共查询到20条相似文献,搜索用时 62 毫秒
1.
Drought timing and local climate determine the sensitivity of eastern temperate forests to drought 下载免费PDF全文
《Global Change Biology》2018,24(6):2339-2351
Projected changes in temperature and drought regime are likely to reduce carbon (C) storage in forests, thereby amplifying rates of climate change. While such reductions are often presumed to be greatest in semi‐arid forests that experience widespread tree mortality, the consequences of drought may also be important in temperate mesic forests of Eastern North America (ENA) if tree growth is significantly curtailed by drought. Investigations of the environmental conditions that determine drought sensitivity are critically needed to accurately predict ecosystem feedbacks to climate change. We matched site factors with the growth responses to drought of 10,753 trees across mesic forests of ENA, representing 24 species and 346 stands, to determine the broad‐scale drivers of drought sensitivity for the dominant trees in ENA. Here we show that two factors—the timing of drought, and the atmospheric demand for water (i.e., local potential evapotranspiration; PET)—are stronger drivers of drought sensitivity than soil and stand characteristics. Drought‐induced reductions in tree growth were greatest when the droughts occurred during early‐season peaks in radial growth, especially for trees growing in the warmest, driest regions (i.e., highest PET). Further, mean species trait values (rooting depth and ψ50) were poor predictors of drought sensitivity, as intraspecific variation in sensitivity was equal to or greater than interspecific variation in 17 of 24 species. From a general circulation model ensemble, we find that future increases in early‐season PET may exacerbate these effects, and potentially offset gains in C uptake and storage in ENA owing to other global change factors. 相似文献
2.
The density of wild ungulates has increased in the last century, and browsing has become a major driver of forest succession in the northern hemisphere. In addition, tree species are expected to respond differently to future climate conditions, especially an increased frequency of late frost events. The aim of this study was to analyze the influence of intraspecific genetic variation on the recovery of two tree species to frost and browsing. An experiment with saplings from 90 Abies alba and 72 Picea abies seed sources was conducted. Five‐year‐old saplings were clipped at three intensities before budburst in spring. Growth (height, diameter, leader shoot length, and biomass) and quality (e.g. stem form, multistemming, reaction type) were assessed before and 1–2 years after clipping or 3–4 years after natural frost events, and provenance differences were related to environmental differences at the seed source. For Abies, frost and clipping resulted in reduced height growth in the first year after the stress and reduced height for two (clipping) to four (frost) vegetation periods. Sapling biomass, diameter increment, and quality decreased after heavy clipping. For Picea, which grew twice as fast as Abies, such effects were only found after frost damage. Population differences were significant for both species for all investigated growth traits and for Picea also for some quality variables. The “reaction type” after browsing (e.g. new shoot, existing twig bending upward) seems to be species specific and independent of seed source. In contrast, the time lag between clipping and formation of a clear new leader shoot increased for Abieswith lower temperatures at the seed source. Lowland populations with warmer climates grew faster, and for Picea also qualitatively better, and recovered faster from leader shoot loss (Abies) or reacted at the uppermost meristem (Picea). Thus, the investigated stressors increased the existing differences among populations. 相似文献
3.
随着极端气候事件频率和强度的增加,植被物候正在发生深刻的变化。然而,植被枯黄期(EGS)对极端气候的响应机制目前尚未厘清,特别是对于干旱半干旱地区的草地而言。因此,聚焦我国温带草地,基于1982—2015年全球监测与模型研究工作组归一化植被指数(GIMMS NDVI3g)长时间序列数据提取草地物候参数,并分析其时空变化规律;运用随机森林模型等方法探究温带草地EGS对极端气候变化的响应特征。结果表明:(1)全区多年平均EGS主要发生于270—290儒略日(DOY),59.8%的区域呈延迟趋势,其中显著延迟(P<0.05)的区域分布在新疆天山、阿尔泰山一带和准噶尔盆地西部、黄土高原北部、呼伦贝尔高原的西部和东北小兴安岭。(2)EGS与极端气温暖极值(日最低气温的最大值、日最高气温的最大值、暖夜日数、暖昼日数)之间均以广泛的正相关关系为主;相比之下,极端降水事件与EGS之间的关系相对比较复杂,这与各草地类型自身的生理策略和所处环境密切相关。(3)整体而言,持续干旱日数、气温日较差和暖夜日数对全域草地EGS动态变化具有极大的重要性。就不同草地类型而言,温带草甸草原主要受到气温日较差的影响... 相似文献
4.
