首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tetraphyllidean cestodes are cosmopolitan, remarkably host specific, and form the most speciose and diverse group of helminths infecting elasmobranchs (sharks, skates and rays). They show substantial interspecific variation in a variety of morphological traits, including body size. Tetraphyllideans represent therefore, an ideal group in which to examine the relationship between parasite body size and abundance. The individual and combined effects of host size, environmental temperature, host habitat, host environment, host physiology, and host type (all likely correlates of parasite body size) on parasite length were assessed using general linear model analyses using data from 515 tetraphyllidean cestode species (182 species were included in analyses). The relationships between tetraphyllidean cestode length and intensity and abundance of infection were assessed using simple linear regression analyses. Due to the contrasting morphologies between shark and batoid hosts, and contrasting physiologies between sharks of the Lamnidae family and other sharks, analyses were repeated in different subsets based on host morphology and physiologies (“sharks” vs. batoids) to determine the influence of these variables on adult tetraphyllidean tapeworm body size. Results presented herein indicate that host body size, environmental temperature and host habitat are relatively important variables in models explaining interspecific variations in tetraphyllidean tapeworm length. In addition, a negative relationship between tetraphyllidean body size and intensity of infection was apparent. These results suggest that space constraints and ambient temperature, via their effects on metabolism and growth, determine adult tetraphyllidean cestode size. Consequently, a trade-off between size and numbers is possibly imposed by external forces influencing host size, hence limiting physical space or other resources available to the parasites.  相似文献   

2.
Batoids differ from other elasmobranch fishes in that they possess dorsoventrally flattened bodies with enlarged muscled pectoral fins. Most batoids also swim using either of two modes of locomotion: undulation or oscillation of the pectoral fins. In other elasmobranchs (e.g., sharks), the main locomotory muscle is located in the axial myotome; in contrast, the main locomotory muscle in batoids is found in the enlarged pectoral fins. The pectoral fin muscles of sharks have a simple structure, confined to the base of the fin; however, little to no data are available on the more complex musculature within the pectoral fins of batoids. Understanding the types of fibers and their arrangement within the pectoral fins may elucidate how batoid fishes are able to utilize such unique swimming modes. In the present study, histochemical methods including succinate dehydrogenase (SDH) and immunofluoresence were used to determine the different fiber types comprising these muscles in three batoid species: Atlantic stingray (Dasyatis sabina), ocellate river stingray (Potamotrygon motoro) and cownose ray (Rhinoptera bonasus). All three species had muscles comprised of two muscle fiber types (slow-red and fast-white). The undulatory species, D. sabina and P. motoro, had a larger proportion of fast-white muscle fibers compared to the oscillatory species, R. bonasus. The muscle fiber sizes were similar between each species, though generally smaller compared to the axial musculature in other elasmobranch fishes. These results suggest that batoid locomotion can be distinguished using muscle fiber type proportions. Undulatory species are more benthic with fast-white fibers allowing them to contract their muscles quickly, as a possible means of escape from potential predators. Oscillatory species are pelagic and are known to migrate long distances with muscles using slow-red fibers to aid in sustained swimming.  相似文献   

3.
An annotated checklist of the chondrichthyan fishes (sharks, batoids and chimaeras) of the world is presented. As of 7 November 2015, the number of species totals 1188, comprising 16 orders, 61 families and 199 genera. The checklist includes nine orders, 34 families, 105 genera and 509 species of sharks; six orders, 24 families, 88 genera and 630 species of batoids (skates and rays); one order, three families, six genera and 49 species of holocephalans (chimaeras). The most speciose shark orders are the Carcharhiniformes with 284 species, followed by the Squaliformes with 119. The most species‐rich batoid orders are the Rajiformes with 285 species and the Myliobatiformes with 210. This checklist represents the first global checklist of chondrichthyans to include information on maximum size, geographic and depth distributions, as well as comments on taxonomically problematic species and recent and regularly overlooked synonymizations. Furthermore, a detailed analysis of the biogeographical diversity of the species across 10 major areas of occurrence is given, including updated figures for previously published hotspots of chondrichthyan biodiversity, providing the detailed numbers of chondrichthyan species per major area, and revealing centres of distribution for several taxa  相似文献   

