首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
祁连山区不同海拔草地群落的物种多样性   总被引:16,自引:2,他引:16  
依据植物在各海拔带出现的频率和不同海拔带植物种的生活型,对祁连山区草地群落海拔2500~3000m的物种α多样性变化特征进行了研究.结果表明,随海拔升高,Shahnon-Wiener指数从1.432上升到1.832,Simpson指数的变化较为复杂.海拔2701~2800m带是物种多样性的一个重要转折点,是物种多样性较丰富的地带.在祁连山草地群落中,有毒的与食性较差的物种在各海拔带所占比例均超过50%,生物量占到整个样地生物量的60%以上,物种多样性已呈现衰退.  相似文献   

3.
In the coastal littoral forest of extreme southeastern Madagascar, westudied tree diameter at breast height (DBH) 10 cm in 20, 50× 50 m plots in each of four forest fragments, andunderstorywoody vegetation (DBH < 10 cm, 1 m tall) in60,10 × 10 m plots in three of the fragments. Oneforestfragment was located in the highly degraded Lokaro region, and three in the nearbySainte-Luce forest. Atotal of 3476 trees, representing 169 species in 55 families, were recorded inthe50 × 50 m plots, and 10282 understory stems, representing195 species in 54 families, were found in the 10 × 10m plots. For each tree, DBH was recorded. Mean tree diameter andpatterns of tree size class distribution did not differ among the four forestfragments. However, the fragments differed significantly in both tree andunderstory stem densities, species richness and diversity values, and familyrichness values, with the Lokaro fragment having the lowest values for allmeasures. Furthermore, floristic patterns, family importance values, and communitysimilarity measures revealed that the species composition at theLokaro fragment was very different from the Sainte-Luce fragments. Anthropogenicdisturbance appears most pronounced in the isolated Lokaro forest, where bioticresources are limited to this single fragment.  相似文献   

4.
Larch forests are important for species diversity, as well as soil and water conservation in mountain regions. In this study, we determined large-scale patterns of species richness in larch forests and identified the factors that drive these patterns. We found that larch forest species richness was high in southern China and low in northern China, and that patterns of species richness along an elevational gradient depend on larch forest type. In addition, we found that patterns of species richness in larch forests are best explained by contemporary climatic factors. Specifically, mean annual temperature and annual potential evapotranspiration were the most important factors for species richness of tree and shrub layers, while mean temperature of the coldest quarter and anomaly of annual precipitation from the Last Glacial Maximum to the present were the most important for that of herb layer and the whole community. Community structural factors, especially stand density, are also associated with the species richness of larch forests. Our findings that species richness in China''s larch forests is mainly affected by energy availability and cold conditions support the ambient energy hypothesis and the freezing tolerance hypothesis.  相似文献   

5.
Syuzo Itow 《Plant Ecology》1988,77(1-3):193-200
Alpha diversity, or species richness, of East Asian mainland evergreen broadleaved forests, expressed by indices of Fisher's alpha () and S(100), a new index showing species number in a 100-individual sample, is significantly correlated with the climatic favorableness, expressed by Kira's warmth index. On the contrary, diversity values of insular forests studied on Kyushu satellites of Japan, the Bonins, the Eastern Carolines of Micronesia, and the Galápagos in the eastern Pacific, are below those expected from the climate of respective oceanic islands. Species-individual curves, comparing mainland-and insular communities, also support clearly the above conclusion of species poverty in the insular communities studied.Abbreviations WI Kira's (1977) warmth index.  相似文献   

