首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ephemeral rivers and the vegetation they support have numerous ecological and economic values to the mammals and people who rely on these systems. Yet, these crucial environments are believed to be threatened by exotic plant invasion. In Africa, invasive trees of the genus Prosopis have detrimental effects on native vegetation, bird and dung beetle communities; however, to date, there is no evidence that Prosopis establishment has affected indigenous wild mammalian distribution and ecology in its introduced range. Using a combination of camera traps and vegetation surveys, we tested the hypothesis that Prosopis invasion has a negative impact on the mammals of the ephemeral Swakop River in Namibia by reducing mammal species richness and species occupancies. Prosopis was found to have no negative impact on species richness; however, evidence for species‐specific responses to Prosopis abundance was found. This is the first study to confirm an impact of Prosopis on sub‐Saharan African mammals, providing a foundation for future research and the development of appropriate management policy.  相似文献   

2.
Continental tropical ecosystems are generally viewed as less vulnerable to biological invasions than island ones. Their apparent resistance to invasive alien species is often attributed to their higher native biota diversity and complexity. However, with the increase of human activities and disturbances and the accelerate rate of introductions of plant species, these apparently resilient continental ecosystems are now experiencing alien plant naturalization and invasion events. In order to illustrate this emergent phenomenon, we compiled a list of all known introduced and naturalized plant species in French Guiana (Guiana Shield, South America). A total of 490 alien plants were recorded, about 34% of which are currently naturalized, mainly species belonging to the Acanthaceae and Fabaceae (Faboideae) in the Eudicotyledons, and Poaceae (grasses) and Arecaceae (palms) in the Monocotyledons. The coastal dry and wet savannas appears to be vulnerable to plant invasion (with 165 naturalized species, about 34% of the alien flora), especially by Acacia mangium (Mimosaceae) and Melaleuca quinquenervia (Myrtaceae) which are forming localized but dense monotypic stands. Both tree species, intentionnally introduced for reforestation, rehabilitation, and as garden ornamentals and have the potential to spread with increasing human disturbances The number and abundance of naturalized alien plants in the relatively undisturbed tropical lowland rainforests and savannas remains still very low. Therefore, surveillance, early detection, and eradication of potential plant invaders are crucial; moreover collaboration with neighbouring countries of the Guiana Shield is essential to prevent the introduction of potentially invasive species which are still not present in French Guiana.  相似文献   

3.
1. At the higher taxonomic levels Psylloidea have largely co‐evolved with their host plants, and the colonisations of new plant lineages have been relatively few. The mechanisms that have constrained the evolution of host relationships throughout the history of this superfamily are not understood. The host relationships of Prosopidopsylla flava were studied in order to identify possible genetic or ecological constraints to macroevolutionary change in host range, using methodology developed for the host specificity testing of potential biological control agents. 2. The five Prosopis taxa (Leguminosae) tested appeared to be indistinguishable as hosts. Adult feeding required for survival, and for the initiation and continuation of egg production, was specific to Prosopis species. Oviposition occurred on 57 of the 58 non‐Prosopis plant species tested within the Leguminosae and Rosaceae, and was highest on plant species that belonged to the same subfamily. Eggs were inserted into plant tissue by their peduncle but hatched independently of host species. Complete development was restricted to Prosopis, although some early nymphal development was observed on species within the same subfamily as Prosopis (Mimosoideae). 3. Multiple phylogenetic constraints restrict host selection and utilisation by P. flava to Prosopis species, implying a long association between insect and host. Specificity of adult feeding was of special significance, being required for survival, oogenesis, and probably indirectly determining the oviposition host. This supports the hypothesis that genetically set limits in particular aspects of life history are responsible for the inability of some psyllids to readily colonise new plant lineages, rather than stabilising selection.  相似文献   

