首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A promising strategy for drug abuse treatment is to accelerate the drug metabolism by administration of a drug-metabolizing enzyme. The question is how effectively an enzyme can actually prevent the drug from entering brain and producing physiological effects. In the present study, we have developed a pharmacokinetic model through a combined use of in vitro kinetic parameters and positron emission tomography data in human to examine the effects of a cocaine-metabolizing enzyme in plasma on the time course of cocaine in plasma and brain of human. Without an exogenous enzyme, cocaine half-lives in both brain and plasma are almost linearly dependent on the initial cocaine concentration in plasma. The threshold concentration of cocaine in brain required to produce physiological effects has been estimated to be 0.22±0.07 μM, and the threshold area under the cocaine concentration versus time curve (AUC) value in brain (denoted by AUC2(∞)) required to produce physiological effects has been estimated to be 7.9±2.7 μM·min. It has been demonstrated that administration of a cocaine hydrolase/esterase (CocH/CocE) can considerably decrease the cocaine half-lives in both brain and plasma, the peak cocaine concentration in brain, and the AUC2(∞). The estimated maximum cocaine plasma concentration which a given concentration of drug-metabolizing enzyme can effectively prevent from entering brain and producing physiological effects can be used to guide future preclinical/clinical studies on cocaine-metabolizing enzymes. Understanding of drug-metabolizing enzymes is key to the science of pharmacokinetics. The general insights into the effects of a drug-metabolizing enzyme on drug kinetics in human should be valuable also in future development of enzyme therapies for other drugs of abuse.  相似文献   

2.
The extraction of seven tricyclic antidepressant amines from human plasma at different pH values was investigated for dichloromethane, diethyl ether and hexane—1-pentanol (95:5). The amines were extracted as bases and back-extracted to sulphuric acid, 0.10 mol/l, prior to the separation by bonded-phase liquid chromatography. Ether and hexane— 1-pentanol (95:5) were most suitable, tertiary amines being best extracted at pH 8, and secondary amines at pH 10. Using ether, both tertiary and secondary amines required 30 min extraction time for a quantitative yield while 15 rain was sufficient for hexane— -1-pentanol (95:5). UV detection allowed concentrations down to 10 ng in 1 ml of plasma to be determined.Three ammonium ions—octylammonium, dimethylammonium, and trimethylammonium - were added as modifiers to the mobile phase containing acetonitrile in phosphoric acid, 0.10 mol/l. In the concentration interval 0.010–0.030 mol/l all of the amine modifiers gave on Polygosil C8 peak asymmetry factors of sufficiently low magnitude, while on Li- Chrosorb RP-18 this was so only for di- and trimethylammonium in a concentration of 0.030 mol/l.  相似文献   

3.
Limitations of PEG in drug delivery have been reported from clinical trials. PEtOx (0.4-40 kDa) as alternative is synthesized by a living, microwave-assisted polymerization, and is directly compared to PEG of similar molar mass regarding cytotoxicity and hemocompatibility. In short-term treatments, both types of polymers are well tolerated even at high concentrations. Moderate concentration and molar mass dependent cytotoxic effects occurred only after long-term incubation at concentrations higher than therapeutic doses. PEtOx possesses not only an easy route of synthesis and beneficial physicochemical characteristics such as low viscosity and high stability, which are advantageous over PEG, but additionally in vitro toxicology comparable to PEG.  相似文献   

4.
Chloroquine, an antimalarial drug has been found to inhibit Na+, K+-ATPase activity in vitro in the microsomal membranes of rat brain on time, temperature and concentration dependent manner. There have been stimulation of Na+,K+-ATPase, Ca+2-ATPase and acetylcholine esterase activities in vivo studies at lower concentration of drug or shorter period of treatment with the drug, whereas higher concentrations or longer periods of treatment lead to inhibition in the microsomal membranes of different organs.  相似文献   

5.
The focus of the reported work is investigation of disopyramide chronopharmacokinetics in the mouse. Different groups of male NMRI mice maintained under controlled environmental conditions (LD: 0600-1800) received a single intraperitoneal injection of disopyramide (30mg per kg of body weight) at one of four different fixed time points of a 24-h period, i.e. 1000, 1600, 2200 or 0400. Blood samples were taken 0.5,1,2,3,4 and 6 hr after drug administration and total and free plasma levels of disopyramide were measured by an immunoenzymatic method.

