首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Moose management throughout much of Alaska and Canada relies on aerial count data, which are commonly collected using the geospatial population estimator (GSPE) protocol. The GSPE uses a model-based analytical approach and finite-population block kriging to estimate abundance from a collection of sampled survey units. Widespread implementation and well-documented analytical software have resulted in reliable estimates of moose abundance, density, and composition across a large proportion of their range. Analysis is conducted almost exclusively using the GSPE software, which fits a fixed model structure to data collected within a single year. The downside of this approach to analysis is that the fixed model structure is inefficient for estimation, leading to more field effort than would otherwise be necessary to achieve a desired level of estimator precision. We developed a more easily modified and flexible Bayesian spatial general additive model approach (BSG) that accommodates spatial and temporal covariates (e.g., habitat characteristics, trend), multiple survey events, prior information, and incomplete detection. Using a series of 6 GSPE surveys conducted in Yukon-Charley Rivers National Preserve, Alaska, USA, from 2003–2019, we established the equivalence of the 2 approaches under similar model structures. We then extended the BSG to demonstrate how a more comprehensive approach to analysis can affect estimator precision and be used to assess ecological relationships. The precision of annual abundance estimators from the BSG were improved by an average of 43% over those based on the standard GSPE analysis, highlighting the very real costs of assuming a fixed (i.e., suboptimal) model structure. The population increased at a rate of 2.3%/year (95% CrI = 0.8–3.8%), and the increase was largely explained by a parallel increase in wildfire extent (i.e., high quality moose habitat). These results suggest that our approach could be used to increase estimator efficiency or decrease future survey costs without any modifications to the basic protocol. While modification of the GSPE software is possible, practitioners may find the BSG approach more convenient for quickly developing model structures for a particular application, thereby allowing them to extract more information from existing and future datasets.  相似文献   

3.
With the increasing interest in large-scale, high-resolution and real-time geographic information system (GIS) applications and spatial big data processing, traditional GIS is not efficient enough to handle the required loads due to limited computational capabilities.Various attempts have been made to adopt high performance computation techniques from different applications, such as designs of advanced architectures, strategies of data partition and direct parallelization method of spatial analysis algorithm, to address such challenges. This paper surveys the current state of parallel GIS with respect to parallel GIS architectures, parallel processing strategies, and relevant topics. We present the general evolution of the GIS architecture which includes main two parallel GIS architectures based on high performance computing cluster and Hadoop cluster. Then we summarize the current spatial data partition strategies, key methods to realize parallel GIS in the view of data decomposition and progress of the special parallel GIS algorithms. We use the parallel processing of GRASS as a case study. We also identify key problems and future potential research directions of parallel GIS.  相似文献   

4.
5.
6.
Flexible multilevel models are proposed to allow for cluster-specific smooth estimation of growth curves in a mixed-effects modeling format that includes subject-specific random effects on the growth parameters. Attention is then focused on models that examine between-cluster comparisons of the effects of an ecologic covariate of interest (e.g. air pollution) on nonlinear functionals of growth curves (e.g. maximum rate of growth). A Gibbs sampling approach is used to get posterior mean estimates of nonlinear functionals along with their uncertainty estimates. A second-stage ecologic random-effects model is used to examine the association between a covariate of interest (e.g. air pollution) and the nonlinear functionals. A unified estimation procedure is presented along with its computational and theoretical details. The models are motivated by, and illustrated with, lung function and air pollution data from the Southern California Children's Health Study.  相似文献   

7.
Volkmer B  Heinemann M 《PloS one》2011,6(7):e23126
Systems biology modeling typically requires quantitative experimental data such as intracellular concentrations or copy numbers per cell. In order to convert population-averaging omics measurement data to intracellular concentrations or cellular copy numbers, the total cell volume and number of cells in a sample need to be known. Unfortunately, even for the often studied model bacterium Escherichia coli this information is hardly available and furthermore, certain measures (e.g. cell volume) are also dependent on the growth condition. In this work, we have determined these basic data for E. coli cells when grown in 22 different conditions so that respective data conversions can be done correctly. First, we determine growth-rate dependent cell volumes. Second, we show that in a 1 ml E. coli sample at an optical density (600 nm) of 1 the total cell volume is around 3.6 μl for all conditions tested. Third, we demonstrate that the cell number in a sample can be determined on the basis of the sample's optical density and the cells' growth rate. The data presented will allow for conversion of E. coli measurement data normalized to optical density into volumetric cellular concentrations and copy numbers per cell--two important parameters for systems biology model development.  相似文献   

8.
In this paper, we consider a piecewise exponential model (PEM) with random time grid to develop a full semiparametric Bayesian cure rate model. An elegant mechanism enjoying several attractive features for modeling the randomness of the time grid of the PEM is assumed. To model the prior behavior of the failure rates of the PEM we assume a hierarchical modeling approach that allows us to control the degree of parametricity in the right tail of the survival curve. Properties of the proposed model are discussed in detail. In particular, we investigate the impact of assuming a random time grid for the PEM on the estimation of the cure fraction. We further develop an efficient collapsed Gibbs sampler algorithm for carrying out posterior computation. A Bayesian diagnostic method for assessing goodness of fit and performing model comparisons is briefly discussed. Finally, we illustrate the usefulness of the new methodology with the analysis of a melanoma clinical trial that has been discussed in the literature.  相似文献   