4.
Although latitudinal gradients in diversity have been well studied, latitudinal variation in the taxonomic composition of communities has received less attention. Here, we use a large dataset including 950 surveys of helminth endoparasite communities in 650 species of vertebrate hosts to test for latitudinal changes in the relative contributions of trematodes, cestodes, nematodes and acanthocephalans to parasite assemblages. Although the species richness of helminth communities showed no consistent latitudinal variation, their taxonomic composition varied as a function of both host type and latitude. First, trematodes and acanthocephalans accounted for a higher proportion of species in helminth communities of fish, whereas nematodes achieved a higher proportion of the species in communities of bird and especially mammal hosts. Second, the proportion of trematodes in helminth communities of birds and mammals increased toward higher latitudes. Finally, the proportion of nematodes per community increased toward lower latitudes regardless of the type of host. We present tentative explanations for these patterns, and argue that new insights in parasite community ecology can be gained by searching for latitudinal gradients not only in parasite species richness, but also in the taxonomic composition of parasite assemblages.  相似文献   

5.
Many studies on elasmobranchs, sharks and batoids (rays, skates and guitarfishes), have focused on the factors responsible for biomass decline, but little attention has been paid to the factors that affect species richness. We used the software package ModestR to determine the geographical distribution of all valid marine elasmobranch species (512 species of sharks and 619 species of batoids), thereby making it possible to determine the species composition of the elasmobranch community in any area worldwide. The primary aim of this study was to identify the factors associated with the species richness of elasmobranchs. The data were analyzed using multiple regressions and Support Vector Machine (SVM) in cells of 1º× 1º with the analyzed abiotic variables being bathymetry, chlorophyll a, sea surface temperature, photosynthetically available radiation, pH, cloud cover, the concentrations of calcite, silicate, phosphate and nitrate, salinity, particulate organic carbon, diffuse attenuation and dissolved oxygen. The mean area of occupancy of the species was used as an indicator of niche occupancy. The model performed with SVM explained 97 and 99 % of the variance observed in the species richness of batoids and sharks, respectively. Mean area of occupancy, temperature and bathymetry were the variables with a higher contribution to the variance observed in both sharks and batoids. The negative residuals of the model performed with SVM indicated areas with lower than predicted species richness. These may be potential areas with undiscovered and/or unregistered species, or areas with decreased species richness due to the negative effect of anthropogenic factors, i.e. overfishing  相似文献   

6.
Early morphological studies regarding the evolutionary history of elasmobranchs suggested sharks and batoids (skates and rays) were respectively monophyletic. More modern morphological cladistic studies, however, have tended to suggest that batoids are derived sharks, closely related to sawsharks and angelsharks, a phylogenetic arrangement known as the Hypnosqualea hypothesis. Very few molecular studies addressing interordinal relationships of elasmobranchs have been published; the few that do exist, are very limited in terms of both taxon representation and/or aligned sequence positions, and are insufficient to answer the question of whether batoids are derived sharks. The purpose of this study was to address this issue with more complete taxon representation, concomitant with a reasonable number of aligned sequence positions. The data set included a 2.4-kb segment of the mitochondrial 12S rRNA-tRNA valine-16S rRNA locus, and in terms of taxa, representatives of two orders of Batoidea, at least one representative of all orders of sharks, and as an outgroup, the widely recognized sister group to elasmobranchs-Holocephali. The results provide the first convincing molecular evidence for shark monophyly and the rejection of the Hypnosqualea hypothesis. Our phylogenetic placement of batoids as a basal elasmobranch lineage means that much of the current thinking regarding the evolution of morphological and life history characteristics in elasmobranchs needs to be re-evaluated.  相似文献   