Sensitivity of three grassland communities to simulated extreme temperature and rainfall events 总被引:3,自引:0,他引:3
Todd A. White Bruce D. Campbell Peter D. Kemp† Chris L. Hunt 《Global Change Biology》2000,6(6):671-684
Three grassland communities in New Zealand with differing climates and proportions of C3 and C4 species were subjected to one‐off extreme heating (eight hours at 52.5°C) and rainfall (the equivalent of 100 mm) events. A novel experimental technique using portable computer‐controlled chambers simulated the extreme heating events. The productive, moist C3/C4 community was the most sensitive to the extreme events in terms of short‐term community composition compared with a dry C3/C4 community or an exclusively C3 community. An extreme heating event caused the greatest change to plant community species abundance by favouring the expansion of C4 species relative to C3 species, shifting C4 species abundance from 43% up to 84% at the productive, moist site. This was observed both in the presence and absence of added water. In the absence of C4 species, heating reduced community productivity by over 60%. The short‐term shifts in the abundance of C3 and C4 species in response to the single extreme climatic events did not have persistent effects on community structure or on soil nitrogen one year later. There was no consistent relationship between diversity and stability of biomass production of these plant communities, and species functional identity was the most effective explanation for the observed shifts in biomass production. The presence of C4 species resulted in an increased stability of productivity after extreme climatic events, but resulted in greater overall shifts in community composition. The presence of C4 species may buffer grassland community productivity against an increased frequency of extreme heating events associated with future global climate change. 相似文献
5.
秦岭作为我国重要的地理分界线,其亚高山针叶林生态系统在区域乃至更大尺度范围的水源涵养、生物多样性维护、气候调节等方面具有重要价值。近几十年,秦岭地区大幅升温且存在空间异质性。研究秦岭针叶林带树木生长对气候变化的响应规律对于气候变化下山地森林保护与管理具有重要价值。本文综述了秦岭西部、中部和东部不同海拔针叶树种树木生长与气候的响应关系,从树木径向生长、NDVI、物候和物种分布范围等方面探讨了气候变化对针叶树种的影响,并对树木生长响应气候变化研究中可能存在的问题和研究前景进行了展望。 相似文献
6.
Juan C. lvarez‐Ypiz 《Restoration Ecology》2020,28(2):271-276
Extreme disturbance events denote another aspect of global environmental changes archetypal of the Anthropocene. These events of climatic or anthropic origin are challenging our perceived understanding about how forests respond to disturbance. I present a general framework of tropical forest responses to extreme disturbance events with specific examples from tropical dry forests. The linkage between level of disturbance severity and dominant mechanism of vegetation recovery is reflected on a variety of initial trajectories of forest succession. Accordingly, more realistic and cost‐effective restoration goals in many tropical forests likely consist in maintaining a mosaic of different successional trajectories while promoting landscape connectivity, rather than encouraging full‐ecosystem recovery to pre‐disturbance conditions. Incorporating extreme disturbance events into the global restoration ecology agenda will be essential to design well‐informed ecosystem management strategies in the coming decades. 相似文献
7.