9.
NetMatch: a Cytoscape plugin for searching biological networks   总被引:3,自引:0,他引:3  
NetMatch is a Cytoscape plugin which allows searching biological networks for subcomponents matching a given query. Queries may be approximate in the sense that certain parts of the subgraph-query may be left unspecified. To make the query creation process easy, a drawing tool is provided. Cytoscape is a bioinformatics software platform for the visualization and analysis of biological networks. AVAILABILITY: The full package, a tutorial and associated examples are available at the following web sites: http://alpha.dmi.unict.it/~ctnyu/netmatch.html, http://baderlab.org/Software/NetMatch.  相似文献   

10.

Background  

With advances in high-throughput genomics and proteomics, it is challenging for biologists to deal with large data files and to map their data to annotations in public databases.  相似文献   

11.
Johnson DS  Hoeting JA 《Biometrics》2003,59(2):341-350
In this article, we incorporate an autoregressive time-series framework into models for animal survival using capture-recapture data. Researchers modeling animal survival probabilities as the realization of a random process have typically considered survival to be independent from one time period to the next. This may not be realistic for some populations. Using a Gibbs sampling approach, we can estimate covariate coefficients and autoregressive parameters for survival models. The procedure is illustrated with a waterfowl band recovery dataset for northern pintails (Anas acuta). The analysis shows that the second lag autoregressive coefficient is significantly less than 0, suggesting that there is a triennial relationship between survival probabilities and emphasizing that modeling survival rates as independent random variables may be unrealistic in some cases. Software to implement the methodology is available at no charge on the Internet.  相似文献   

12.
ABSTRACT: BACKGROUND: Cytoscape is a well-developed flexible platform for visualization, integration and analysis of network data. Apart from the sophisticated graph layout and visualization routines, it hosts numerous user-developed plugins that significantly extend its core functionality. Earlier, we developed a network information flow framework and implemented it as a web application, called ITM Probe. Given a context consisting of one or more user-selected nodes, ITM Probe retrieves other network nodes most related to that context. It requires neither user restriction to subnetwork of interest nor additional and possibly noisy information. However, plugins for Cytoscape with these features do not yet exist. To provide the Cytoscape users the possibility of integrating ITM Probe into their workflows, we developed CytoITMprobe, a new Cytoscape plugin. FINDINGS: CytoITMprobe maintains all the desirable features of ITM Probe and adds additional flexibility not achievable through its web service version. It provides access to ITM Probe either through a web server or locally. The input, consisting of a Cytoscape network, together with the desired origins and/or destinations of information and a dissipation coefficient, is specified through a query form. The results are shown as a subnetwork of significant nodes and several summary tables. Users can control the composition and appearance of the subnetwork and interchange their ITM Probe results with other software tools through tab-delimited files. CONCLUSIONS: The main strength of CytoITMprobe is its flexibility. It allows the user to specify as input any Cytoscape network, rather than being restricted to the pre-compiled protein-protein interaction networks available through the ITM Probe web service. Users may supply their own edge weights and directionalities. Consequently, as opposed to ITM Probe web service, CytoITMprobe can be applied to many other domains of network-based research beyond protein-networks. It also enables seamless integration of ITM Probe results with other Cytoscape plugins having complementary functionality for data analysis.  相似文献   

13.
14.
The development of mobile-health technology has the potential to revolutionize personalized medicine. Biomedical sensors (e.g., wearables) can assist with determining treatment plans for individuals, provide quantitative information to healthcare providers, and give objective measurements of health, leading to the goal of precise phenotypic correlates for genotypes. Even though treatments and interventions are becoming more specific and datasets more abundant, measuring the causal impact of health interventions requires careful considerations of complex covariate structures, as well as knowledge of the temporal and spatial properties of the data. Thus, interpreting biomedical sensor data needs to make use of specialized statistical models. Here, we show how the Bayesian structural time series framework, widely used in economics, can be applied to these data. This framework corrects for covariates to provide accurate assessments of the significance of interventions. Furthermore, it allows for a time-dependent confidence interval of impact, which is useful for considering individualized assessments of intervention efficacy. We provide a customized biomedical adaptor tool, MhealthCI, around a specific implementation of the Bayesian structural time series framework that uniformly processes, prepares, and registers diverse biomedical data. We apply the software implementation of MhealthCI to a structured set of examples in biomedicine to showcase the ability of the framework to evaluate interventions with varying levels of data richness and covariate complexity and also compare the performance to other models. Specifically, we show how the framework is able to evaluate an exercise intervention’s effect on stabilizing blood glucose in a diabetes dataset. We also provide a future-anticipating illustration from a behavioral dataset showcasing how the framework integrates complex spatial covariates. Overall, we show the robustness of the Bayesian structural time series framework when applied to biomedical sensor data, highlighting its increasing value for current and future datasets.  相似文献   