7.
This paper presents data from the first major survey of the diversity, biology and fisheries of elasmobranchs in the Persian (Arabian) Gulf. Substantial landings of elasmobranchs, usually as gillnet by-catch, were recorded in Kuwait, Qatar and the Emirate of Abu Dhabi (part of the United Arab Emirates), although larger elasmobranchs from targeted line fisheries were landed in Abu Dhabi. The elasmobranch fauna recorded was distinctive and included species that are undescribed, rare and have a highly restricted known distribution. Numerical abundance was dominated by sharks (c. 80%), of which carcharhinids were by far the most important. The milk shark Rhizoprionodon acutus and whitecheek shark Carcharhinus dussumieri together comprised just under half of all recorded individuals. Around 90% of recorded sharks were small (50-90 cm total length, L(T) ) individuals, most of which were mature individuals of species with a small maximum size (<100 cm L(T) ), although immature individuals of larger species (e.g. Carcharhinus sorrah and other Carcharhinus spp.) were also important. The most frequently recorded batoid taxa were cownose rays Rhinoptera spp., an undescribed whipray, and the granulated guitarfish Rhinobatos granulatus. The first size, sex and maturity data for a wide range of Gulf elasmobranch species are presented (including L(T) at 50% maturity for males of four shark species) and include some notable differences from other locations in the Indo-West Pacific Ocean. A number of concerns regarding the sustainability of the fishery were highlighted by this study, notably that most of the batoid species recorded are classed by the IUCN Red List as vulnerable, endangered, data deficient or not evaluated. Despite their considerable elasmobranch landings, none of the three countries sampled have developed a 'Shark Plan' as encouraged to do so under the FAO International Plan of Action: Sharks. Furthermore, Kuwait and Qatar currently report zero or no elasmobranch landings to the FAO.  相似文献   

8.
The diversity of marine communities is in striking contrast with the diversity of terrestrial communities. In all oceans, species richness is low in tropical areas and high at latitudes between 20 and 40°. While species richness is a primary metric used in conservation and management strategies, it is important to take into account the complex phylogenetic patterns of species compositions within communities. We measured the phylogenetic skew and diversity of shark communities throughout the world. We found that shark communities in tropical seas were highly phylogenetically skewed, whereas temperate sea communities had phylogenetically diversified species compositions. Interestingly, although geographically distant from one another, tropical sea communities were all highly skewed toward requiem sharks (Carcharhinidae), hammerhead sharks (Sphyrnidae), and whale sharks (Rhincodon typus). Worldwide, the greatest phylogenetic evenness in terms of clades was found in the North Sea and coastal regions of countries in temperate zones, such as the United Kingdom, Ireland, southern Australia, and Chile. This study is the first to examine patterns of phylogenetic diversity of shark communities on a global scale. Our findings suggest that when establishing conservation activities, it is important to take full account of phylogenetic patterns of species composition and not solely use species richness as a target. Protecting areas of high phylogenetic diversity in sharks, which were identified in this study, could form a broader strategy for protecting other threatened marine species.  相似文献   

9.
Expansion of the ‘pharynx’ during breathing or capturing prey in fishes generally involves posteroventral retraction of the hyoid arch. However, the hyoid arch structure of batoid fishes (skates, rays, guitarfishes, and sawfishes) is unique, and how they expand the pharyngeal cavity is poorly understood. To investigate the mechanism of pharyngeal expansion during breathing in the yellow-spotted fanray, Platyrhina tangi, we conducted anatomical and kinematic investigations of the pharyngeal region. Our study revealed that the yellow-spotted fanray and sharks have different skeletal linkage systems for pharyngeal expansion. During pharyngeal expansion in the yellow-spotted fanray, the hyoid bar and branchial apparatus rotate ventrally around the hinge joint between the fifth ceratobranchial cartilage and the pectoral girdle. This pharyngeal expansion mechanism appears to be widespread among batoid fishes and is unique among cartilaginous fishes (sharks, batoids, and holocephalans). Batoid fishes possibly developed this pharyngeal expansion mechanism during early batoid evolution.  相似文献   