Structural overshoot of tree growth with climate variability and the global spectrum of drought‐induced forest dieback 下载免费PDF全文
Alistair S. Jump Paloma Ruiz‐Benito Sarah Greenwood Craig D. Allen Thomas Kitzberger Rod Fensham Jordi Martínez‐Vilalta Francisco Lloret 《Global Change Biology》2017,23(9):3742-3757
Ongoing climate change poses significant threats to plant function and distribution. Increased temperatures and altered precipitation regimes amplify drought frequency and intensity, elevating plant stress and mortality. Large‐scale forest mortality events will have far‐reaching impacts on carbon and hydrological cycling, biodiversity, and ecosystem services. However, biogeographical theory and global vegetation models poorly represent recent forest die‐off patterns. Furthermore, as trees are sessile and long‐lived, their responses to climate extremes are substantially dependent on historical factors. We show that periods of favourable climatic and management conditions that facilitate abundant tree growth can lead to structural overshoot of aboveground tree biomass due to a subsequent temporal mismatch between water demand and availability. When environmental favourability declines, increases in water and temperature stress that are protracted, rapid, or both, drive a gradient of tree structural responses that can modify forest self‐thinning relationships. Responses ranging from premature leaf senescence and partial canopy dieback to whole‐tree mortality reduce canopy leaf area during the stress period and for a lagged recovery window thereafter. Such temporal mismatches of water requirements from availability can occur at local to regional scales throughout a species geographical range. As climate change projections predict large future fluctuations in both wet and dry conditions, we expect forests to become increasingly structurally mismatched to water availability and thus overbuilt during more stressful episodes. By accounting for the historical context of biomass development, our approach can explain previously problematic aspects of large‐scale forest mortality, such as why it can occur throughout the range of a species and yet still be locally highly variable, and why some events seem readily attributable to an ongoing drought while others do not. This refined understanding can facilitate better projections of structural overshoot responses, enabling improved prediction of changes in forest distribution and function from regional to global scales. 相似文献
8.
基于树轮火疤塔河蒙克山樟子松林火灾的频度分析 总被引:2,自引:0,他引:2
大兴安岭地区是我国重要林区,又是林火的多发区,林火是森林生态系统中的重要干扰因子,对整个森林生态系统结构、功能和动态都有重要影响。樟子松为欧洲赤松的一个变种,在我国主要分布于大兴安岭地区。近年来,频繁的森林火灾造成樟子松林大面积减少。因此,重建大兴安岭樟子松林火历史,掌握樟子松林火灾规律已显得十分迫切。在大兴安岭北部塔河县蒙克山林场采集了11棵樟子松火疤圆盘,利用树木年轮年代学方法重建了大兴安岭北部塔河县蒙克山樟子松林的火灾历史,获得1个以树轮年代学为基础的樟子松火疤年表。利用火历史分析软件得到蒙克山樟子松林火灾间隔期和轮回期分别为24.8a和33a。由火疤年表得到的蒙克山樟子松林火灾历史大致可分为3个历史时期:满清中期(1723-1859年)、清末民国时期(1860-1949年)和建国后(1950年至今)。41个火疤记录中早早材火(E)所占比例最大,占全部火疤数目的61%,晚材火(A)、未确定火(U)和休眠季节火(D)则相对较少。大区域性火灾事件平均间隔期为32.5a,最大火灾间隔期为61a。本研究为进一步探究大兴安岭地区寒温带针叶林火灾历史的时间和空间格局及其之间的联系提供了基础数据。 相似文献
9.
Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies L.) and silver birch (Betula pendula L.) seedlings were grown
in a greenhouse for four months in three different soils. The soils were from a field afforestation site on former agricultural
land: soil from a pine site, soil from a spruce site and soil from a birch site. Pots without seedlings were included. The
aim was to discover, independent of the effects of the different quality of aboveground litter and microclimate under the
tree species, whether the roots change the microbial activities and chemical characteristics of the soil, whether the changes
are dependent on the tree species, and whether the changes vary in different soils.
Pine, spruce and birch had, on average, five, one and six meters of roots, respectively. Birch had by far the highest number
of short root tips, on average 11 450 per seedling, compared to 1900 and 450 in pine and spruce seedlings, respectively. The
majority of the short roots of pine and spruce were brown sheathed mycorrhizas, and those of birch were mycorrhizas in an
early stage of development.
The seedlings caused no major changes in either the soil pH or the concentrations of nutrients in the soils, but did affect
the microbial characteristics of the soils. The effect of the tree species did not differ in different soils. Microbial biomass
C and N, C mineralization rate and the concentration of ergosterol were all higher under birch and pine than under spruce
and in plantless soils. Nitrate concentrations were lowest under pine and birch, but rates of net N mineralization, nitrification
and denitrification did not differ under different seedlings.
The stimulative effect of pine and especially birch on soil microbes was possibly due to them having more roots and releasing
more root exudates to soil. There were, however, indications that not only the length/mass of roots determined the changes
in microbial activities, but also differences in root activities per unit of root or in the quality of root exudates. 相似文献
10.
11.