Our data showed statistically significant circadian rhythms in the following pharmacokinetic parameters: highest volume of distribution = 3.91 ± 0.211kg-1 at 2200 (circadian amplitude, half the peak-to-trough difference relative to the 24-hr mean multiplied by 100, is 34%); highest area under concentration curves = 16.06 ± 1.03μgml-1hr-1 at 0400 (circadian amplitude = 43%) and highest clearance = 3.04 ± 0.191hr“kg”1 at 2200 (circadian amplitude = 21%). Protein binding of the drug was shown to he circadian time dependent. Alpha and beta phase elimination half-lives were not found to be significantly circadian phase-dependent. Thus circadian changes in disopyramide clearance may represent circadian changes in the drug's volume of distribution.  相似文献   

6.
The focus of the reported work is investigation of disopyramide chronopharmacokinetics in the mouse. Different groups of male NMRI mice maintained under controlled environmental conditions (LD: 0600-1800) received a single intraperitoneal injection of disopyramide (30mg per kg of body weight) at one of four different fixed time points of a 24-h period, i.e. 1000, 1600, 2200 or 0400. Blood samples were taken 0.5,1,2,3,4 and 6 hr after drug administration and total and free plasma levels of disopyramide were measured by an immunoenzymatic method.

Our data showed statistically significant circadian rhythms in the following pharmacokinetic parameters: highest volume of distribution = 3.91 ± 0.211kg?1 at 2200 (circadian amplitude, half the peak-to-trough difference relative to the 24-hr mean multiplied by 100, is 34%); highest area under concentration curves = 16.06 ± 1.03μgml?1hr?1 at 0400 (circadian amplitude = 43%) and highest clearance = 3.04 ± 0.191hr“kg”1 at 2200 (circadian amplitude = 21%). Protein binding of the drug was shown to he circadian time dependent. Alpha and beta phase elimination half-lives were not found to be significantly circadian phase-dependent. Thus circadian changes in disopyramide clearance may represent circadian changes in the drug's volume of distribution.  相似文献   

7.
Tertiary N-acyloxymethyl- and N-[(aminocarbonyloxy)methyl]sulfonamides were synthesised and evaluated as novel classes of potential prodrugs of agents containing a secondary sulfonamide group. The chemical and plasma hydrolyses of the title compounds were studied by HPLC. Tertiary N-acyloxymethylsulfonamides are slowly and quantitatively hydrolysed to the parent sulfonamide in pH 7.4 phosphate buffer, with half-lives ranging from 20 h, for 7d, to 30 days, for 7g. Quantitative formation of the parent sulfonamide also occurs in human plasma, the half-lives being within 0.2-2.0 min for some substrates. The rapid rate of hydrolysis can be ascribed to plasma cholinesterase, as indicated by the complete inhibition observed at [eserine] = 0.10 mM. These results suggest that tertiary N-acyloxymethylsulfonamides are potentially useful prodrugs for agents containing a secondary sulfonamide group, especially with pKa < 8, combining a high stability in aqueous media with a high rate of plasma activation. In contrast, N-[(aminocarbonyloxy)methyl]sulfonamides 7h-j do not liberate the parent sulfonamide either in aqueous buffers or in human plasma and thus appear to be unsuitable for development as sulfonamide prodrugs.  相似文献   