4.
The genus Prosopis (Leguminosae, Mimosoideae), comprises 44 species widely distributed in arid and semi-arid zones. Prosopis pallida (Humb. & Bonpl. ex Willd.) Kunth and P. juliflora (Sw.) DC. are the two species that are truly tropical apart from P. africana, which is native to tropical Africa (Pasiecznik et al. 2004), and they have been introduced widely beyond their native ranges. However, taxonomic confusion within the genus has hampered exploitation and better management of the species. The present study focusses primarily on evaluating the genetic relationship between Prosopis species from the section Algarobia, containing most species of economic importance, though P. tamarugo from section Strombocarpa is also included for comparison. In total, 12 Prosopis species and a putative P. pallida × P. chilensis hybrid were assessed for their genetic relationships based on RAPD markers and microsatellite transferability. The results show that P. pallida and P. juliflora are not closely related despite some morphological similarity. Evidence also agrees with previous studies which suggest that the grouping of series in section Algarobia is artificial.  相似文献   

5.
Predicting the probability of successful establishment of plant species by matching climatic variables has considerable potential for incorporation in early warning systems for the management of biological invasions. We select South Africa as a model source area of invasions worldwide because it is an important exporter of plant species to other parts of the world because of the huge international demand for indigenous flora from this biodiversity hotspot. We first mapped the five ecoregions that occur both in South Africa and other parts of the world, but the very coarse definition of the ecoregions led to unreliable results in terms of predicting invasible areas. We then determined the bioclimatic features of South Africa's major terrestrial biomes and projected the potential distribution of analogous areas throughout the world. This approach is much more powerful, but depends strongly on how particular biomes are defined in donor countries. Finally, we developed bioclimatic niche models for 96 plant taxa (species and subspecies) endemic to South Africa and invasive elsewhere, and projected these globally after successfully evaluating model projections specifically for three well‐known invasive species (Carpobrotus edulis, Senecio glastifolius, Vellereophyton dealbatum) in different target areas. Cumulative probabilities of climatic suitability show that high‐risk regions are spatially limited globally but that these closely match hotspots of plant biodiversity. These probabilities are significantly correlated with the number of recorded invasive species from South Africa in natural areas, emphasizing the pivotal role of climate in defining invasion potential. Accounting for potential transfer vectors (trade and tourism) significantly adds to the explanatory power of climate suitability as an index of invasibility. The close match that we found between the climatic component of the ecological habitat suitability and the current pattern of occurrence of South Africa alien species in other parts of the world is encouraging. If species' distribution data in the donor country are available, climatic niche modelling offers a powerful tool for efficient and unbiased first‐step screening. Given that eradication of an established invasive species is extremely difficult and expensive, areas identified as potential new sites should be monitored and quarantine measures should be adopted.  相似文献   

6.
外来物种的归化和入侵对全球环境和社会发展造成了严重影响,已成为当今各国生物多样性管理和生态保护中所面临的全球性问题。我国是遭受外来入侵危害最为严重的国家之一,在外来物种入侵的预警、管理和治理等方面形势严峻。基于野外调查和文献研究,该文报道了苋科(广义)入侵植物墙生藜[Chenopodiastrum murale(L.) S. Fuentes, Uotila&Borsch]在中国的新记录。墙生藜原产于地中海地区,现已扩散到欧洲、美洲、非洲和大洋洲的40多个国家,是一种危害较大的外来入侵植物,同时也是我国海关和检验检疫部门明确规定禁止入境的检疫性有害生物,现于云南省昆明市呈贡区发现该外来入侵植物。该文对其形态特征进行了详细描述,简要介绍了其分类历史,并提供了可供鉴定比对的野外生态照片;此外,对墙生藜可能的传入途径进行了分析,对其危害和风险作了简要评估。该物种的新发现说明我国外来入侵生物的本底调查还存在不足。  相似文献   