选取福建中西部地区相似气候条件下马尾松和杉木的天然林和人工林进行研究,利用年轮宽度、年轮宽度指数和断面积增量重建了4种林型共109株松树20年(1993—2012年)的年生长量,计算其对连续两次极端干旱事件(2003—2004年和2011年)的抵抗力、恢复力和弹性指数,分析人工林和天然林在抵抗力和弹性方面的差异。结果表明:马尾松和杉木对水分的需求在时间上存在差异,这解释了其对2003—2004年干旱事件的响应不一致。干旱压力极大地降低了马尾松和杉木的生长,但树木生长并未表现出干旱遗留效应。受干旱强度的影响,4种林型径向生长对2003—2004年干旱的响应强于2011年。干旱事件后马尾松比杉木具有更强的恢复能力;天然林比人工林对干旱的敏感性更高,同时弹性也更大。杉木人工林更容易受到频发的极端干旱事件的影响,在人工林抚育管理中应选择抗旱能力较强的遗传种源,以应对气候变暖导致的干旱频发。 相似文献
12.
大兴安岭是我国气候变化最为显著的地区之一,兴安落叶松和樟子松是该地区最为重要的树种,研究它们径向生长对气候变化的响应差异,可以为预测气候变化下我国北方森林动态提供科学依据。在大兴安岭地区选择6个样点共采集兴安落叶松树轮和樟子松树轮样芯451个,建立了12个标准年表。比较了1900年以来树木径向生长趋势,利用Pearson相关分析法分析各样点兴安落叶松和樟子松生长对气候因子的响应,运用线性混合模型探讨温度和降水对兴安落叶松和樟子松年径向生长的影响,通过滑动相关对比两个树种生长-气候关系的时间稳定性。结果表明: 兴安落叶松径向生长与3月平均温度呈负相关,与上一年冬季和当年7月降水呈正相关。樟子松径向生长与当年8月温度呈正相关,与当年生长季(5—9月)降水呈正相关。冬季降雪对兴安落叶松径向生长起到重要的促进作用,夏季过多降水对樟子松径向生长起到显著的限制作用。兴安落叶松和樟子松生长对气候变化的响应存在明显差异,因此,气候变化可能会影响北方森林生态系统的树木生长、物种组成以及空间分布等。 相似文献
13.
Pinus sylvestris L., Abies alba Mill. and Fagus sylvatica L.—the significant forest forming tree species in Europe are important for palaeoecological interpretations based on the
results of pollen analysis of fossil deposits. The potential pollen loading for Pinus sylvestris, Abies alba and Fagus sylvatica was modelled using simulated and actual vegetation maps, measured fall-speed values and pollen productivity estimates from
the literature. The influx of fir pollen drops sharply with distance from the pollen source due to the high fall speed and
moderate pollen productivity. The vast majority of Abies alba pollen is deposited within less than 50 m of the sampling site and a major proportion within 100 m. For beech the corresponding
numbers would be 300 and 1,800 m, and for pine 1,000 and 4,500 m. The observed mean pollen accumulation rate (PAR) values
for Pinus and Fagus were ca. 5,800 and 1,100 grains cm−2 year−1, respectively. In the case of Abies, the mean annual PAR for the whole region is ca. 700 grains cm−2 year−1. In SE Poland the regional signal is represented by PARs of Abies alba <200 grains cm−2 year−1 and of Fagus sylvatica <500 grains cm−2 year−1. The local presence/absence threshold values for Abies alba, Fagus sylvatica and Pinus sylvestris are >1,000 grains cm−2 year−1, >2,000 grains cm−2 year−1 and >3,500 grains cm−2 year−1 respectively. 相似文献
14.