8.
ABSTRACT

An overview of our experiences in the field of immunoliposomal anticancer drugs is provided with respect to choice of ligand, and choice of model system, in order to provide some guidance as to the rational use of this new technology. Liposomes targeted by either peptide or monoclonal antibodies showed significantly higher binding to their respective target cells in vitro compared to non-targeted liposomes in all model systems examined. This higher binding led to higher cytotoxicities relative to non-targeted liposomes. For the immunoliposomes to deliver their entrapped drug to target cell in vivo, long circulations half-lives are required. We have evaluated the pharmacokinetics of liposomes prepared by several different coupling techniques, and have found significant differences in the clearance of these immunoliposomes from the circulation. Immunoliposomes prepared with whole anti-CD19 IgG coupled by the Mal-PEG-DSPE method demonstrated a short plasma half-life, which may reflect the random orientation of the MAb on the liposome surface. Coupling methods that mask or eliminate the Fc region result in immunoliposomes that have clearance rates more similar to untargeted liposomes. Insertion of peptides or antibodies into pre-formed liposomes through incubation with ligand-coupled PEG micelles resulted in immunoliposomes, termed post-insertion liposomes, that demonstrated comparable in vitro binding, pharmacokinetic profiles and in vivo therapeutic efficacy to liposomes made by conventional coupling methods. The therapeutic efficacy of liposomes, prepared by various coupling methods and targeted by different ligands, was compared in several different animal models of either haematological malignancies, pseudometastatic disease or solid tumours. In our hands, successful in vivo targeting has been obtained when the target is either small or readily accessible from the vasculature, where the liposomes have longer circulating half-lives and/or where a ligand against an internalizing epitope has been chosen. These results should aid in the rational design of applications for immunoliposomal drugs in the future.  相似文献   

9.
An overview of our experiences in the field of immunoliposomal anticancer drugs is provided with respect to choice of ligand, and choice of model system, in order to provide some guidance as to the rational use of this new technology. Liposomes targeted by either peptide or monoclonal antibodies showed significantly higher binding to their respective target cells in vitro compared to non-targeted liposomes in all model systems examined. This higher binding led to higher cytotoxicities relative to non-targeted liposomes. For the immunoliposomes to deliver their entrapped drug to target cell in vivo, long circulations half-lives are required. We have evaluated the pharmacokinetics of liposomes prepared by several different coupling techniques, and have found significant differences in the clearance of these immunoliposomes from the circulation. Immunoliposomes prepared with whole anti-CD19 IgG coupled by the Mal-PEG-DSPE method demonstrated a short plasma half-life, which may reflect the random orientation of the MAb on the liposome surface. Coupling methods that mask or eliminate the Fc region result in immunoliposomes that have clearance rates more similar to untargeted liposomes. Insertion of peptides or antibodies into pre-formed liposomes through incubation with ligand-coupled PEG micelles resulted in immunoliposomes, termed post-insertion liposomes, that demonstrated comparable in vitro binding, pharmacokinetic profiles and in vivo therapeutic efficacy to liposomes made by conventional coupling methods. The therapeutic efficacy of liposomes, prepared by various coupling methods and targeted by different ligands, was compared in several different animal models of either haematological malignancies, pseudometastatic disease or solid tumours. In our hands, successful in vivo targeting has been obtained when the target is either small or readily accessible from the vasculature, where the liposomes have longer circulating half-lives and/or where a ligand against an internalizing epitope has been chosen. These results should aid in the rational design of applications for immunoliposomal drugs in the future.  相似文献   