7.
Prevention is the best way to slow the escalation of problems associated with biological invasions. Screening of potential introductions is widely applied for assessing the risk of species becoming invasive. Despite advances in the understanding of the determinants of invasiveness, screening still relies heavily on assessments of the potential of species to ‘fit in’ to the broad environmental conditions of a target region. Most screening systems ask whether species are native to, or are known to be naturalized or invasive in, regions with ‘similar’ climatic/environmental conditions to the target region. The level of similarity required to make the species a high‐risk introduction is generally not specified. This paper describes a protocol for making such assessments more objective, using South Africa as a test case. Using nonparametric niche‐based modelling (generalized additive model; GAM) calibrated on the current distribution of each South African biome, we mapped regions of the world that are climatically similar to South African biomes. Lists were produced of countries with the largest areas climatically similar to South Africa overall, and to each biome separately. Validation of the usefulness of the approach was sought by evaluating whether the main invasive plant species in South African biomes occur naturally, or have adventive ranges, in regions mapped as analogous to South African biomes. A very large part of the world is climatically similar to South Africa, with eight countries having larger areas of land classified as climatically similar to South African biomes than the total area of South Africa. Almost all the most prominent invasive species in South African biomes occur naturally or are invasive outside their natural range in areas with similar climates to those that occur in parts of South Africa. This confirms the value of objective climate matching in screening protocols. We examined climatic conditions for a representative sample of major invasive plants from other parts of the world. The analysis identified several species that are already invasive in regions that have matched climates in South Africa but that are not yet introduced or, if already present, have not yet invaded large areas. For example, the following known invasive species should be considered high‐risk species in South African grasslands: Alliaria petiolata, Cytisus scoparius, Gleditsia triacanthos, Heracleum mantegazzianum, Hieracium pilosella, Juniperus communis, Pinus contorta, P. monticola, P. ponderosa, P. sylvestris, Prunus laurcerasus, and P. serotina. Objectively matched climatic regions are also useful as a first‐cut assessment when evaluating species with no invasive history.  相似文献   

8.
Fynbos is a vegetation type in the Cape Floral Region (CFR), at the southern tip of Africa. Portions of the CFR are recognised as a ‘serial’ World Heritage site and acclaimed by UNESCO as the world’s ‘hottest hot spot’ for plant species richness and endemism. Habitat degradation and species losses through human intrusion in the CFR include transformations brought about by introduced invasive alien tree species. Since 1970, ten invasive tree species in the fynbos biome have been subjected to biological control, namely: six Acacia species and Paraserianthes lophantha (Mimosaceae), Hakea sericea (Proteaceae) and Leptospermum laevigatum (Myrtaceae), all from Australia, and Sesbania punicea (Fabaceae) from South America. A total of 19 species have been deployed as biological control agents, including nine weevil species (eight Curculionidae and one species in the family Brentidae: Apioninae), a seed-feeding moth species (Lepidoptera: Carposinidae), two species of bud-gallers (Hymenoptera: Pteromalidae), two species of flower-gallers (Diptera: Cecidomyiidae), and a gall-forming rust fungus (Uredinales: Pileolariaceae). Most of these agents primarily reduce seed production, directly or indirectly, but some also cause die-back and mortality of their host plants. The overall result, often in combination with mechanical clearing and herbicide applications, has been a substantial decline in the abundance and/or aggressiveness of most of the targeted host-plants. In this review, four representative but contrasting case studies are used to show that biological control is an indispensible supplement to other management practices for long-term conservation of the remnants of the fynbos biome.  相似文献   