Different tree species exhibit different phenological and physiological characteristics, leading to complexity in inter-species comparison of stem radial growth response to climate change. This study explored the climate-growth responses of Qinghai spruce (Picea crassifolia) and Chinese pine (Pinus tabulaeformis) in the Qilian Mountains, Northwest China. Meanwhile, Vaganov-Shashkin model (VS-oscilloscope) was used to simulate the relationships between radial growth rates and phenology. The results showed that 1) in their radial growth patterns, Qinghai spruce showed a significant increasing trend, while Chinese pine showed a decreasing trend, and Qinghai spruce has a longer growing season than Chinese pine. 2) For the radial growth-climate dynamic response, Qinghai spruce was influenced in an unstable manner by the mean temperature in the mid-growing season of the current year and the late growing season of the previous year and by the mean minimum temperature in the mid-growing season of the current year, while Chinese pine was influenced in a stable manner by the mean temperature and mean maximum temperature during the growing season of the current year. 3) The radial growth rates of the two conifer species were limited by temperature at the initiation and cessation of growth and by soil moisture at the peak of growth. But Chinese pine was more severely affected by soil moisture than Qinghai spruce in the middle of growth. Therefore, different management and restoration measures should be taken based on the differences in ecological responses and physical and physiological properties of the two conifer species to climate change in the subalpine forest ecosystems in the semiarid and arid regions of Northwest China. 相似文献
15.
Pinus sylvestris, the most widely distributed pine species, is commonly used in dendrochronological studies. Based on a lack of studies at its southeastern distribution, we analysed the growth responses of P. sylvestris to temperature and precipitation. We selected 13 sites to study the effects of climate on the growth of Scots pine stands throughout a geographic gradient over time. Trees were sampled from pure stands at different elevations and landscape conditions. The linear and non-linear associations between tree-ring widths and climate variables were calculated with locally specific linear correlation analysis and a mixed generalised additive model. Moving window correlation function was also performed to understand the temporal stability of limiting factors on growth from 1930 to 2013. Our findings showed that early spring temperature (March-April) and late spring-early summer precipitation (May-June) are the major drivers of growth at all sites, where high temperature constraints and high precipitation enhances the growth. Moving window correlation analysis highlighted that the response to precipitation was stationary while temperature changed over time. Our non-linear analysis provided a threshold for March-April temperature. The threshold indicates that the relative additional increment sharply increases up to 7 °C and then slightly decreases. 相似文献
16.
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco; EC 4.1.1.39) from fir ( Abies alba Mill.) and spruce ( Picea abies [L.] Karst.) needles was purified to homogeneity. The enzyme was isolated from crude extracts through quantitative precipitation in 40-55% and 40-60% (NH4 )2 SO4 for fir and spruce. respectively, followed by linear sucrose gradient centrifugation. Using two dimensional gel electrophoresis, the isoelectric points were determined. For the large subunit (LSU) it was 6.7 for both species, and for the small subunit (SSU) it was 7.1 and 7.7 for fir and spruce, respectively. Very few differences in tryptic peptides and amino acid composition of Rubisco LSU were observed between fir and spruce. By contrast, marked differences characterized the same analyses for the Rubisco SSU of the two species. Moreover, substitution of residues was observed in the sequenced N-terminal region when comparing fir and spruce SSU. The Ouchterlony technique showed no immu-nochemical difference between Rubisco of fir and spruce when a rabbit antiserum to spinach Rubisco was used. The Eadie-Hofstee plots of carboxylase activity indicated that the apparent Km (CO2 ) were 31 and 36 μ M for the fir and spruce enzymes, respectively. 相似文献
17.
STEFAN MAYR CLARA BERTEL BIRGIT DÄMON BARBARA BEIKIRCHER 《Plant, cell & environment》2014,37(9):2151-2157
The xylem hydraulic efficiency and safety is usually measured on mechanically unstressed samples, although trees may be exposed to combined hydraulic and mechanical stress in the field. We analysed changes in hydraulic conductivity and vulnerability to drought‐induced embolism during static bending of Picea abies and Pinus sylvestris branches as well as the effect of dynamic bending on the vulnerability. We hypothesized this mechanical stress to substantially impair xylem hydraulics. Intense static bending caused an only small decrease in hydraulic conductance (?19.5 ± 2.4% in P. abies) but no shift in vulnerability thresholds. Dynamic bending caused a 0.4 and 0.8 MPa decrease of the water potential at 50 and 88% loss of conductivity in P. sylvestris, but did not affect vulnerability thresholds in P. abies. With respect to applied extreme bending radii, effects on plant hydraulics were surprisingly small and are thus probably of minor eco‐physiological importance. More importantly, results indicate that available xylem hydraulic analyses (of conifers) sufficiently reflect plant hydraulics under field conditions. 相似文献
18.