10.
A cyclohexylamine oxidase (CHAO) of bacterial origin was previously shown to be a potentially useful catalyst in the deracemization of racemic primary amines. To further explore the properties and application of this enzyme, five single-amino acid substitution mutants (L199A, M226A, Y321A, Y321F, and L353M) were created based on superimposition of the tertiary structure of CHAO and the monoamine oxidase (MAO) B homolog. The substrate specificity of the purified wild-type and five mutant enzymes were examined towards 38 structurally diverse amines. All the enzymes exhibited better activity for primary amines than secondary and tertiary amines and in general exhibited high stereoselectivity. Among the mutant enzymes, M226A displayed an enhanced activity (5–400 %) towards most substrates, and L353M showed 7–445 % higher activity towards primary aliphatic amines with cycloalkane or aromatic moieties. Kinetic parameters revealed that both Y321 mutants showed higher catalytic efficiency towards cyclooctanamine, whereas the wild-type CHAO (wt CHAO) was most efficient towards cyclohexylamine. The wt CHAO or variant L353M in combination with a borane–ammonia complex as reducing agent was applied to the deracemization of 1-aminotetraline to give the (R)-enantiomer, a precursor of an antidepressant drug Norsertraline, in good yield (73–76 %), demonstrating their application potential in chiral amine synthesis.  相似文献   

11.
Intraventricular injection into the rat brain of four trace amines and a catecholamine resulted in rapid exponential loss of the amines in the first 30 minutes after injection. The half-lives were: phenylethylamine 3.8 min,para-tyramine 5.1 min,meta-tyramine 7.4 min and dopamine 8.0 min. Tryptamine showed a biphasic loss with half-lives of 4.7 min (over the 5 to 10 min period) and 14.1 min (10 to 30 min). The half-lives were substantially increased by deuterium labeling at the alpha carbon position: phenylethylamine 4.8 min,para-tyramine 8.8 min,meta-tyramine 14.1 min, dopamine 13.0 min and tryptamine 6.0 min (5 to 10 min period) and 28.7 min (10 to 20 min). The loss of the amines was reduced by monoamine oxidase inhibition by pargyline hydrochloride and the deuterium isotope effect was abolished. It is noteworthy that the half-life of dopamine was similar to those of the trace amines in this time period and that the trace amine half-lives after i.v. injection was longer than those obtained from measurements of increases of concentrations of endogenous amines after MAOI in vivo and that of dopamine shorter than values calculated from turnover measurements.  相似文献   

12.
In the design of polyethyleneimine derivatives for use as catalysts and binding media, the placement of reactive and hydrophobic groups previously has been limited by the specificity of the addition reaction. In this paper is described a protocol to limit the sites of addition of nucleophiles and long-chain alkanes to tertiary amines and the less reactive of the secondary amines. Three blocking groups for the primary and secondary amines were tested, but only trifluoroacteylating reagents left the polymer reactive to substitution on the tertiary amines with halogenated alkanes. The secondary amines that resisted trifluoroacetylation were blocked with either tert-butyloxy carbonate or trimethylsilyl carbonate. The tertiary amines were quaternized with iodododecane or dodecyl benzyl chloride. After removal of the trifluoroacetyl groups, the polymer amines were inactivated by methylation, which proceeded to 93% completion. The 7% of the amines that were not quaternized were largely tertiary, since propylene sulfide, which reacts only with secondary and primary amines, was substituted onto the polymer only to the extent of 0.2% total amine, as quantified by the indirect method of P. H. Butterworth, F. Baum, and J. W. Porter (1967, Arch. Biochem. Biophys., 118, 716–723). The sulfhydryl group did not oxidize over at least 14 days. This is the first stable sulfhydryl-containing synthetic polymer that has been reported.  相似文献   