10.
Aim We investigated the relationship between host and parasite diversity as well as latitudinal gradients in parasite diversity on a continental scale in European freshwater trematodes. Location European freshwaters. Methods We extracted distributional data for 564 freshwater trematodes across 25 biogeographical regions in Europe from the Limnofauna Europaea and used multiple regression analyses to test for correlations between the diversity of definitive (vertebrates) or first intermediate (gastropods) hosts and that of trematodes, and for latitudinal gradients in trematode diversity. In particular, we investigated patterns in beta diversity among latitudinal bands and between trematode species that parasitize host groups with low (autogenic) and high (allogenic) dispersal capacity. We also tested for a latitudinal gradient in the proportional representation of these two trematode groups within regional faunas. Results Latitude or first intermediate host richness had no effect on trematode richness, but definitive host richness was a strong predictor of trematode richness, among both allogenic and autogenic parasites. We found that beta diversity of trematode faunas within latitudinal bands decreased to the north, with similar values for allogenic and autogenic trematodes. Finally, we observed an increasing proportion of autogenic species toward the north of Europe. Main conclusions The richness of definitive hosts appears to be the driver of trematode diversity at a continental scale. The latitudinal gradient in beta diversity reflects patterns observed in free‐living species and probably results from recolonization in the aftermath of the ice ages. The similar beta‐diversity patterns of allogenic and autogenic trematodes and the increasing proportion of autogenic trematodes with increasing latitude are surprising. We suggest that the geographical scale of our analysis or confounding factors such as differences in habitat utilization and specialization may partly explain these patterns.  相似文献   

11.
The elasmobranchs (sharks, rays and skates) being the extant survivors of one of the earliest offshoots of the vertebrate evolutionary tree are good model organisms to study the primitive vertebrate conditions. They play a significant role in maintaining the ecological balance and have high economic value. Due to over-exploitation and illegal fishing worldwide, the elasmobranch stocks are being decimated at an alarming rate. Appropriate management measures are necessary for restoring depleted elasmobranch stocks. One approach for restoring stocks is implementation of conservation measures and these measures can be formulated effectively by knowing the evolutionary relationship among the elasmobranchs. In this study, a total of 30 species were chosen for molecular phylogeny studies using mitochondrial cytochrome c oxidase subunit I, 12S ribosomal RNA gene and nuclear Internal Transcribed Spacer 2. Among different genes, the combined dataset of COI and 12S rRNA resulted in a well resolved tree topology with significant bootstrap/posterior probabilities values. The results supported the reciprocal monophyly of sharks and batoids. Within Galeomorphii, Heterodontiformes (bullhead sharks) formed as a sister group to Lamniformes (mackerel sharks): Orectolobiformes (carpet sharks) and to Carcharhiniformes (ground sharks). Within batoids, the Myliobatiformes formed a monophyly group while Pristiformes (sawfishes) and Rhinobatiformes (guitar fishes) formed a sister group to all other batoids.  相似文献   

12.
Examination of latitudinal patterns in species richness, size, and distributional range of East Atlantic fish, based on a compilation of data encompassing the full latitudinal and depth distribution of 1746 East Atlantic fish species, showed that species richness declined towards higher latitudes at a rate of c 1 % of the number of species present, in five-degree bands, for each degree of latitude for both teleosts and elasmobranchs, regardless of habitat However, the latitudinal patterns in maximum fish size and latitudinal range differed between teleosts and elasmobranchs, and changed with habitat No clear evidence was obtained that the latitudinal range occupied increased with latitude, indicating that Rapoport's rule does not apply to E Atlantic fishes Rather, the latitudinal patterns in species richness, size, and distributional range of benthic Atlantic fish were depth-dependent, because species richness, average maximum size, and the average latitudinal range increased with depth and declined with latitude The importance of accounting for this depth-latitude covariation in the distribution of marine fish demonstrated here, together with recent evidence obtained for deep-sea benthic macrofauna, points to depth and latitude as the main factors in the distribution of marine animals  相似文献   