9.
In recent years, an increasing number of distribution maps of invasive alien plant species (IAPS) have been published using different machine learning algorithms (MLAs). However, for designing spatially explicit management strategies, distribution maps should include information on the local cover/abundance of the IAPS. This study compares the performances of five MLAs: gradient boosting machine in two different implementations, random forest, support vector machine and deep learning neural network, one ensemble model and a generalized linear model; thereby identifying the best‐performing ones in mapping the fractional cover/abundance and distribution of IPAS, in this case called Prosopis juliflora (SW. DC.). Field level Prosopis cover and spatial datasets of seventeen biophysical and anthropogenic variables were collected, processed, and used to train and validate the algorithms so as to generate fractional cover maps of Prosopis in the dryland ecosystem of the Afar Region, Ethiopia. Out of the seven tested algorithms, random forest performed the best with an accuracy of 92% and sensitivity and specificity >0.89. The next best‐performing algorithms were the ensemble model and gradient boosting machine with an accuracy of 89% and 88%, respectively. The other tested algorithms achieved comparably low performances. The strong explanatory variables for Prosopis distributions in all models were NDVI, elevation, distance to villages and distance to rivers; rainfall, temperature, near‐infrared and red reflectance, whereas topographic variables, except for elevation, did not contribute much to the current distribution of Prosopis. According to the random forest model, a total of 1.173 million ha (12.33% of the study region) was found to be invaded by Prosopis to varying degrees of cover. Our findings demonstrate that MLAs can be successfully used to develop fractional cover maps of plant species, particularly IAPS so as to design targeted and spatially explicit management strategies.  相似文献   

10.
Several Prosopis species were introduced into South Africa in the last century. Since then two species, Prosopis glandulosa var. torreyana and Prosopis velutina have invaded large parts of arid southern Africa. Here, we examine the extent to which increased mortality of Acacia erioloba, a keystone species in the Kalahari Desert, can be attributed to competition for water with Prosopis. We do this for A. erioloba and Prosopis sp. at invaded, as well as cleared sites through a determination of species abundance, canopy vitality, plant water stress and plant water source. Our stable isotope results show that in the riparian zone both A. erioloba and Prosopis are using the same water source. Our results also show that there is a 50 % increase in canopy dieback of A. erioloba in the invaded river plots relative to the cleared river plots. This dieback cannot be related to changes in rainfall and temperature as there were no adverse fluctuations (drought) in the weather in the 10 years preceding our study. We speculate that because A. erioloba is more water stressed in the invaded river plot this increase in mortality and dieback is related to plant moisture stress that is not related to climate but to competition for water with Prosopis. Our study gives strong support for the eradication of Prosopis from rivers in arid parts of Southern Africa.  相似文献   

11.
Mozena obtusa Uhler (Heteroptera: Coreidae) was examined in quarantine for its potential as a biological control agent of Prosopis species (mesquite) in Australia. Trials were conducted on 16 nontarget plant species to estimate its developmental host range. Complete development occurred on all Prosopis species that have become naturalized in Australia as well as on four Australian native species (Neptunia species and Paraserianthes lophantha), although reproductive diapause prevented assessment of subsequent fecundity. Development through the first feeding nymphal instar also occurred on other plant species representing two subfamilies. Nymphal performance was highly variable on both target and nontarget species, possibly because variation in plant nitrogen composition affected plant quality. The correlation between environment, plant nitrogen, and plant quality is likely to be sufficiently strong to determine whether a plant species can support development. Plant quality should therefore be considered when predicting the field host range of M. obtusa and of sap-sucking coreids generally. Nonetheless, our preliminary results suggest that M. obtusa may not be sufficiently specific for release in Australia, although insufficient understanding of its oviposition behavior in the field and the effect of plant quality on development means that its rejection would be premature.  相似文献   

12.
Abstract. Invasive plants are considered to be a major threat to the earth's biodiversity, but have not been sufficiently investigated. To address this problem a relational database on invasive woody plants has been set up. It is based on 2045 bibliographical references and contains records on 653 species representing 110 families. The families with the largest number of invasive species are: Rosaceae, Mimosaceae, Papilionaceae and Pinaceae. Out of 1060 recorded invasive events an equal number are reported from continents and oceanic islands. The highest number of invasive woody species are recorded from Europe, followed by the Pacific islands, North America, New Zealand, Australia, Indian Ocean islands and southern Africa. Included in these regions are areas which have fewer highly invasive species, e.g. islands on continental shelves, such as the British Isles. Although most invasions occur in disturbed habitats, most natural communities are susceptible to woody plant invasions. Data on species attributes are only available for a minority of species but indicate that invasive woody plant species may be either insect or wind-pollinated, have a wide array of fruit types, fruit and seed sizes, number of seeds per fruit and dispersal agents. The relative frequency of several attributes varies with the degree of invasiveness. Thus it is not yet possible to determine which set of attributes favours invasiveness and therefore it is difficult to make predictions.  相似文献   