13.
The cucurbit[n]uril (CB[n]) family of macrocycles has been shown to have potential in drug delivery where they are able to provide physical and chemical stability to drugs, improve drug solubility, control drug release and mask the taste of drugs. Cisplatin is a small molecule platinum-based anticancer drug that has severe dose-limiting side-effects. Cisplatin forms a host-guest complex with cucurbit[7]uril (cisplatin@CB[7]) with the platinum atom and both chlorido ligands located inside the macrocycle, with binding stabilised by four hydrogen bonds (2.15-2.44 ?). Whilst CB[7] has no effect on the in vitro cytotoxicity of cisplatin in the human ovarian carcinoma cell line A2780 and its cisplatin-resistant sub-lines A2780/cp70 and MCP1, there is a significant effect on in vivo cytotoxicity using human tumour xenografts. Cisplatin@CB[7] is just as effective on A2780 tumours compared with free cisplatin, and in the cisplatin-resistant A2780/cp70 tumours cisplatin@CB[7] markedly slows tumour growth. The ability of cisplatin@CB[7] to overcome resistance in vivo appears to be a pharmacokinetic effect. Whilst the peak plasma level and tissue distribution are the same for cisplatin@CB[7] and free cisplatin, the total concentration of circulating cisplatin@CB[7] over a period of 24 hours is significantly higher than for free cisplatin when administered at the equivalent dose. The results provide the first example of overcoming drug resistance via a purely pharmacokinetic effect rather than drug design or better tumour targeting, and demonstrate that in vitro assays are no longer as important in screening advanced systems of drug delivery.  相似文献   

14.
Lovely AE  Wenzel TJ 《Chirality》2008,20(3-4):370-378
Enantiomeric discrimination is observed in the 1H and 13C NMR spectra of secondary and tertiary amines in the presence of (-)-(18-crown-6)-2,3,11,12-tetracarboxylic acid (1). Nonequivalence of the resonances of prochiral nuclei in primary and secondary amines is also observed when they associate with 1. The amines are added in their neutral form and are protonated by the carboxylic acid groups of 1 to produce the corresponding ammonium and carboxylate ions. Secondary amines associate with 1 through two hydrogen bonds and an ion pair interaction. Tertiary amines can only form one hydrogen bond to accompany the ion pairing. Chiral discrimination in the 1H and 13C NMR spectra of a series of aryl-containing secondary amines is of sufficient magnitude to determine enantiomeric purities. The discrimination in the spectra of tertiary amines with 1 is smaller, but 13C NMR spectra provided enough distinction for the determination of enantiomeric purity.  相似文献   

15.

Background

Dihydroartemisinin (DHA), a powerful anti-malarial drug, has been used as monotherapy and artemisinin-based combination therapy (ACT) for more than decades. So far, however, the tissue distribution and metabolic profile of DHA data are not available from animal and humans.

Methods

Pharmacokinetics, tissue distribution, mass balance, and elimination of [14C] DHA have been studieded in rats following a single intravenous administration. Protein binding was performed with rat and human plasma. Drug concentrations were obtained up to 192 hr from measurements of total radioactivity and drug concentration to determine the contribution by the parent and metabolites to the total dose of drug injected from whole blood, plasma, urine and faecal samples.

Results

Drug was widely distributed after 1 hr and rapidly declined at 24 hr in all tissues except spleen until 96 hrs. Only 0.81% of the total radioactivity was detected in rat brain tissue. DHA revealed a high binding capacity with both rat and human plasma proteins (76–82%). The concentration of total radioactivity in the plasma fraction was less than 25% of that in blood total. Metabolism of DHA was observed with high excretion via bile into intestines and approximately 89–95% dose of all conjugations were accounted for in blood, urine and faeces. However, the majority of elimination of [14C] DHA was through urinary excretion (52% dose). The mean terminal half-lives of plasma and blood radioactivity (75.57–122.13 h) were significantly prolonged compared with that of unchanged DHA (1.03 h).

Conclusion

In rat brain, the total concentration of [14C] was 2-fold higher than that in plasma, indicating the radioactivity could easily penetrate the brain-blood barrier. Total radioactivity distributed in RBC was about three- to four-fold higher than that in plasma, suggesting that the powerful anti-malarial potency of DHA in the treatment of blood stage malaria may relate to the high RBC binding. Biliary excretion and multiple concentration peaks of DHA have been demonstrated with high urinary excretion due to a most likely drug re-absorption in the intestines (enterohepatic circulation). The long lasting metabolites of DHA (> 192 hr) in the rats may be also related to the enterohepatic circulation.  相似文献   