13.
Parthenogenesis has been documented in all major jawed vertebrate lineages except mammals and cartilaginous fishes (class Chondrichthyes: sharks, batoids and chimeras). Reports of captive female sharks giving birth despite being held in the extended absence of males have generally been ascribed to prior matings coupled with long-term sperm storage by the females. Here, we provide the first genetic evidence for chondrichthyan parthenogenesis, involving a hammerhead shark (Sphyrna tiburo). This finding also broadens the known occurrence of a specific type of asexual development (automictic parthenogenesis) among vertebrates, extending recently raised concerns about the potential negative effect of this type of facultative parthenogenesis on the genetic diversity of threatened vertebrate species.  相似文献   

14.
A review of past behavioral ultrasonic telemetry studies of sharks and rays is presented together with previously unpublished material on the behavior of the lemon shark, Negaprion brevirostris, around the Bimini Islands, Bahamas. The review, focusing on movement behaviors of 20 shark and three ray species, reveals that elasmobranchs exhibit a variety of temporal and spatial patterns in terms of rates-of-movement and vertical as well as horizontal migrations. The lack of an apparent pattern in a few species is probably attributable to the scarcity of tracking data. Movements are probably governed by several factors, some still not studied, but data show that food, water temperature, bottom type, and magnetic gradient play major roles in a shark's decision of where and when to swim. A few species exhibit differences in behavior between groups of sharks within the same geographical area. This interesting finding warrants further research to evaluate the causes of these apparent differences and whether these groups constitute different subpopulations of the same species. The lack of telemetry data on batoids and some orders of sharks must be addressed before we can gain a more comprehensive understanding of the behavior of elasmobranch fishes. Previously unpublished data from 47 smaller and 38 larger juvenile lemon sharks, collected over the decade 1988–1998, provide new results on movement patterns, habitat selection, activity rhythms, swimming speed, rate-of-movement, and homing behavior. From these results we conclude that the lemon shark is an active predator with a strong, apparently innate homing mechanism. This species shows ontogenetic differences in habitat selection and behavior, as well as differences in movements between groups of individuals within the same area. We suggest three hypotheses for future research on related topics that will help to understand the enigmatic behavior of sharks.  相似文献   

15.
Shark and ray (elasmobranch) dentitions are well known for their multiple generations of teeth, with isolated teeth being common in the fossil record. However, how the diverse dentitions characteristic of elasmobranchs form is still poorly understood. Data on the development and maintenance of the dental patterning in this major vertebrate group will allow comparisons to other morphologically diverse taxa, including the bony fishes, in order to identify shared pattern characters for the vertebrate dentition as a whole. Data is especially lacking from the Batoidea (skates and rays), hence our objective is to compile data on embryonic and adult batoid tooth development contributing to ordering of the dentition, from cleared and stained specimens and micro-CT scans, with 3D rendered models. We selected species (adult and embryonic) spanning phylogenetically significant batoid clades, such that our observations may raise questions about relationships within the batoids, particularly with respect to current molecular-based analyses. We include developmental data from embryos of recent model organisms Leucoraja erinacea and Raja clavata to evaluate the earliest establishment of the dentition. Characters of the batoid dentition investigated include alternate addition of teeth as offset successional tooth rows (versus single separate files), presence of a symphyseal initiator region (symphyseal tooth present, or absent, but with two parasymphyseal teeth) and a restriction to tooth addition along each jaw reducing the number of tooth families, relative to addition of successor teeth within each family. Our ultimate aim is to understand the shared characters of the batoids, and whether or not these dental characters are shared more broadly within elasmobranchs, by comparing these to dentitions in shark outgroups. These developmental morphological analyses will provide a solid basis to better understand dental evolution in these important vertebrate groups as well as the general plesiomorphic vertebrate dental condition.  相似文献   