13.
Abstract

Prevention and early detection are considered to be the most effective means of managing non-native invasive species that have serious ecological and economic impacts. Consequently, the study of those taxa that are still in an early stage of invasion but are highly likely to spread and to have a significant adverse impact in future is becoming an increasingly important issue in both the research on and management of invasive species. In Italy, one such species is Arctotheca calendula (L.) Levyns, a herbaceous plant of the Asteraceae family that is native to South Africa. Here, we present an overview of current knowledge on the distribution and potential impacts of this species in Italy, and we outline some features that are crucial to understanding and preventing its invasive spread.  相似文献   

14.
Perennial grasses are promising candidates for bioenergy crops, but species that can escape cultivation and establish self‐sustaining naturalized populations (feral) may have the potential to become invasive. Fertile Miscanthus × giganteus, known as “PowerCane,” is a new potential biofuel crop. Its parent species are ornamental, non‐native Miscanthus species that establish feral populations and are sometimes invasive in the USA. As a first step toward assessing the potential for “PowerCane” to become invasive, we documented its growth and fecundity relative to one of its parent species (Miscanthus sinensis) in competition with native and invasive grasses in common garden experiments located in Columbus, Ohio and Ames, Iowa, within the targeted range of biofuel cultivation. We conducted a 2‐year experiment to compare growth and reproduction among three Miscanthus biotypes—”PowerCane,” ornamental M. sinensis, and feral M. sinensis—at two locations. Single Miscanthus plants were subjected to competition with a native grass (Panicum virgatum), a weedy grass (Bromus inermis), or no competition. Response variables were aboveground biomass, number of shoots, basal area, and seed set. In Iowa, all Miscanthus plants died after the first winter, which was unusually cold, so no further results are reported from the Iowa site. In Ohio, we found significant differences among biotypes in growth and fecundity, as well as significant effects of competition. Interactions between these treatments were not significant. “PowerCane” performed as well or better than ornamental or feral M. sinensis in vegetative traits, but had much lower seed production, perhaps due to pollen limitation. In general, ornamental M. sinensis performed somewhat better than feral M. sinensis. Our findings suggest that feral populations of “PowerCane” could become established adjacent to biofuel production areas. Fertile Miscanthus × giganteus should be studied further to assess its potential to spread via seed production in large, sexually compatible populations.  相似文献   

15.
Macfadyena unguis-cati (L.) Gentry (Bignoniaceae) was introduced as an ornamental in South Africa, but is fast becoming an important invasive plant in many areas. It is difficult to control the plant chemically and mechanically. The first biocontrol agent, the chrysomelid Charidotis auroguttata (Boheman), has been released. It established at some release sites, but numbers have so far remained low. Additional biocontrol agents were sought to augment C. auroguttata. The potential host ranges of two foliage feeding lace bugs, Carvalhotingis visenda (Drake and Hambleton) and C. hollandi (Drake) (Hemiptera: Tingidae) were evaluated on the basis of nymphal no-choice and adult multi-choice tests involving 23 plant species in 11 families. In no-choice tests, nymphs of both species were able to survive and complete development on M. unguis-cati only, and adults of both species only fed and oviposited on M. unguis-cati during the adult multi-choice tests. Host specificity tests thus confirm that the tingids are highly host specific biocontrol agents, and will not pose risk to any non-target plants in South Africa. A study to determine the potential impact of C. hollandi nymphal feeding on M. unguis-cati showed a significant decrease in the chlorophyll contents of leaves when compared to those of control plants. These studies indicate that, once released, the two lace bug species could contribute significantly to the biological control of M. unguis-cati in South Africa.  相似文献   