16.
Drug repositioning applies established drugs to new disease indications with increasing success. A pre-requisite for drug repurposing is drug promiscuity (polypharmacology) – a drug’s ability to bind to several targets. There is a long standing debate on the reasons for drug promiscuity. Based on large compound screens, hydrophobicity and molecular weight have been suggested as key reasons. However, the results are sometimes contradictory and leave space for further analysis. Protein structures offer a structural dimension to explain promiscuity: Can a drug bind multiple targets because the drug is flexible or because the targets are structurally similar or even share similar binding sites? We present a systematic study of drug promiscuity based on structural data of PDB target proteins with a set of 164 promiscuous drugs. We show that there is no correlation between the degree of promiscuity and ligand properties such as hydrophobicity or molecular weight but a weak correlation to conformational flexibility. However, we do find a correlation between promiscuity and structural similarity as well as binding site similarity of protein targets. In particular, 71% of the drugs have at least two targets with similar binding sites. In order to overcome issues in detection of remotely similar binding sites, we employed a score for binding site similarity: LigandRMSD measures the similarity of the aligned ligands and uncovers remote local similarities in proteins. It can be applied to arbitrary structural binding site alignments. Three representative examples, namely the anti-cancer drug methotrexate, the natural product quercetin and the anti-diabetic drug acarbose are discussed in detail. Our findings suggest that global structural and binding site similarity play a more important role to explain the observed drug promiscuity in the PDB than physicochemical drug properties like hydrophobicity or molecular weight. Additionally, we find ligand flexibility to have a minor influence.  相似文献   

17.
M Lu  D E Draper 《Nucleic acids research》1995,23(17):3426-3433
Ribosomal protein L11 and an antibiotic, thiostrepton, bind to the same highly conserved region of large subunit ribosomal RNA and stabilize a set of NH4(+)-dependent tertiary interactions within the domain. In vitro selection from partially randomized pools of RNA sequences has been used to ask what aspects of RNA structure are recognized by the ligands. L11-selected RNAs showed little sequence variation over the entire 70 nucleotide randomized region, while thiostrepton required a slightly smaller 58 nucleotide domain. All the selected mutations preserved or stabilized the known secondary and tertiary structure of the RNA. L11-selected RNAs from a pool mutagenized only around a junction structure yielded a very different consensus sequence, in which the RNA tertiary structure was substantially destabilized and L11 binding was no longer dependent on NH4+. We propose that L11 can bind the RNA in two different 'modes', depending on the presence or absence of the NH4(+)-dependent tertiary structure, while thiostrepton can only recognize the RNA tertiary structure. The different RNA recognition mechanisms for the two ligands may be relevant to their different effects on protein synthesis.  相似文献   

18.

Background

ST-246® is an antiviral, orally bioavailable small molecule in clinical development for treatment of orthopoxvirus infections. An intravenous (IV) formulation may be required for some hospitalized patients who are unable to take oral medication. An IV formulation has been evaluated in three species previously used in evaluation of both efficacy and toxicology of the oral formulation.

Methodology/Principal Findings

The pharmacokinetics of ST-246 after IV infusions in mice, rabbits and nonhuman primates (NHP) were compared to those obtained after oral administration. Ten minute IV infusions of ST-246 at doses of 3, 10, 30, and 75 mg/kg in mice produced peak plasma concentrations ranging from 16.9 to 238 µg/mL. Elimination appeared predominately first-order and exposure dose-proportional up to 30 mg/kg. Short IV infusions (5 to 15 minutes) in rabbits resulted in rapid distribution followed by slower elimination. Intravenous infusions in NHP were conducted at doses of 1 to 30 mg/kg. The length of single infusions in NHP ranged from 4 to 6 hours. The pharmacokinetics and tolerability for the two highest doses were evaluated when administered as two equivalent 4 hour infusions initiated 12 hours apart. Terminal elimination half-lives in all species for oral and IV infusions were similar. Dose-limiting central nervous system effects were identified in all three species and appeared related to high Cmax plasma concentrations. These effects were eliminated using slower IV infusions.