15.
16.
Bayesian hierarchical models usually model the risk surface on the same arbitrary geographical units for all data sources. Poisson/gamma random field models overcome this restriction as the underlying risk surface can be specified independently to the resolution of the data. Moreover, covariates may be considered as either excess or relative risk factors. We compare the performance of the Poisson/gamma random field model to the Markov random field (MRF)‐based ecologic regression model and the Bayesian Detection of Clusters and Discontinuities (BDCD) model, in both a simulation study and a real data example. We find the BDCD model to have advantages in situations dominated by abruptly changing risk while the Poisson/gamma random field model convinces by its flexibility in the estimation of random field structures and by its flexibility incorporating covariates. The MRF‐based ecologic regression model is inferior. WinBUGS code for Poisson/gamma random field models is provided.  相似文献   

17.
Inferring the parentage of a sample of individuals is often a prerequisite for many types of analysis in molecular ecology, evolutionary biology and quantitative genetics. In all but a few cases, the method of parentage assignment is divorced from the methods used to estimate the parameters of primary interest, such as mate choice or heritability. Here we present a Bayesian approach that simultaneously estimates the parentage of a sample of individuals and a wide range of population-level parameters in which we are interested. We show that joint estimation of parentage and population-level parameters increases the power of parentage assignment, reduces bias in parameter estimation, and accurately evaluates uncertainty in both. We illustrate the method by analysing a number of simulated test data sets, and through a re-analysis of parentage in the Seychelles warbler, Acrocephalus sechellensis. A combination of behavioural, spatial and genetic data are used in the analyses and, importantly, the method does not require strong prior information about the relationship between nongenetic data and parentage.  相似文献   

18.
Due to reductions in both time and cost, group testing is a popular alternative to individual-level testing for disease screening. These reductions are obtained by testing pooled biospecimens (eg, blood, urine, swabs, etc.) for the presence of an infectious agent. However, these reductions come at the expense of data complexity, making the task of conducting disease surveillance more tenuous when compared to using individual-level data. This is because an individual's disease status may be obscured by a group testing protocol and the effect of imperfect testing. Furthermore, unlike individual-level testing, a given participant could be involved in multiple testing outcomes and/or may never be tested individually. To circumvent these complexities and to incorporate all available information, we propose a Bayesian generalized linear mixed model that accommodates data arising from any group testing protocol, estimates unknown assay accuracy probabilities and accounts for potential heterogeneity in the covariate effects across population subgroups (eg, clinic sites, etc.); this latter feature is of key interest to practitioners tasked with conducting disease surveillance. To achieve model selection, our proposal uses spike and slab priors for both fixed and random effects. The methodology is illustrated through numerical studies and is applied to chlamydia surveillance data collected in Iowa.  相似文献   

19.

Background

With the growing abundance of microarray data, statistical methods are increasingly needed to integrate results across studies. Two common approaches for meta-analysis of microarrays include either combining gene expression measures across studies or combining summaries such as p-values, probabilities or ranks. Here, we compare two Bayesian meta-analysis models that are analogous to these methods.

Results

Two Bayesian meta-analysis models for microarray data have recently been introduced. The first model combines standardized gene expression measures across studies into an overall mean, accounting for inter-study variability, while the second combines probabilities of differential expression without combining expression values. Both models produce the gene-specific posterior probability of differential expression, which is the basis for inference. Since the standardized expression integration model includes inter-study variability, it may improve accuracy of results versus the probability integration model. However, due to the small number of studies typical in microarray meta-analyses, the variability between studies is challenging to estimate. The probability integration model eliminates the need to model variability between studies, and thus its implementation is more straightforward. We found in simulations of two and five studies that combining probabilities outperformed combining standardized gene expression measures for three comparison values: the percent of true discovered genes in meta-analysis versus individual studies; the percent of true genes omitted in meta-analysis versus separate studies, and the number of true discovered genes for fixed levels of Bayesian false discovery. We identified similar results when pooling two independent studies of Bacillus subtilis. We assumed that each study was produced from the same microarray platform with only two conditions: a treatment and control, and that the data sets were pre-scaled.

Conclusion

The Bayesian meta-analysis model that combines probabilities across studies does not aggregate gene expression measures, thus an inter-study variability parameter is not included in the model. This results in a simpler modeling approach than aggregating expression measures, which accounts for variability across studies. The probability integration model identified more true discovered genes and fewer true omitted genes than combining expression measures, for our data sets.  相似文献   

20.
PURPOSE: The PathVisio-Validator plugin aims to simplify the task of producing biological pathway diagrams that follow graphical standardized notations, such as Molecular Interaction Maps or the Systems Biology Graphical Notation. This plugin assists in the creation of pathway diagrams by ensuring correct usage of a notation, and thereby reducing ambiguity when diagrams are shared among biologists. Rulesets, needed in the validation process, can be generated for any graphical notation that a developer desires, using either Schematron or Groovy. The plugin also provides support for filtering validation results, validating on a subset of rules, and distinguishing errors and warnings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号