16.
For more than 100 years, classical biological control of invasive plants through screening, introducing and releasing of host-specific natural enemies from native regions has been regarded as one of the promising approaches to the management of invasive plants. Many invasive plants in the United States of America are native to China, and vice versa. China and the USA also share a number of invasive plant species, including water hyacinth (Eichhornia crassipes), alligator weed (Alternanthera philoxeroides) and cordgrass (Spartina spp.). Collaboration between the two countries on biological control benefits both the nations by reciprocal opportunities to research and exchange natural enemies, by exchanging information on common invasive species, and by providing training for students and professionals. Here we review the history of collaboration between China and the US on biological control of more than 20 invasive plants. Current collaborative projects associated with four plant species, Polygonum perfoliatum L., Trapa natans L. Pueraria montana (Lour.) Merr. var. lobata and Ailanthus altissima (Mill.) Swingle, are also covered. We prioritize 14 invasive plants as targets for future collaborative biological control based on information on their importance in introduced areas, natural enemy records, and their potential biocontrol risk to introduced ecosystems. They are: Ampelopsis brevipendunculata, Celastrus orbiculatus, Dioscorea oppositifolia, Euonymus alata, Euonymus fortunei, Ligustrum sinense, Melia azedarach, Paulownia tomentosa, Sapium sebiferum and Ulmus pumila for the US, as well as Spartina alterniflora, Ambrosia artemisiifolia, Ambrosia trifida and Solidago canadensis for China. In addition, we emphasize that we must very carefully consider any potential non-target effect when we intend to introduce and release new natural enemies. We anticipate that the high priority both countries have placed on control of invasive plants will stimulate increasing collaboration on biological control.  相似文献   

17.
Many native communities contain exotic plants that pose a major threat to indigenous vegetation and ecosystem functioning. Therefore the enemy release hypothesis (ERH) and biotic resistance hypothesis (BRH) were examined in relation to the invasiveness of the introduced dune grass Ammophila arenaria in South Africa. To compare plant–soil feedback from the native habitat in Europe and the new habitat in South Africa, plants were grown in their own soil from both Europe and South Africa, as well as in sterilised and non-sterilised soils from a number of indigenous South African foredune plant species. While the soil feedback of most plant species supports the ERH, the feedback from Sporobolus virginicus soil demonstrates that this plant species may contribute to biotic resistance against the introduced A. arenaria, through negative feedback from the soil community. Not only the local plant species diversity, but also the type of plant species present seemed to be important in determining the potential for biotic resistance. As a result, biotic resistance against invasive plant species may depend not only on plant competition, but also on the presence of plant species that are hosts of potential soil pathogens that may negatively affect the invaders. In conclusion, exotic plant species such as A. arenaria in South Africa that do not become highly invasive, may experience the ERH and BRH simultaneously, with the balance between enemy escape versus biotic resistance determining the invasiveness of a species in a new habitat.Plant nomenclature follows Arnold and De Wet (1993)  相似文献   

18.
The genus Prosopis contains many valuable, long-lived, multi-purpose legume trees, some of which are also invasive species. The time of first flowering is important for increasing production of sweet, protein-rich pods in plantations, especially under short rotations, and affects the rate of spread as a weed. Trees generally begin flowering at 3–5 years of age. However, seedlings from a small seedlot collected from an introduced population in southern Mauritania were observed to begin flowering at 3–4 months after germination. This is unknown in the native range of any Prosopis species, and appears to represent a major evolutionary event triggered after naturalization. This paper reports a detailed investigation with seed collected from Aleg, Brakna region, Mauritania, in 1998 (Prosopis sp. ‘Aleg’). Two experiments were established, in glasshouses at Cirad, Montpellier, France, and Coventry University, UK. Flowering began at the two sites 104 and 169 days after sowing, respectively, and 97.5% of plants had flowered at Coventry after 306 days. Flowers produced abundant pollen with 50–60% viability indicated by FDA staining and 40–50% germination on an artificial medium. No pods were formed. All plants analysed were diploid. Morphologically, these juvenile plants were similar to American species of section Algarobia, and exhibited leaf characters typical of P. pallida. However, due to the large variation in morphology within this section of the genus, further studies are required to confirm the actual species. This is the first record of precocious flowering in Prosopis, and has been found only in a single, introduced population. Implications for genetic improvement of tropical Prosopis, and particularly the spread of these species as invasive weeds, are discussed. Such a life history shift in the increased reproductive ability of a species following introduction, with potentially significant environmental effects, may not be restricted to Prosopis and merits further detailed investigation.  相似文献   