Conclusions/Significance

Pharmacokinetic profiles after IV infusion compared to those observed after oral administration demonstrated the necessity of longer IV infusions to (1) mimic the plasma exposure observed after oral administration and (2) avoid Cmax associated toxicity. Shorter infusions at higher doses in NHP resulted in decreased clearance, suggesting saturated distribution or elimination. Elimination half-lives in all species were similar between oral and IV administration. The administration of ST-246 was well tolerated as a slow IV infusion.  相似文献   

19.
We have reviewed the evidence that amines accumulate in intracellular vesicles of low pH, such as lysosomes and endosomes. There is consequent elevation of intravesicular pH, and inhibition of receptor-ligand dissociation often results from this pH change. We have argued that the capacity for fusion of such vesicles is also reduced by the high pH. We suggest that the variety of effects of amines on membrane flow and macromolecular transport we describe are at least partly due to such reduced fusion (Figs. 1 and 2). We propose that an internal low pH may facilitate heterologous vesicle-vesicle and vesicle-plasma membrane fusion. There is some evidence that clathrin can accelerate phospholipid vesicle fusion in vitro at low pH (Blumenthal et al., 1983) but no direct evidence on the role of intravesicular pH. This idea is consistent not only with the preceding discussion, but also with the fact that the intracellular membrane-bound compartments least involved in fusion events (e.g. mitochondria) are of neutral or alkaline internal pH. Membrane fusion is certainly required for the formation of vesicles at the periphery of the Golgi apparatus, and possibly earlier in the transport and processing of biosynthetic products in the Golgi (Bergeron et al., 1982). Thus the accumulation of amines in the Golgi may be responsible for several effects on the flow of macromolecules along their translocation pathways. The status of the plasma membrane in this view is complex. It might be argued that the pH dictating the fusion step in endocytosis is that of the extracellular fluid, in which case the inhibitory effects of amines on this process are not explained. However, the rapidity of acidification of the newly formed endocytic vesicles allows the possibility that plasma membrane invaginations might temporarily sequester areas which are of lower pH than that of the bulk extracellular fluid even before fusion, since the proton pumping enzyme(s) are probably present on the plasma membrane. Were this the case, then an acid pH could again be a factor determining membrane fusion at the plasma membrane. The inhibition of endocytosis by weak bases thus may again reflect elevation of pH in a sequestered compartment. From the data on the dependence of response on the concentration of amines, we anticipate that most responses involving membrane flow will be biphasic, with inhibitory effects at low amine concentration, giving way to stimulatory ones at higher concentrations. We suggest that the reported dichotomy between different amines in intracellular membrane fusion systems (D'Arcy Hart, 1982) may result from this concentration dependence.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
The distribution of ACh in the rabbit heart was investigated by a modified gas chromatographic estimation method. ACh was extracted with perchloric acid, precipitated as reineckate and demethylated with sodium benzenethiolate. The tertiary amines derived from ACh and other choline esters were concentrated by a microdistillation procedure. Gas chromatography was performed using a nitrogen selective detector. In the range of concentrations between 0.4 and 2.5 nmol ACh per tissue sample the coefficient of variation was 5.2 per cent. The recovery of ACh added to heart extracts was 101 per cent. Evidence for the identity of the choline ester isolated from rabbit hearts and authentic ACh was obtained by equal retention times and by correspondence of the ratio N/C of the respective tertiary amines. Parallel measurements using gas chromatography and bioassay on the rat blood pressure yielded closely corresponding values of ACh levels in the rabbit heart. The concentration of ACh was much higher in the atria than in the ventricles. In both atria, and ventricles the ACh concentration was higher in the right than in the left part of the rabbit heart. Endogenous propionylcholine or butyrylcholine were not detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号