6.
The aim of this research is to investigate the patterns of vascular plant species richness,diversity,and distribution along an elevation gradient in the Abune Yosef mountain range,Ethiopia.Preferential systematic sampling was employed to collect vegetation and environmental data along the elevation gradient.We found that plant species richness declines monotonically from low to high elevations.Specifically,vascular plant species richness and diversity were lower in the Afroalpine grassland(high elevation)than in the Dry evergreen Afromontane forest and Ericaceous forest(low elevations).In contrast,endemic vascular plant richness was significantly higher in the Afroalpine grassland than in the Dry evergreen Afromontane forest and Ericaceous forest.Elevation showed a significant impact on the richness,diversity,and endemism of vascular plants.According to Sorensen's coefficient,the similarity between Dry evergreen Afromontane forest and Ericaceous forest vegetation types is higher(32%)than the similarity between Ericaceous forest and Afroalpine grassland(18%).Only 5%similarity was recorded between the Dry evergreen Afromontane forest and Afroalpine grassland.Growth forms showed different elevationai richness patterns.Trees and liana increased monotonically up to 3300 m.Shrub and herb richness patterns followed a hump-shaped and inverted hump-shaped pattern along the elevation gradient.The elevation patterns of vascular plant species richness,diversity,and growth form in the present study may be attributed to differences in management intensity,spatial heterogeneity,microclimatic variations,and anthropogenic disturbances.  相似文献   

7.
Abstract. The species pool concept has been used as a theoretical framework for understanding local community richness. A significant problem in putting the concept into practice is the lack of methods for determining the size of the species pool. We tested the hypothesis that species composition of recent forests is primarily determined by the species composition of neighbouring older forests against the null‐hypothesis that species are a random sample of the species occurring in the study area. Forest plant species composition of recently established fragments was significantly correlated with species composition in neighbouring older forests (i.e. the local species pool). When older forest within a neighbourhood of 1000m radius is considered, seed dispersal sources can be found for 91% of the flora in the recent forests. For an individual fragment, dispersal is a much more important determinant of species presence than the environment, with an average of 46% of the total pool excluded from local pools by dispersal limitation and only 8% excluded by environmental limitations. The species richness of recent forests is on average 23% of the local species pool. Several hypotheses are proposed for this low percentage, such as asymmetric competition due to the early successional state or the limited colonization period.  相似文献   

8.
Patterns of biodiversity, environment and human impact were studied in 57 sample plots in an 1,178 ha forest area in a rural mountain area of Nepal that is administrated by the Annapurna Conservation Area Project. Alpha-, beta- and gamma-diversity was measured or estimated for six groups of organisms: trees, shrubs, climbers, herbs, polypores and mycorrhizal fungi, and the recorded patterns were correlated with a set of environmental variables. Human impact in terms of fuelwood collection, selective cutting and grazing was found to influence species diversity patterns in all organism groups. Species richness of trees, climbers and polypores at plot level (alpha-diversity) generally responded negatively to human impact, whereas species richness of herbs and shrubs showed a positive relation. Species turnover (beta-diversity), measured as length of the DCA first axis, was significantly correlated to distance to village for all species groups. This indicates that the human impact is very important for the biodiversity patterns in the study area, and that biodiversity connected to undisturbed forest habitats are potentially threatened in the area. The results are discussed in the context of practical conservation. A proposal for future management zones addressing protection of biodiversity without limiting the local use of the forest resource is put forward.  相似文献   

9.
The effect of tree species composition, stand structure characteristics and substrate availability on ground-floor bryophyte assemblages was studied in mixed deciduous forests of Western Hungary. Species composition, species richness and cover of bryophytes occurring on the soil and logs were analysed as dependent variables. The whole assemblage and functional groups defined on the basis of substrate preference were investigated separately. Substrate availability (open soil, logs) was the most prominent factor in determining species composition, cover and diversity positively, while the litter of deciduous trees had a negative effect on the occurrence of forest floor bryophytes. Besides, bryophyte species richness increased with tree species and stand structural diversity, and for specialist epiphytic and epixylic species log volume was essential. Sapling density and light heterogeneity were influential on bryophyte cover, especially for the dominant terricolous species. Many variables of the forest floor bryophyte community can be estimated efficiently by examining stand structure in the studied region. Selective cutting increasing tree species diversity, stand structural heterogeneity and dead wood volume can maintain higher bryophyte diversity in this region than the shelter-wood system producing even-aged, monodominant, structurally homogenous stands.  相似文献   

