procedure based on the Rao quadratic entropy index that made possible to describe the different components of crop diversity as well as to account for the relative acreages of varieties. To emphasize the relevance of this procedure, we relied on a case study focusing on the temporal evolution of bread wheat diversity in France over the period 1981–2006 at both national and district scales. At the national scale, we highlighted a decrease of the weighted genetic replacement indicating that varieties sown in the most recent years were more genetically similar than older ones. At the district scale, we highlighted sudden changes in weighted genetic replacement in some agricultural regions that could be due to fast shifts of successive leading varieties over time. Other regions presented a relatively continuous increase of genetic similarity over time, potentially due to the coexistence of a larger number of co-leading varieties that got closer genetically. Based on the partitioning procedure, we argue that a tendency of in situ genetic homogenization could be compared to some of its potential causes, such as a decrease in the speed of replacement or an increase in between-variety genetic similarity over time.
  相似文献   

17.
Beta diversity is among the most employed theoretical concepts in ecology and biodiversity conservation. Up to date, a self‐contained definition of it, with no reference to alpha and gamma diversity, has never been proposed. Using Kullback‐Leibler divergence, we present the explicit formula of Shannon's β entropy, a bias correction for its estimator and a confidence interval. We also provide the mathematical framework to decompose Shannon diversity into several hierarchical nested levels. From botanical inventories of tropical forest plots in French Guiana, we estimate Shannon diversity at the plot, forest and regional level. We believe this is a complete and usefulness toolbox for ecologists interested in partitioning biodiversity.  相似文献   

18.
β‐diversity (variation in community composition) is a fundamental component of biodiversity, with implications for macroecology, community ecology and conservation. However, its scaling properties are poorly understood. Here, we systematically assessed the spatial scaling of β‐diversity using 12 empirical large‐scale datasets including different taxonomic groups, by examining two conceptual types of β‐diversity and explicitly considering the turnover and nestedness components. We found highly consistent patterns across datasets. Multiple‐site β‐diversity (i.e. variation across multiple sites) scaling curves were remarkably consistent, with β‐diversity decreasing with sampled area according to a power law. For pairwise dissimilarities, the rates of increase of dissimilarity with geographic distance remained largely constant across scales, while grain size (or scale level) had a stronger effect on overall dissimilarity. In both analyses, turnover was the main contributor to β‐diversity, following total β‐diversity patterns closely, while the nestedness component was largely insensitive to scale changes. Our results highlight the importance of integrating both inter‐ and intraspecific aggregation patterns across spatial scales, which underpin substantial differences in community structure from local to regional scales.  相似文献   

19.
向琳  陈芳清  官守鹏  王玉兵  吕坤 《生态学报》2019,39(21):8144-8155
研究植物群落功能多样性沿环境梯度的变化可以揭示功能多样性与生态系统功能间的关系及维持机制。以井冈山地区鹿角杜鹃(Rhododendron latoucheae)群落为研究对象,通过调查不同海拔梯度群落灌木层植物的物种组成与结构特征,研究了该群落类型灌木层植物的物种多样性、功能多样性、环境因子的特征及其相互之间的关系。结果表明:1)群落类型灌木层植物物种多样性和功能多样性沿海拔梯度呈现不同的变化趋势。物种多样性指数均随着海拔的升高呈减小趋势,而功能多样性指数的变化却较为复杂。其中FRic、FEveFDis随着海拔的升高显著减小,FDivRao却随海拔的升高而增加;2)群落中物种多样性和功能多样性呈现复杂的相关性。FRic、FEve与丰富度指数呈显著正相关,而Rao、FDis、FDivSimpson优势度指数呈线性相关关系,且具有显著相关性;3)群落所分布的坡位及土壤氮与磷含量等环境因子对灌木植物的功能多样性有着重要的影响。鹿角杜鹃群落灌木层植物的物种多样性和功能多样性的相互关系及其对环境变化的响应共同决定了群落的生态系统功能。  相似文献   

20.
Biodiversity is essential for maintaining the terrestrial ecosystem multifunctionality (EMF). Recent studies have revealed that the variations in terrestrial ecosystem functions are captured by three key axes: the maximum productivity, water use efficiency, and carbon use efficiency of the ecosystem. However, the role of biodiversity in supporting these three key axes has not yet been explored. In this study, we combined the (i) data collected from more than 840 vegetation plots across a large climatic gradient in China using standard protocols, (ii) data on plant traits and phylogenetic information for more than 2,500 plant species, and (iii) soil nutrient data measured in each plot. These data were used to systematically assess the contribution of environmental factors, species richness, functional and phylogenetic diversity, and community-weighted mean (CWM) and ecosystem traits (i.e., traits intensity normalized per unit land area) to EMF via hierarchical partitioning and Bayesian structural equation modeling. Multiple biodiversity attributes accounted for 70% of the influence of all the variables on EMF, and ecosystems with high functional diversity had high resource use efficiency. Our study is the first to systematically explore the role of different biodiversity attributes, including species richness, phylogenetic and functional diversity, and CWM and ecosystem traits, in the key axes of ecosystem functions. Our findings underscore that biodiversity conservation is critical for sustaining EMF and ultimately ensuring human well-being.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号