19.
Abstract. Prosopis glandulosa var. glandulosa has played a central role in the encroachment of woody plants in southern Texas, grasslands and savannas by acting as a nurse plant for various shrubs that establish in its understory. To test for continued facilitation of established understory shrubs by Prosopis and to determine if established shrubs compete with the Prosopis nucleus, selective removal experiments were conducted and monitored over a 2–5 yr period. Short-term (1–3 days) and long-term (2 yr) growth and physiological activities (midday net photosynthesis and leaf/shoot water potential) of two common understory shrubs, Zanthoxylum fagara and Berberis trifoliolata, growing with Prosopis, were generally comparable to those of individuals occurring in clusters where Prosopis was removed. Shrubs growing with an intact Prosopis occasionally showed significantly higher leaf-[N] and pre-dawn water potentials than those in clusters lacking a live Prosopis, especially under drought conditions; however, these differences did not translate into greater midday leaf gas exchange or shoot growth. By comparison, removal of understory shrubs elicited large increases in Prosopis net photosynthesis, annual trunk growth in each of the 5 yr monitored, and seed pod production in three of the four years monitored. Seven of 26 Prosopis plants in experimental clusters with an intact understory died over a 5-yr period, compared to only two of the 26 plants in clusters with the cleared understory. Results indicate that (1) the founding overstory Prosopis plant may continue to facilitate understory shrubs following their establishment, but these beneficial effects appear to be small and transitory, and (2) the understory shrubs have a pronounced negative effect on Prosopis, such that competition between overstory and understory woody plants is strongly asymmetrical. These findings suggest that understory shrubs will likely persist despite changes in microclimate and soils (potentially) that occur after the Prosopis plant, which facilitated their ingress or establishment, has died. Soil resource depletion by shallow-rooted understory shrubs appears to be a primary factor contributing to the demise of the deeply rooted, overstory Prosopis plants, especially on upland sites with duplex soils where below-ground competition is accentuated.  相似文献   

20.
Native to Central America, Tecoma stans (L.) Juss ex Kunth var. stans (Bignoniaceae) is a small tree that is invasive in South Africa and neighbouring countries. The plant was targeted for biological control in South Africa in 2003, with two insect agents released and established so far. The root-feeding flea beetle, Heikertingerella sp. (Coleoptera: Galerucinae: Alticini), was imported from Mexico as an additional biocontrol agent and its biology and host specificity was assessed under quarantine conditions. The beetle displayed a generation time (i.e. from adult to adult) of 49 to 67 days, ensuring four annual generations under laboratory conditions. The beetle's larval and adult stages inflicted high levels of damage on the root system and the leaves of T. stans, respectively. No-choice tests with 40 test-plant species revealed adult feeding on only two non-target species, Tecoma × alata and T. capensis (Thunb.) Spach, with feeding four times higher on T. stans. Larvae developed to adulthood on T. stans only. Multi-choice tests involving the three Tecoma species confirmed these trends, demonstrating that Heikertingerella sp. is host specific. Since T. × alata is a hybrid of T. stans with invasive tendencies, any unlikely attacks by Heikertingerella sp. would be inconsequential in South Africa. The native T. capensis, which suffered little leaf damage and produced no F1 adults, is also at minimal risk of attack. We conclude that Heikertingerella sp. is a suitable biocontrol agent for T. stans and that permission for its release in South Africa be sought.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号