10.
Abstract In this paper we tested the assumption that smaller and more isolated remnants receive fewer ant colonizers and lose more species. We also tested hypotheses to explain such a pattern. We sampled ants in Brazil for 3 years in 18 forest remnants and in 10 grasslands between them. We tested the influence of remnant area and isolation on colonization rate, as well as the effect of remnant area on extinction rate. We tested the correlation between remnant area and isolation to verify the landscape design. Colonization rate was not affected by remnant area or isolation. Extinction rate, however, was smaller in larger remnants. Remnant area and isolation were negatively correlated. We tested two hypotheses related to the decrease in ant species extinction rate with increased remnant area: (i) small remnants support smaller and more extinction‐prone populations; and (ii) small remnants are more often invaded by generalist species, which suffer higher extinction inside remnants. The density of ant populations significantly increased with area. Generalist species presented a lower colonization rate in larger remnants, contrary to the pattern observed in forest species. Generalist species suffered more extinction than expected inside remnants. The lack of response of colonization rate to remnant area can be explained by the differential colonization by generalist and forest species. The decrease of ant population density in smaller remnants could be related to loss of habitat quality or quantity. The higher colonization by generalist ant species in the smaller remnants could be related to landscape design, because smaller remnants are more similar to the matrix than larger ones. Our results have important implications for conservation strategies because small remnants seem to be more affected by secondary effects of fragmentation, losing more forest species and being invaded more often by generalist species. Studies that compare only species richness between remnants cannot detect such patterns in species composition.  相似文献   

11.
Question: Do anthropogenic disturbances interact with local environmental factors to increase the abundance and frequency of invasive species, which in turn exerts a negative effect on native biodiversity? Location: Mature Quercus‐Carya and Quercus‐Carya‐Pinus (oak‐hickory‐pine) forests in north Mississippi, USA. Methods: We used partial correlation and factor analysis to investigate relationships between native ground cover plant species richness and composition, percent cover of Lonicera japonica, and local and landscape‐level environmental variables and disturbance patterns in mature upland forests. We directly measured vegetation and environmental variables within 34 sampling subplots and quantified the amount of tree cover surrounding our plots using digital color aerial photography. Results: Simple bivariate correlations revealed that high species richness and a high proportion of herbs were associated with low Lonicera japonica cover, moist and sandy uncompacted soils, low disturbance in the surrounding landscape, and periodic prescribed burning. Partial correlations and factor analysis showed that once we accounted for the environmental factors, L japonica cover was the least important predictor of composition and among the least important predictors of species richness. Hence, much of the negative correlation between native species diversity and this invasive species was explained by soil texture and local and landscape‐level land‐use practices. Conclusions: We conclude that negative correlations between the abundance of invasive species and native plant diversity can occur in landscapes with a gradient of human disturbance, regardless of whether there is any negative effect of invasive species on native species.  相似文献   

12.
13.
We investigated plant species diversity as it related to stand structure and landscape parameters in abandoned coppice forests in a temperate, deciduous forest area of central Japan, where Fagus crenata was originally dominant. The species occurring in the study plots were classified into habitat types based on a statistical analysis of their occurrence bias in particular habitats (e.g., primary forest, coniferous plantation) in the landscape studied. The relationships between stand structure, which reflected the gradient of management, and forest floor plant species diversity (H and J) and richness (number of species per unit area) were not significant. However, these factors did influence the forest floor plant composition of the different types of habitat. According to the multiple regression analysis, species diversity and the richness of forest floor plants was affected by landscape parameters rather than by stand structure. For trees, species richness was mainly affected by the relative dominance of F. crenata, which is one of the stand structure parameters that decreases with intensive management. This is probably because many of the tree species that are characteristic of coppice forests increase after F. crenata have been eliminated by management; these species are not dominant in the original forest, where they are suppressed by F. crenata, the shade-tolerant dominant species. The species diversity (H and J) of trees was positively correlated with some landscape parameters, including the road density around the study plot, which may be associated with the intensity of management activity. The number of disturbance-tolerant species increased with increasing road density. Stand structure mainly affected disturbance-intolerant forest floor plant species and disturbance-tolerant tree species. Thus, the species diversity responses differed between forest floor plants and trees. The impact of forest management on species diversity was more prominent for forest floor plants.  相似文献   