马尾松是我国南方地区广泛分布的先锋造林树种。在全球变暖、气候干旱化和虫灾频发的趋势下,研究马尾松对环境干扰的生态弹性对森林管理有重要意义。本文对福建省仙游县百松村的马尾松古树进行树木年轮样品采集,建立区域首个马尾松树轮宽度标准年表(1865—2014年)。结果表明: 当年7—9月低相对湿度和5—9月极端高温是树木生长的主要限制因素。根据树轮极端窄年确定1869、1889、1986、1991和1993是极端事件年。时序叠加分析发现,极端事件发生前两年的持续低值加剧了极端事件的影响。干旱年份更容易引发虫灾。1889年是受虫灾影响最严重的年份,1986和1991年受到虫灾和干旱气候的双重影响,其余极端年主要受干旱气候的影响。树木对虫灾的抵抗力弱于对干旱事件的抵抗力;除1991年外,树木对虫灾的相对弹性力高于对干旱事件的相对弹性力。1889年的相对弹性力最高,1991年受到连续极端事件的影响,相对弹性力最低。2000年以来研究区干旱化趋势加强,马尾松古树遭受干旱和虫灾的干扰加强,部分树木死亡。 相似文献
19.
ROBERT GODFREE BRENDAN LEPSCHI APRIL RESIDE TERRY BOLGER BRUCE ROBERTSON DAVID MARSHALL MALCOLM CARNEGIE 《Global Change Biology》2011,17(2):943-958
It is argued that the inclusion of spatially heterogeneous environments in biodiversity reserves will be an effective means of encouraging ecosystem resilience and plant community conservation under climate change. However, the resilience and resistance of plant populations to global change, the specific life‐history traits involved and the spatial scale at which environmentally driven demographic variation is expressed remains largely unknown for most plant groups. Here we address these questions by reporting an empirical investigation into the impacts of an unprecedented 3‐year drought on the demography, population growth rates (λ) and biogeographical distribution of core populations of the perennial grassland species Austrostipa aristiglumis in semiarid Australia. We use life‐history analysis and periodic matrix population models to specifically test the hypothesis that patch‐ and habitat‐scale variation in vital life‐history parameters result in spatial differences in the resilience and resistance of A. aristiglumis populations to extreme drought. We show that the development of critical soil water deficits during drought resulted in collapse of adult A. aristiglumis populations (λ?1), rapid interhabitat phytosociological change and overall contraction towards mesic refugia where populations were both more resistant and resilient to perturbation. Population models, combined with climatic niche analysis, suggest that, even in core areas, a significant reduction in size and habitat range of A. aristiglumis populations is likely under climate change expected this century. Remarkably, however, we show that even minor topographic variation (0.2–3 m) can generate significant variation in demographic parameters that confer population‐level resilience and resistance to drought. Our findings support the hypothesis that extreme climatic events have the capacity to induce rapid, landscape‐level shifts in core plant populations, but that the protection of topographically heterogeneous environments, even at small spatial scales, may play a key role in conserving biodiversity under climate change in the coming century. 相似文献
20.
用树木年代学方法研究了近50年来气候变化对长白山自然保护区两种广泛分布的重要乔木树种红松(Pinus koraiensis)和鱼鳞云杉(Picea jezoensis var. komarovii)分布上限树木径向生长的影响, 发现红松年轮宽度具有与温度升高相一致的趋势, 而鱼鳞云杉年轮宽度则出现随温度升高而下降的“分离现象”。对水热条件的正响应是分布上限红松年表与温度保持一致的关键: 生长季的温度和降水的增加对上限红松的生长有促进作用, 且二者对树木生长的有利效应有相互促进的现象; 生长季的延长也有利于红松的生长。升温导致的水分胁迫是造成上限分布的鱼鳞云杉年轮宽度与温度变化趋势相反的重要因素: 分布上限的鱼鳞云杉年表与大多数温度指标均呈负相关关系; 随着温度升高, 年表与年降水量尤其是春季降水量的相关性逐渐由负转正; 各月的高温以及生长季中后期的少雨是形成上限鱼鳞云杉窄轮的主要气候因素, 而较低的各月温度以及生长季后期充足的降水则有利于上限鱼鳞云杉的生长; 此外, 生长季长度没有变化也可能是造成鱼鳞云杉年表序列对温度变化敏感性下降的重要因素。 相似文献