16.
Whitney Preisser 《Ecography》2019,42(7):1315-1330
The latitudinal diversity gradient (LDG), or the trend of higher species richness at lower latitudes, has been well documented in multiple groups of free‐living organisms. Investigations of the LDG in parasitic organisms are comparatively scarce. Here, I investigated latitudinal patterns of parasite diversity by reviewing published studies and by conducting a novel investigation of the LDG of helminths (parasitic nematodes, trematodes and cestodes) of cricetid rodents (Rodentia: Cricetidae). Using host–parasite records from 175 parasite communities and 60 host species, I tested for the presence and direction of a latitudinal pattern of helminth richness. Additionally, I examined four abiotic factors (mean annual temperature, annual precipitation, annual temperature range and annual precipitation range) and two biotic variables (host body mass and host diet) as potential correlates of parasite richness. The analyses were performed with and without phylogenetic comparative methods, as necessary. In this system, helminths followed the traditional LDG, with increasing species richness with decreasing latitude. Nematode richness appeared to drive this pattern, as cestodes and trematodes exhibited a reverse LDG and no latitudinal pattern, respectively. Overall helminth richness and nematode richness were higher in areas with higher mean annual temperatures, annual precipitation and annual precipitation ranges and lower annual temperature ranges, characteristics that often typify lower latitudes. Cestode richness was higher in areas of lower mean annual temperatures, annual precipitation and annual precipitation ranges and higher annual temperature ranges, while trematode richness showed no relationship with climate variables when phylogenetic comparative methods were used. Host diet was significantly correlated with cestode and trematode species richness, while host body mass was significantly correlated with nematode species richness. Results of this study support a complex association between parasite richness and latitude, and indicate that researchers should carefully consider other factors when trying to understand diversity gradients in parasitic organisms.  相似文献   

17.
Batoids (Chondrichthyes: Batoidea) are a diverse group of cartilaginous fishes which comprise a monophyletic sister lineage to all neoselachians or modern sharks. All species in this group possess anteroposteriorly expanded‐pectoral fins, giving them a unique disc‐like body form. Reliance on pectoral fins for propulsion ranges from minimal (sawfish) to almost complete dependence (skates and rays). A recent study on the diversity of planform pectoral fin shape in batoids compared overall patterns of morphological variation within the group. However, inconsistent pectoral homology prevented the study from accurately representing relationships within and among major batoid taxa. With previous work in mind, we undertook an independent investigation of pectoral form in batoids and evaluated the implications of shape diversity on locomotion and lifestyle, particularly in the skates (Rajoidei) and rays (Myliobatoidei). We used geometric morphometrics with sliding semilandmarks to analyze pectoral fin outlines and also calculate fin aspect ratios (AR), a functional trait linked to locomotion. In agreement with previous work, our results indicated that much of the evolution of batoid pectoral shape has occurred along a morphological axis that is closely related to AR. For species where kinematic data were available, both shape and AR were associated with swimming mode. This work further revealed novel patterns of shape variation among batoids, including strong bimodality of shape in rays, an intermediate location of skate species in the morphospace between benthic/demersal and pelagic rays, and approximately parallel shape trajectories in the benthic/demersal rays and skates. Finally, manipulation of landmarks verified the need for a consistent and accurate definition of homology for the outcome and efficacy of analyses of pectoral form and function in batoids. J. Morphol. 277:482–493, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