14.
种、种的多样性及退化生态系统功能的恢复和维持研究   总被引:41,自引:8,他引:33  
物种多样性是生态系统的重要特征并维持系统的功能支行,生物种和不同种类构成的群落为人类提供诸如营养物质循环、生物生产力、营养功能等形式的重要生态服务,特种多样性与生态系统抵御逆境和干扰的能力紧密相关,多样性的提高会增加系统的稳定性,与单个种和种类的数量相比,功能群和功能多样性对生态系统功能的影响效应要大得多,且易于被用来测度稳定性和预测群落变化,本文提出并探讨了种对生态系统功能作用的几种形式,理解物种多样性与生态系统的功能关系能指导退化生态系统恢复和维持其功能的实践活动,尤其为恢复的初始阶段进行群落的“种类组装”提供生态理论基础。  相似文献   

15.
Identification of valid indicators of biodiversity is a critical need for sustainable forest management. We developed compositional, structural and functional indicators of biodiversity for five taxonomic groups—bryophytes, vascular plants, spiders, hoverflies and birds—using data from 44 Sitka spruce (Picea sitchensis) and ash (Fraxinus excelsior) plantation forests in Ireland. The best structural biodiversity indicator was stand stage, defined using a multivariate classification of forest structure variables. However, biodiversity trends over the forest cycle and between tree species differ among the taxonomic groups studied. Canopy cover was the main structural indicator and affected other structural variables such as cover of lower vegetation layers. Other structural indicators included deadwood and distances to forest edge and to broadleaved woodland. Functional indicators included stand age, site environmental characteristics and management practices. Compositional indicators were limited to more easily identifiable plant and bird species. Our results suggest that the biodiversity of any one of the species groups we surveyed cannot act as a surrogate for all of the other species groups. However, certain subgroups, such as forest bryophytes and saproxylic hoverflies, may be able to act as surrogates for each other. The indicators we have identified should be used together to identify stands of potentially high biodiversity or to evaluate the biodiversity effects of silvicultural management practices. They are readily assessed by non-specialists, ecologically meaningful and applicable over a broad area with similar climate conditions and silvicultural systems. The approach we have used to develop biodiversity indicators, including stand structural types, is widely relevant and can enhance sustainable forest management of plantations.  相似文献   