18.
The Peruvian sea represents one of the most productive ocean ecosystems and possesses one of the largest elasmobranch fisheries in the Pacific Ocean. Ecosystem-based management of these fisheries will require information on the trophic ecology of elasmobranchs. This study aimed to understand the diet, trophic interactions and the role of nine commercial elasmobranch species in northern Peru through the analysis of stomach contents. A total of 865 non-empty stomachs were analysed. Off northern Peru, elasmobranchs function as upper-trophic-level species consuming 78 prey items, predominantly teleosts and cephalopods. Two distinctive trophic assemblages were identified: (a) sharks (smooth hammerhead shark Sphyrna zygaena, thresher shark Alopias spp. and blue shark Prionace glauca) that feed mainly on cephalopods in the pelagic ecosystem; and (b) sharks and batoids (Chilean eagle ray Myliobatis chilensis, humpback smooth-hound Mustelus whitneyi, spotted houndshark Triakis maculata, Pacific guitarfish Pseudobatos planiceps, copper shark Carcharhinus brachyurus and school shark Galeorhinus galeus) that feed mainly on teleosts and invertebrates in the benthonic and pelagic coastal ecosystem. This study reveals for the first time the diet of T. maculata and the importance of elasmobranchs as predators of abundant and commercial species (i.e., jumbo squid Dosidicus gigas and Peruvian anchovy Engraulis ringens). The results of this study can assist in the design of an ecosystem-based management for the northern Peruvian sea and the conservation of these highly exploited, threatened or poorly understood group of predators in one of the most productive marine ecosystems.  相似文献   

19.
We studied patterns of phylogenetic and compositional diversity of fleas parasitic on small mammals and asked whether these patterns are affected by environmental variation or evolutionary/historical processes. We considered environmental variation via both off‐host (air temperature, precipitation, the amount of green vegetation, latitude) and host‐associated (phylogenetic and species composition) environments. The indicators of evolutionary/historical processes were phylogenetic and compositional uniqueness estimated via phylogenetic or compositional, respectively, β‐diversity of either fleas or hosts. We found that phylogenetic uniqueness of flea assemblages was the main predictor of their phylogenetic diversity in all realms. In addition, host phylogenetic diversity and uniqueness played also some role in the Palearctic, whereas the effect of the off‐host environment was either extremely weak or absent. Compositional diversity of fleas was consistently affected by compositional diversity of hosts in all realms except the Neotropics. The effect of the off‐host environment on compositional flea diversity was substantial in all realms except the Palearctic. No effect of latitude on either metric of flea diversity was found. We conclude that phylogenetic diversity of fleas is driven mainly by evolutionary/historical processes, whereas drivers of their compositional diversity are associated with current ecological conditions.  相似文献   

20.
The dominant view of the phylogeny of living elasmobranchs, based on morphological characters, is that batoids (skates and rays) are derived sharks, joined with saw sharks, and angel sharks in the clade Hypnosqualea [S. Shirai, Squalean Phylogeny: A New Framework of 'Squaloid' Sharks and Related Taxa, Hokkaido University Press, Sapporo, 1992]. By contrast, a recent molecular-phylogenetic study based on mitochondrial genes for 12S and 16S rRNA and tRNA valine [C.J. Douady et al., Mol. Phylogenet. Evol., 26 (2003) 215-221] supported the older view that batoids and sharks are separate lineages. Here, we tested these two different views using combined, nuclear large-subunit and small-subunit rRNA gene sequences ( approximately 5.3kb) from 22 elasmobranchs, two chimeras, and two bony fishes. We used maximum likelihood, maximum parsimony, minimum evolution, and Bayesian inference for tree reconstruction, and found the large-subunit rRNA gene to contain far more signal than the small-subunit gene for resolving this mostly Mesozoic radiation. Our findings matched those of in separating batoids from sharks and in statistically rejecting Hypnosqualea. The angel shark (Squatina) was the sister group to squaliforms (dogfish sharks), and our findings are consistent with the idea that "orbitostylic" sharks form a monophyletic group (squaliforms+the hexanchiform Chlamydoselachus+Squatina+Pristiophorus). In the galeomorph sharks, however, lamniforms grouped with orectolobiforms, opposing the widely accepted 'lamniform+carcharhiniform' grouping. A tree based on the mitochondrial gene for cytochrome b also supported a separation of sharks and batoids, in contrast to Hypnosqualea. Among elasmobranchs, variation in the evolutionary rates of the nuclear rRNA genes was higher than that of cytochrome b genes, mainly due to the relatively rapid evolution of rRNA in some carcharhiniforms. In conclusion, several different molecular studies now refute the Hypnosqualea hypothesis of elasmobranch interrelationships.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号