16.
Firn J  Erskine PD  Lamb D 《Oecologia》2007,154(3):521-533
We investigated the relationship between plant diversity and ecological function (production and nutrient cycling) in tropical tree plantations. Old plantations (65–72 years) of four different species, namely Araucaria cunninghamii, Agathis robusta, Toona ciliata and Flindersia brayleyana, as well as natural secondary forest were examined at Wongabel State Forest, in the wet tropics region of Queensland, Australia. Two young plantations (23 years) of Araucaria cunninghamii and Pinus caribaea were also examined. The close proximity of the older plantations and natural forests meant they had similar edaphic and climatic conditions. All plantations had been established as monocultures, but had been colonised by a range of native woody plants from the nearby rainforest. The extent to which this had occurred varied with the identity of the plantation species (from 2 to 17 species in 0.1 ha blocks). In many cases these additional species had grown up and joined the forest canopy. This study is one of the few to find a negative relationship between overstorey plant diversity and productivity. The conversion of natural forest with highly productive, low-diversity gymnosperm-dominated plantations (young and old Araucaria cunninghamii and Pinus caribaea) was found to be associated with lower soil nutrient availability (approximately five times less phosphorus and 2.5 times less nitrogen) and lower soil pH (mean = 6.28) compared to the other, less productive plantations. The dominant effects of two species, Araucaria cunninghamii and Hodgkinsonia frutescens, indicate that ecosystem functions such as production and nutrient availability are not determined solely by the number of species, but are more likely to be determined by the characteristics of the species present. This suggests that monoculture plantations can be used to successfully restore some functions (e.g. nutrient cycling and production), but that the level to which such functions can be restored will depend upon the species chosen and site conditions. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
Traditional measures of biotic indices (, , ) from phytosociological relevés are used to compare diversity at three scale-levels in the upper Rhine valley (Alsace, northeastern region) and the middle Loire (Bourgogne, central region), France. Both study areas included a tributary. The Ill, which is the Rhine tributary in this sector, has no forest communities in common with the main river because of opposite hydrological and edaphic characteristics. This is not the case in the Loire valley, in which the fluvial characteristics are close to those of its tributary, the Allier.Nearly all forest communities (12/14) were shown to be species-rich, due to the role of natural disturbances. Species richness peaks in late-successional forests of the Rhine valley (for example, up to 50 woody species in Querco-Ulmetum). Sixty per cent of the forest-communities are comon to the two floodplains, which explains why 85% of the families, 65% of the genera and 55% of the species are in common. Compared to the Loire valley, the Rhine valleys shows higher biotic diversity. This was related first to its geographical situation, and second to higher landscape heterogeneity. Human disturbance through river management is responsible for changes in species composition as shown by floristic comparison of flooded and unflooded sites. Insularity of natural forests among man-made landscapes is involved in species diversity. In order to preserve the natural diversity of such rich landscapes, floodable areas should be recreated and the attitudes of foresters should evolve accordingly.  相似文献   

18.
Within a subprogram of Integrated Monitoring (IM), understorey vegetation in Swedish natural forests was observed at fifteen reference sites over the country for twelve seasons, 1982–1993. The main task of the subprogram was to assess the impact of atmospheric deposition, mainly sulphur and nitrogen, on natural vegetation through time. The present study is focused on the variability of plant species diversity at community level and the possible impact of sulphur and nitrogen deposition. Species richness, evenness and diversity varied greatly among the sites, and between years within each site. Regarding only coniferous forests the species richness was higher in the north than in the south. But the effects of site condition and atmospheric deposition were not clarified. Changes in species diversity through time differed from site to site. No overall temporal trend was found. The atmospheric deposition of sulphur and nitrogen demonstrated a clear geographical pattern being low in the north-west and high in the south-west. Sulphur deposition declined significantly in Southern Sweden during the period. We concluded that the species diversity of understorey vegetation at the Swedish IM sites was not significantly influenced by atmospheric deposition. The changes observed are explained as natural processes.  相似文献   

19.
Altitudinal trends in species diversity were examined on a New Zealand ultramafic mountain, and on nearby normal (schist) substrate. At lower altitudes, diversity is similar on the two substrates. On the ultramafic substrate, species diversity decreased with increasing altitude; on schist substrate the opposite trend was found. This difference was demonstrable in species richness, based on species presence/absence, and in indices of species diversity based on cover data (the ShannonH and the Simpson/Yule — InD). It is suggested that on ultramafics, altitudinal stress and soil conditions lead to a decrease in diversity with altitude. On schist, in contrast, the opening of the canopy with altitude is suggested to be the predominant influence, leading to an increase in diversity with altitude. Nomenclature: Allan, H. H. 1961. Flora of New Zealand, Vol I, Government Printer, Wellington; Mark, A. F. & Adams, N. M. 1986. New Zealand alpine plants. 2nd rev. Reed Methuen, Wellington; Connor, H. E. & Edgar, E. 1987. Name changes in the indigenous New Zealand Flora, 1960–1986 and Nomina Nova IV, 1983–1986, N.Z. Jl Bot. 25: 115–170; except where indicated.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号